Retro68/gcc/libgo/go/net/http/server.go
2017-10-07 02:16:47 +02:00

3169 lines
92 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// HTTP server. See RFC 2616.
package http
import (
"bufio"
"bytes"
"context"
"crypto/tls"
"errors"
"fmt"
"io"
"io/ioutil"
"log"
"net"
"net/textproto"
"net/url"
"os"
"path"
"runtime"
"strconv"
"strings"
"sync"
"sync/atomic"
"time"
"golang_org/x/net/lex/httplex"
)
// Errors used by the HTTP server.
var (
// ErrBodyNotAllowed is returned by ResponseWriter.Write calls
// when the HTTP method or response code does not permit a
// body.
ErrBodyNotAllowed = errors.New("http: request method or response status code does not allow body")
// ErrHijacked is returned by ResponseWriter.Write calls when
// the underlying connection has been hijacked using the
// Hijacker interface. A zero-byte write on a hijacked
// connection will return ErrHijacked without any other side
// effects.
ErrHijacked = errors.New("http: connection has been hijacked")
// ErrContentLength is returned by ResponseWriter.Write calls
// when a Handler set a Content-Length response header with a
// declared size and then attempted to write more bytes than
// declared.
ErrContentLength = errors.New("http: wrote more than the declared Content-Length")
// Deprecated: ErrWriteAfterFlush is no longer used.
ErrWriteAfterFlush = errors.New("unused")
)
// A Handler responds to an HTTP request.
//
// ServeHTTP should write reply headers and data to the ResponseWriter
// and then return. Returning signals that the request is finished; it
// is not valid to use the ResponseWriter or read from the
// Request.Body after or concurrently with the completion of the
// ServeHTTP call.
//
// Depending on the HTTP client software, HTTP protocol version, and
// any intermediaries between the client and the Go server, it may not
// be possible to read from the Request.Body after writing to the
// ResponseWriter. Cautious handlers should read the Request.Body
// first, and then reply.
//
// Except for reading the body, handlers should not modify the
// provided Request.
//
// If ServeHTTP panics, the server (the caller of ServeHTTP) assumes
// that the effect of the panic was isolated to the active request.
// It recovers the panic, logs a stack trace to the server error log,
// and hangs up the connection. To abort a handler so the client sees
// an interrupted response but the server doesn't log an error, panic
// with the value ErrAbortHandler.
type Handler interface {
ServeHTTP(ResponseWriter, *Request)
}
// A ResponseWriter interface is used by an HTTP handler to
// construct an HTTP response.
//
// A ResponseWriter may not be used after the Handler.ServeHTTP method
// has returned.
type ResponseWriter interface {
// Header returns the header map that will be sent by
// WriteHeader. The Header map also is the mechanism with which
// Handlers can set HTTP trailers.
//
// Changing the header map after a call to WriteHeader (or
// Write) has no effect unless the modified headers are
// trailers.
//
// There are two ways to set Trailers. The preferred way is to
// predeclare in the headers which trailers you will later
// send by setting the "Trailer" header to the names of the
// trailer keys which will come later. In this case, those
// keys of the Header map are treated as if they were
// trailers. See the example. The second way, for trailer
// keys not known to the Handler until after the first Write,
// is to prefix the Header map keys with the TrailerPrefix
// constant value. See TrailerPrefix.
//
// To suppress implicit response headers (such as "Date"), set
// their value to nil.
Header() Header
// Write writes the data to the connection as part of an HTTP reply.
//
// If WriteHeader has not yet been called, Write calls
// WriteHeader(http.StatusOK) before writing the data. If the Header
// does not contain a Content-Type line, Write adds a Content-Type set
// to the result of passing the initial 512 bytes of written data to
// DetectContentType.
//
// Depending on the HTTP protocol version and the client, calling
// Write or WriteHeader may prevent future reads on the
// Request.Body. For HTTP/1.x requests, handlers should read any
// needed request body data before writing the response. Once the
// headers have been flushed (due to either an explicit Flusher.Flush
// call or writing enough data to trigger a flush), the request body
// may be unavailable. For HTTP/2 requests, the Go HTTP server permits
// handlers to continue to read the request body while concurrently
// writing the response. However, such behavior may not be supported
// by all HTTP/2 clients. Handlers should read before writing if
// possible to maximize compatibility.
Write([]byte) (int, error)
// WriteHeader sends an HTTP response header with status code.
// If WriteHeader is not called explicitly, the first call to Write
// will trigger an implicit WriteHeader(http.StatusOK).
// Thus explicit calls to WriteHeader are mainly used to
// send error codes.
WriteHeader(int)
}
// The Flusher interface is implemented by ResponseWriters that allow
// an HTTP handler to flush buffered data to the client.
//
// The default HTTP/1.x and HTTP/2 ResponseWriter implementations
// support Flusher, but ResponseWriter wrappers may not. Handlers
// should always test for this ability at runtime.
//
// Note that even for ResponseWriters that support Flush,
// if the client is connected through an HTTP proxy,
// the buffered data may not reach the client until the response
// completes.
type Flusher interface {
// Flush sends any buffered data to the client.
Flush()
}
// The Hijacker interface is implemented by ResponseWriters that allow
// an HTTP handler to take over the connection.
//
// The default ResponseWriter for HTTP/1.x connections supports
// Hijacker, but HTTP/2 connections intentionally do not.
// ResponseWriter wrappers may also not support Hijacker. Handlers
// should always test for this ability at runtime.
type Hijacker interface {
// Hijack lets the caller take over the connection.
// After a call to Hijack the HTTP server library
// will not do anything else with the connection.
//
// It becomes the caller's responsibility to manage
// and close the connection.
//
// The returned net.Conn may have read or write deadlines
// already set, depending on the configuration of the
// Server. It is the caller's responsibility to set
// or clear those deadlines as needed.
//
// The returned bufio.Reader may contain unprocessed buffered
// data from the client.
Hijack() (net.Conn, *bufio.ReadWriter, error)
}
// The CloseNotifier interface is implemented by ResponseWriters which
// allow detecting when the underlying connection has gone away.
//
// This mechanism can be used to cancel long operations on the server
// if the client has disconnected before the response is ready.
type CloseNotifier interface {
// CloseNotify returns a channel that receives at most a
// single value (true) when the client connection has gone
// away.
//
// CloseNotify may wait to notify until Request.Body has been
// fully read.
//
// After the Handler has returned, there is no guarantee
// that the channel receives a value.
//
// If the protocol is HTTP/1.1 and CloseNotify is called while
// processing an idempotent request (such a GET) while
// HTTP/1.1 pipelining is in use, the arrival of a subsequent
// pipelined request may cause a value to be sent on the
// returned channel. In practice HTTP/1.1 pipelining is not
// enabled in browsers and not seen often in the wild. If this
// is a problem, use HTTP/2 or only use CloseNotify on methods
// such as POST.
CloseNotify() <-chan bool
}
var (
// ServerContextKey is a context key. It can be used in HTTP
// handlers with context.WithValue to access the server that
// started the handler. The associated value will be of
// type *Server.
ServerContextKey = &contextKey{"http-server"}
// LocalAddrContextKey is a context key. It can be used in
// HTTP handlers with context.WithValue to access the address
// the local address the connection arrived on.
// The associated value will be of type net.Addr.
LocalAddrContextKey = &contextKey{"local-addr"}
)
// A conn represents the server side of an HTTP connection.
type conn struct {
// server is the server on which the connection arrived.
// Immutable; never nil.
server *Server
// cancelCtx cancels the connection-level context.
cancelCtx context.CancelFunc
// rwc is the underlying network connection.
// This is never wrapped by other types and is the value given out
// to CloseNotifier callers. It is usually of type *net.TCPConn or
// *tls.Conn.
rwc net.Conn
// remoteAddr is rwc.RemoteAddr().String(). It is not populated synchronously
// inside the Listener's Accept goroutine, as some implementations block.
// It is populated immediately inside the (*conn).serve goroutine.
// This is the value of a Handler's (*Request).RemoteAddr.
remoteAddr string
// tlsState is the TLS connection state when using TLS.
// nil means not TLS.
tlsState *tls.ConnectionState
// werr is set to the first write error to rwc.
// It is set via checkConnErrorWriter{w}, where bufw writes.
werr error
// r is bufr's read source. It's a wrapper around rwc that provides
// io.LimitedReader-style limiting (while reading request headers)
// and functionality to support CloseNotifier. See *connReader docs.
r *connReader
// bufr reads from r.
bufr *bufio.Reader
// bufw writes to checkConnErrorWriter{c}, which populates werr on error.
bufw *bufio.Writer
// lastMethod is the method of the most recent request
// on this connection, if any.
lastMethod string
curReq atomic.Value // of *response (which has a Request in it)
curState atomic.Value // of ConnState
// mu guards hijackedv
mu sync.Mutex
// hijackedv is whether this connection has been hijacked
// by a Handler with the Hijacker interface.
// It is guarded by mu.
hijackedv bool
}
func (c *conn) hijacked() bool {
c.mu.Lock()
defer c.mu.Unlock()
return c.hijackedv
}
// c.mu must be held.
func (c *conn) hijackLocked() (rwc net.Conn, buf *bufio.ReadWriter, err error) {
if c.hijackedv {
return nil, nil, ErrHijacked
}
c.r.abortPendingRead()
c.hijackedv = true
rwc = c.rwc
rwc.SetDeadline(time.Time{})
buf = bufio.NewReadWriter(c.bufr, bufio.NewWriter(rwc))
if c.r.hasByte {
if _, err := c.bufr.Peek(c.bufr.Buffered() + 1); err != nil {
return nil, nil, fmt.Errorf("unexpected Peek failure reading buffered byte: %v", err)
}
}
c.setState(rwc, StateHijacked)
return
}
// This should be >= 512 bytes for DetectContentType,
// but otherwise it's somewhat arbitrary.
const bufferBeforeChunkingSize = 2048
// chunkWriter writes to a response's conn buffer, and is the writer
// wrapped by the response.bufw buffered writer.
//
// chunkWriter also is responsible for finalizing the Header, including
// conditionally setting the Content-Type and setting a Content-Length
// in cases where the handler's final output is smaller than the buffer
// size. It also conditionally adds chunk headers, when in chunking mode.
//
// See the comment above (*response).Write for the entire write flow.
type chunkWriter struct {
res *response
// header is either nil or a deep clone of res.handlerHeader
// at the time of res.WriteHeader, if res.WriteHeader is
// called and extra buffering is being done to calculate
// Content-Type and/or Content-Length.
header Header
// wroteHeader tells whether the header's been written to "the
// wire" (or rather: w.conn.buf). this is unlike
// (*response).wroteHeader, which tells only whether it was
// logically written.
wroteHeader bool
// set by the writeHeader method:
chunking bool // using chunked transfer encoding for reply body
}
var (
crlf = []byte("\r\n")
colonSpace = []byte(": ")
)
func (cw *chunkWriter) Write(p []byte) (n int, err error) {
if !cw.wroteHeader {
cw.writeHeader(p)
}
if cw.res.req.Method == "HEAD" {
// Eat writes.
return len(p), nil
}
if cw.chunking {
_, err = fmt.Fprintf(cw.res.conn.bufw, "%x\r\n", len(p))
if err != nil {
cw.res.conn.rwc.Close()
return
}
}
n, err = cw.res.conn.bufw.Write(p)
if cw.chunking && err == nil {
_, err = cw.res.conn.bufw.Write(crlf)
}
if err != nil {
cw.res.conn.rwc.Close()
}
return
}
func (cw *chunkWriter) flush() {
if !cw.wroteHeader {
cw.writeHeader(nil)
}
cw.res.conn.bufw.Flush()
}
func (cw *chunkWriter) close() {
if !cw.wroteHeader {
cw.writeHeader(nil)
}
if cw.chunking {
bw := cw.res.conn.bufw // conn's bufio writer
// zero chunk to mark EOF
bw.WriteString("0\r\n")
if trailers := cw.res.finalTrailers(); trailers != nil {
trailers.Write(bw) // the writer handles noting errors
}
// final blank line after the trailers (whether
// present or not)
bw.WriteString("\r\n")
}
}
// A response represents the server side of an HTTP response.
type response struct {
conn *conn
req *Request // request for this response
reqBody io.ReadCloser
cancelCtx context.CancelFunc // when ServeHTTP exits
wroteHeader bool // reply header has been (logically) written
wroteContinue bool // 100 Continue response was written
wants10KeepAlive bool // HTTP/1.0 w/ Connection "keep-alive"
wantsClose bool // HTTP request has Connection "close"
w *bufio.Writer // buffers output in chunks to chunkWriter
cw chunkWriter
// handlerHeader is the Header that Handlers get access to,
// which may be retained and mutated even after WriteHeader.
// handlerHeader is copied into cw.header at WriteHeader
// time, and privately mutated thereafter.
handlerHeader Header
calledHeader bool // handler accessed handlerHeader via Header
written int64 // number of bytes written in body
contentLength int64 // explicitly-declared Content-Length; or -1
status int // status code passed to WriteHeader
// close connection after this reply. set on request and
// updated after response from handler if there's a
// "Connection: keep-alive" response header and a
// Content-Length.
closeAfterReply bool
// requestBodyLimitHit is set by requestTooLarge when
// maxBytesReader hits its max size. It is checked in
// WriteHeader, to make sure we don't consume the
// remaining request body to try to advance to the next HTTP
// request. Instead, when this is set, we stop reading
// subsequent requests on this connection and stop reading
// input from it.
requestBodyLimitHit bool
// trailers are the headers to be sent after the handler
// finishes writing the body. This field is initialized from
// the Trailer response header when the response header is
// written.
trailers []string
handlerDone atomicBool // set true when the handler exits
// Buffers for Date and Content-Length
dateBuf [len(TimeFormat)]byte
clenBuf [10]byte
// closeNotifyCh is the channel returned by CloseNotify.
// TODO(bradfitz): this is currently (for Go 1.8) always
// non-nil. Make this lazily-created again as it used to be?
closeNotifyCh chan bool
didCloseNotify int32 // atomic (only 0->1 winner should send)
}
// TrailerPrefix is a magic prefix for ResponseWriter.Header map keys
// that, if present, signals that the map entry is actually for
// the response trailers, and not the response headers. The prefix
// is stripped after the ServeHTTP call finishes and the values are
// sent in the trailers.
//
// This mechanism is intended only for trailers that are not known
// prior to the headers being written. If the set of trailers is fixed
// or known before the header is written, the normal Go trailers mechanism
// is preferred:
// https://golang.org/pkg/net/http/#ResponseWriter
// https://golang.org/pkg/net/http/#example_ResponseWriter_trailers
const TrailerPrefix = "Trailer:"
// finalTrailers is called after the Handler exits and returns a non-nil
// value if the Handler set any trailers.
func (w *response) finalTrailers() Header {
var t Header
for k, vv := range w.handlerHeader {
if strings.HasPrefix(k, TrailerPrefix) {
if t == nil {
t = make(Header)
}
t[strings.TrimPrefix(k, TrailerPrefix)] = vv
}
}
for _, k := range w.trailers {
if t == nil {
t = make(Header)
}
for _, v := range w.handlerHeader[k] {
t.Add(k, v)
}
}
return t
}
type atomicBool int32
func (b *atomicBool) isSet() bool { return atomic.LoadInt32((*int32)(b)) != 0 }
func (b *atomicBool) setTrue() { atomic.StoreInt32((*int32)(b), 1) }
// declareTrailer is called for each Trailer header when the
// response header is written. It notes that a header will need to be
// written in the trailers at the end of the response.
func (w *response) declareTrailer(k string) {
k = CanonicalHeaderKey(k)
switch k {
case "Transfer-Encoding", "Content-Length", "Trailer":
// Forbidden by RFC 2616 14.40.
return
}
w.trailers = append(w.trailers, k)
}
// requestTooLarge is called by maxBytesReader when too much input has
// been read from the client.
func (w *response) requestTooLarge() {
w.closeAfterReply = true
w.requestBodyLimitHit = true
if !w.wroteHeader {
w.Header().Set("Connection", "close")
}
}
// needsSniff reports whether a Content-Type still needs to be sniffed.
func (w *response) needsSniff() bool {
_, haveType := w.handlerHeader["Content-Type"]
return !w.cw.wroteHeader && !haveType && w.written < sniffLen
}
// writerOnly hides an io.Writer value's optional ReadFrom method
// from io.Copy.
type writerOnly struct {
io.Writer
}
func srcIsRegularFile(src io.Reader) (isRegular bool, err error) {
switch v := src.(type) {
case *os.File:
fi, err := v.Stat()
if err != nil {
return false, err
}
return fi.Mode().IsRegular(), nil
case *io.LimitedReader:
return srcIsRegularFile(v.R)
default:
return
}
}
// ReadFrom is here to optimize copying from an *os.File regular file
// to a *net.TCPConn with sendfile.
func (w *response) ReadFrom(src io.Reader) (n int64, err error) {
// Our underlying w.conn.rwc is usually a *TCPConn (with its
// own ReadFrom method). If not, or if our src isn't a regular
// file, just fall back to the normal copy method.
rf, ok := w.conn.rwc.(io.ReaderFrom)
regFile, err := srcIsRegularFile(src)
if err != nil {
return 0, err
}
if !ok || !regFile {
bufp := copyBufPool.Get().(*[]byte)
defer copyBufPool.Put(bufp)
return io.CopyBuffer(writerOnly{w}, src, *bufp)
}
// sendfile path:
if !w.wroteHeader {
w.WriteHeader(StatusOK)
}
if w.needsSniff() {
n0, err := io.Copy(writerOnly{w}, io.LimitReader(src, sniffLen))
n += n0
if err != nil {
return n, err
}
}
w.w.Flush() // get rid of any previous writes
w.cw.flush() // make sure Header is written; flush data to rwc
// Now that cw has been flushed, its chunking field is guaranteed initialized.
if !w.cw.chunking && w.bodyAllowed() {
n0, err := rf.ReadFrom(src)
n += n0
w.written += n0
return n, err
}
n0, err := io.Copy(writerOnly{w}, src)
n += n0
return n, err
}
// debugServerConnections controls whether all server connections are wrapped
// with a verbose logging wrapper.
const debugServerConnections = false
// Create new connection from rwc.
func (srv *Server) newConn(rwc net.Conn) *conn {
c := &conn{
server: srv,
rwc: rwc,
}
if debugServerConnections {
c.rwc = newLoggingConn("server", c.rwc)
}
return c
}
type readResult struct {
n int
err error
b byte // byte read, if n == 1
}
// connReader is the io.Reader wrapper used by *conn. It combines a
// selectively-activated io.LimitedReader (to bound request header
// read sizes) with support for selectively keeping an io.Reader.Read
// call blocked in a background goroutine to wait for activity and
// trigger a CloseNotifier channel.
type connReader struct {
conn *conn
mu sync.Mutex // guards following
hasByte bool
byteBuf [1]byte
bgErr error // non-nil means error happened on background read
cond *sync.Cond
inRead bool
aborted bool // set true before conn.rwc deadline is set to past
remain int64 // bytes remaining
}
func (cr *connReader) lock() {
cr.mu.Lock()
if cr.cond == nil {
cr.cond = sync.NewCond(&cr.mu)
}
}
func (cr *connReader) unlock() { cr.mu.Unlock() }
func (cr *connReader) startBackgroundRead() {
cr.lock()
defer cr.unlock()
if cr.inRead {
panic("invalid concurrent Body.Read call")
}
if cr.hasByte {
return
}
cr.inRead = true
cr.conn.rwc.SetReadDeadline(time.Time{})
go cr.backgroundRead()
}
func (cr *connReader) backgroundRead() {
n, err := cr.conn.rwc.Read(cr.byteBuf[:])
cr.lock()
if n == 1 {
cr.hasByte = true
// We were at EOF already (since we wouldn't be in a
// background read otherwise), so this is a pipelined
// HTTP request.
cr.closeNotifyFromPipelinedRequest()
}
if ne, ok := err.(net.Error); ok && cr.aborted && ne.Timeout() {
// Ignore this error. It's the expected error from
// another goroutine calling abortPendingRead.
} else if err != nil {
cr.handleReadError(err)
}
cr.aborted = false
cr.inRead = false
cr.unlock()
cr.cond.Broadcast()
}
func (cr *connReader) abortPendingRead() {
cr.lock()
defer cr.unlock()
if !cr.inRead {
return
}
cr.aborted = true
cr.conn.rwc.SetReadDeadline(aLongTimeAgo)
for cr.inRead {
cr.cond.Wait()
}
cr.conn.rwc.SetReadDeadline(time.Time{})
}
func (cr *connReader) setReadLimit(remain int64) { cr.remain = remain }
func (cr *connReader) setInfiniteReadLimit() { cr.remain = maxInt64 }
func (cr *connReader) hitReadLimit() bool { return cr.remain <= 0 }
// may be called from multiple goroutines.
func (cr *connReader) handleReadError(err error) {
cr.conn.cancelCtx()
cr.closeNotify()
}
// closeNotifyFromPipelinedRequest simply calls closeNotify.
//
// This method wrapper is here for documentation. The callers are the
// cases where we send on the closenotify channel because of a
// pipelined HTTP request, per the previous Go behavior and
// documentation (that this "MAY" happen).
//
// TODO: consider changing this behavior and making context
// cancelation and closenotify work the same.
func (cr *connReader) closeNotifyFromPipelinedRequest() {
cr.closeNotify()
}
// may be called from multiple goroutines.
func (cr *connReader) closeNotify() {
res, _ := cr.conn.curReq.Load().(*response)
if res != nil {
if atomic.CompareAndSwapInt32(&res.didCloseNotify, 0, 1) {
res.closeNotifyCh <- true
}
}
}
func (cr *connReader) Read(p []byte) (n int, err error) {
cr.lock()
if cr.inRead {
cr.unlock()
panic("invalid concurrent Body.Read call")
}
if cr.hitReadLimit() {
cr.unlock()
return 0, io.EOF
}
if cr.bgErr != nil {
err = cr.bgErr
cr.unlock()
return 0, err
}
if len(p) == 0 {
cr.unlock()
return 0, nil
}
if int64(len(p)) > cr.remain {
p = p[:cr.remain]
}
if cr.hasByte {
p[0] = cr.byteBuf[0]
cr.hasByte = false
cr.unlock()
return 1, nil
}
cr.inRead = true
cr.unlock()
n, err = cr.conn.rwc.Read(p)
cr.lock()
cr.inRead = false
if err != nil {
cr.handleReadError(err)
}
cr.remain -= int64(n)
cr.unlock()
cr.cond.Broadcast()
return n, err
}
var (
bufioReaderPool sync.Pool
bufioWriter2kPool sync.Pool
bufioWriter4kPool sync.Pool
)
var copyBufPool = sync.Pool{
New: func() interface{} {
b := make([]byte, 32*1024)
return &b
},
}
func bufioWriterPool(size int) *sync.Pool {
switch size {
case 2 << 10:
return &bufioWriter2kPool
case 4 << 10:
return &bufioWriter4kPool
}
return nil
}
func newBufioReader(r io.Reader) *bufio.Reader {
if v := bufioReaderPool.Get(); v != nil {
br := v.(*bufio.Reader)
br.Reset(r)
return br
}
// Note: if this reader size is ever changed, update
// TestHandlerBodyClose's assumptions.
return bufio.NewReader(r)
}
func putBufioReader(br *bufio.Reader) {
br.Reset(nil)
bufioReaderPool.Put(br)
}
func newBufioWriterSize(w io.Writer, size int) *bufio.Writer {
pool := bufioWriterPool(size)
if pool != nil {
if v := pool.Get(); v != nil {
bw := v.(*bufio.Writer)
bw.Reset(w)
return bw
}
}
return bufio.NewWriterSize(w, size)
}
func putBufioWriter(bw *bufio.Writer) {
bw.Reset(nil)
if pool := bufioWriterPool(bw.Available()); pool != nil {
pool.Put(bw)
}
}
// DefaultMaxHeaderBytes is the maximum permitted size of the headers
// in an HTTP request.
// This can be overridden by setting Server.MaxHeaderBytes.
const DefaultMaxHeaderBytes = 1 << 20 // 1 MB
func (srv *Server) maxHeaderBytes() int {
if srv.MaxHeaderBytes > 0 {
return srv.MaxHeaderBytes
}
return DefaultMaxHeaderBytes
}
func (srv *Server) initialReadLimitSize() int64 {
return int64(srv.maxHeaderBytes()) + 4096 // bufio slop
}
// wrapper around io.ReaderCloser which on first read, sends an
// HTTP/1.1 100 Continue header
type expectContinueReader struct {
resp *response
readCloser io.ReadCloser
closed bool
sawEOF bool
}
func (ecr *expectContinueReader) Read(p []byte) (n int, err error) {
if ecr.closed {
return 0, ErrBodyReadAfterClose
}
if !ecr.resp.wroteContinue && !ecr.resp.conn.hijacked() {
ecr.resp.wroteContinue = true
ecr.resp.conn.bufw.WriteString("HTTP/1.1 100 Continue\r\n\r\n")
ecr.resp.conn.bufw.Flush()
}
n, err = ecr.readCloser.Read(p)
if err == io.EOF {
ecr.sawEOF = true
}
return
}
func (ecr *expectContinueReader) Close() error {
ecr.closed = true
return ecr.readCloser.Close()
}
// TimeFormat is the time format to use when generating times in HTTP
// headers. It is like time.RFC1123 but hard-codes GMT as the time
// zone. The time being formatted must be in UTC for Format to
// generate the correct format.
//
// For parsing this time format, see ParseTime.
const TimeFormat = "Mon, 02 Jan 2006 15:04:05 GMT"
// appendTime is a non-allocating version of []byte(t.UTC().Format(TimeFormat))
func appendTime(b []byte, t time.Time) []byte {
const days = "SunMonTueWedThuFriSat"
const months = "JanFebMarAprMayJunJulAugSepOctNovDec"
t = t.UTC()
yy, mm, dd := t.Date()
hh, mn, ss := t.Clock()
day := days[3*t.Weekday():]
mon := months[3*(mm-1):]
return append(b,
day[0], day[1], day[2], ',', ' ',
byte('0'+dd/10), byte('0'+dd%10), ' ',
mon[0], mon[1], mon[2], ' ',
byte('0'+yy/1000), byte('0'+(yy/100)%10), byte('0'+(yy/10)%10), byte('0'+yy%10), ' ',
byte('0'+hh/10), byte('0'+hh%10), ':',
byte('0'+mn/10), byte('0'+mn%10), ':',
byte('0'+ss/10), byte('0'+ss%10), ' ',
'G', 'M', 'T')
}
var errTooLarge = errors.New("http: request too large")
// Read next request from connection.
func (c *conn) readRequest(ctx context.Context) (w *response, err error) {
if c.hijacked() {
return nil, ErrHijacked
}
var (
wholeReqDeadline time.Time // or zero if none
hdrDeadline time.Time // or zero if none
)
t0 := time.Now()
if d := c.server.readHeaderTimeout(); d != 0 {
hdrDeadline = t0.Add(d)
}
if d := c.server.ReadTimeout; d != 0 {
wholeReqDeadline = t0.Add(d)
}
c.rwc.SetReadDeadline(hdrDeadline)
if d := c.server.WriteTimeout; d != 0 {
defer func() {
c.rwc.SetWriteDeadline(time.Now().Add(d))
}()
}
c.r.setReadLimit(c.server.initialReadLimitSize())
if c.lastMethod == "POST" {
// RFC 2616 section 4.1 tolerance for old buggy clients.
peek, _ := c.bufr.Peek(4) // ReadRequest will get err below
c.bufr.Discard(numLeadingCRorLF(peek))
}
req, err := readRequest(c.bufr, keepHostHeader)
if err != nil {
if c.r.hitReadLimit() {
return nil, errTooLarge
}
return nil, err
}
if !http1ServerSupportsRequest(req) {
return nil, badRequestError("unsupported protocol version")
}
c.lastMethod = req.Method
c.r.setInfiniteReadLimit()
hosts, haveHost := req.Header["Host"]
isH2Upgrade := req.isH2Upgrade()
if req.ProtoAtLeast(1, 1) && (!haveHost || len(hosts) == 0) && !isH2Upgrade {
return nil, badRequestError("missing required Host header")
}
if len(hosts) > 1 {
return nil, badRequestError("too many Host headers")
}
if len(hosts) == 1 && !httplex.ValidHostHeader(hosts[0]) {
return nil, badRequestError("malformed Host header")
}
for k, vv := range req.Header {
if !httplex.ValidHeaderFieldName(k) {
return nil, badRequestError("invalid header name")
}
for _, v := range vv {
if !httplex.ValidHeaderFieldValue(v) {
return nil, badRequestError("invalid header value")
}
}
}
delete(req.Header, "Host")
ctx, cancelCtx := context.WithCancel(ctx)
req.ctx = ctx
req.RemoteAddr = c.remoteAddr
req.TLS = c.tlsState
if body, ok := req.Body.(*body); ok {
body.doEarlyClose = true
}
// Adjust the read deadline if necessary.
if !hdrDeadline.Equal(wholeReqDeadline) {
c.rwc.SetReadDeadline(wholeReqDeadline)
}
w = &response{
conn: c,
cancelCtx: cancelCtx,
req: req,
reqBody: req.Body,
handlerHeader: make(Header),
contentLength: -1,
closeNotifyCh: make(chan bool, 1),
// We populate these ahead of time so we're not
// reading from req.Header after their Handler starts
// and maybe mutates it (Issue 14940)
wants10KeepAlive: req.wantsHttp10KeepAlive(),
wantsClose: req.wantsClose(),
}
if isH2Upgrade {
w.closeAfterReply = true
}
w.cw.res = w
w.w = newBufioWriterSize(&w.cw, bufferBeforeChunkingSize)
return w, nil
}
// http1ServerSupportsRequest reports whether Go's HTTP/1.x server
// supports the given request.
func http1ServerSupportsRequest(req *Request) bool {
if req.ProtoMajor == 1 {
return true
}
// Accept "PRI * HTTP/2.0" upgrade requests, so Handlers can
// wire up their own HTTP/2 upgrades.
if req.ProtoMajor == 2 && req.ProtoMinor == 0 &&
req.Method == "PRI" && req.RequestURI == "*" {
return true
}
// Reject HTTP/0.x, and all other HTTP/2+ requests (which
// aren't encoded in ASCII anyway).
return false
}
func (w *response) Header() Header {
if w.cw.header == nil && w.wroteHeader && !w.cw.wroteHeader {
// Accessing the header between logically writing it
// and physically writing it means we need to allocate
// a clone to snapshot the logically written state.
w.cw.header = w.handlerHeader.clone()
}
w.calledHeader = true
return w.handlerHeader
}
// maxPostHandlerReadBytes is the max number of Request.Body bytes not
// consumed by a handler that the server will read from the client
// in order to keep a connection alive. If there are more bytes than
// this then the server to be paranoid instead sends a "Connection:
// close" response.
//
// This number is approximately what a typical machine's TCP buffer
// size is anyway. (if we have the bytes on the machine, we might as
// well read them)
const maxPostHandlerReadBytes = 256 << 10
func (w *response) WriteHeader(code int) {
if w.conn.hijacked() {
w.conn.server.logf("http: response.WriteHeader on hijacked connection")
return
}
if w.wroteHeader {
w.conn.server.logf("http: multiple response.WriteHeader calls")
return
}
w.wroteHeader = true
w.status = code
if w.calledHeader && w.cw.header == nil {
w.cw.header = w.handlerHeader.clone()
}
if cl := w.handlerHeader.get("Content-Length"); cl != "" {
v, err := strconv.ParseInt(cl, 10, 64)
if err == nil && v >= 0 {
w.contentLength = v
} else {
w.conn.server.logf("http: invalid Content-Length of %q", cl)
w.handlerHeader.Del("Content-Length")
}
}
}
// extraHeader is the set of headers sometimes added by chunkWriter.writeHeader.
// This type is used to avoid extra allocations from cloning and/or populating
// the response Header map and all its 1-element slices.
type extraHeader struct {
contentType string
connection string
transferEncoding string
date []byte // written if not nil
contentLength []byte // written if not nil
}
// Sorted the same as extraHeader.Write's loop.
var extraHeaderKeys = [][]byte{
[]byte("Content-Type"),
[]byte("Connection"),
[]byte("Transfer-Encoding"),
}
var (
headerContentLength = []byte("Content-Length: ")
headerDate = []byte("Date: ")
)
// Write writes the headers described in h to w.
//
// This method has a value receiver, despite the somewhat large size
// of h, because it prevents an allocation. The escape analysis isn't
// smart enough to realize this function doesn't mutate h.
func (h extraHeader) Write(w *bufio.Writer) {
if h.date != nil {
w.Write(headerDate)
w.Write(h.date)
w.Write(crlf)
}
if h.contentLength != nil {
w.Write(headerContentLength)
w.Write(h.contentLength)
w.Write(crlf)
}
for i, v := range []string{h.contentType, h.connection, h.transferEncoding} {
if v != "" {
w.Write(extraHeaderKeys[i])
w.Write(colonSpace)
w.WriteString(v)
w.Write(crlf)
}
}
}
// writeHeader finalizes the header sent to the client and writes it
// to cw.res.conn.bufw.
//
// p is not written by writeHeader, but is the first chunk of the body
// that will be written. It is sniffed for a Content-Type if none is
// set explicitly. It's also used to set the Content-Length, if the
// total body size was small and the handler has already finished
// running.
func (cw *chunkWriter) writeHeader(p []byte) {
if cw.wroteHeader {
return
}
cw.wroteHeader = true
w := cw.res
keepAlivesEnabled := w.conn.server.doKeepAlives()
isHEAD := w.req.Method == "HEAD"
// header is written out to w.conn.buf below. Depending on the
// state of the handler, we either own the map or not. If we
// don't own it, the exclude map is created lazily for
// WriteSubset to remove headers. The setHeader struct holds
// headers we need to add.
header := cw.header
owned := header != nil
if !owned {
header = w.handlerHeader
}
var excludeHeader map[string]bool
delHeader := func(key string) {
if owned {
header.Del(key)
return
}
if _, ok := header[key]; !ok {
return
}
if excludeHeader == nil {
excludeHeader = make(map[string]bool)
}
excludeHeader[key] = true
}
var setHeader extraHeader
// Don't write out the fake "Trailer:foo" keys. See TrailerPrefix.
trailers := false
for k := range cw.header {
if strings.HasPrefix(k, TrailerPrefix) {
if excludeHeader == nil {
excludeHeader = make(map[string]bool)
}
excludeHeader[k] = true
trailers = true
}
}
for _, v := range cw.header["Trailer"] {
trailers = true
foreachHeaderElement(v, cw.res.declareTrailer)
}
te := header.get("Transfer-Encoding")
hasTE := te != ""
// If the handler is done but never sent a Content-Length
// response header and this is our first (and last) write, set
// it, even to zero. This helps HTTP/1.0 clients keep their
// "keep-alive" connections alive.
// Exceptions: 304/204/1xx responses never get Content-Length, and if
// it was a HEAD request, we don't know the difference between
// 0 actual bytes and 0 bytes because the handler noticed it
// was a HEAD request and chose not to write anything. So for
// HEAD, the handler should either write the Content-Length or
// write non-zero bytes. If it's actually 0 bytes and the
// handler never looked at the Request.Method, we just don't
// send a Content-Length header.
// Further, we don't send an automatic Content-Length if they
// set a Transfer-Encoding, because they're generally incompatible.
if w.handlerDone.isSet() && !trailers && !hasTE && bodyAllowedForStatus(w.status) && header.get("Content-Length") == "" && (!isHEAD || len(p) > 0) {
w.contentLength = int64(len(p))
setHeader.contentLength = strconv.AppendInt(cw.res.clenBuf[:0], int64(len(p)), 10)
}
// If this was an HTTP/1.0 request with keep-alive and we sent a
// Content-Length back, we can make this a keep-alive response ...
if w.wants10KeepAlive && keepAlivesEnabled {
sentLength := header.get("Content-Length") != ""
if sentLength && header.get("Connection") == "keep-alive" {
w.closeAfterReply = false
}
}
// Check for a explicit (and valid) Content-Length header.
hasCL := w.contentLength != -1
if w.wants10KeepAlive && (isHEAD || hasCL || !bodyAllowedForStatus(w.status)) {
_, connectionHeaderSet := header["Connection"]
if !connectionHeaderSet {
setHeader.connection = "keep-alive"
}
} else if !w.req.ProtoAtLeast(1, 1) || w.wantsClose {
w.closeAfterReply = true
}
if header.get("Connection") == "close" || !keepAlivesEnabled {
w.closeAfterReply = true
}
// If the client wanted a 100-continue but we never sent it to
// them (or, more strictly: we never finished reading their
// request body), don't reuse this connection because it's now
// in an unknown state: we might be sending this response at
// the same time the client is now sending its request body
// after a timeout. (Some HTTP clients send Expect:
// 100-continue but knowing that some servers don't support
// it, the clients set a timer and send the body later anyway)
// If we haven't seen EOF, we can't skip over the unread body
// because we don't know if the next bytes on the wire will be
// the body-following-the-timer or the subsequent request.
// See Issue 11549.
if ecr, ok := w.req.Body.(*expectContinueReader); ok && !ecr.sawEOF {
w.closeAfterReply = true
}
// Per RFC 2616, we should consume the request body before
// replying, if the handler hasn't already done so. But we
// don't want to do an unbounded amount of reading here for
// DoS reasons, so we only try up to a threshold.
// TODO(bradfitz): where does RFC 2616 say that? See Issue 15527
// about HTTP/1.x Handlers concurrently reading and writing, like
// HTTP/2 handlers can do. Maybe this code should be relaxed?
if w.req.ContentLength != 0 && !w.closeAfterReply {
var discard, tooBig bool
switch bdy := w.req.Body.(type) {
case *expectContinueReader:
if bdy.resp.wroteContinue {
discard = true
}
case *body:
bdy.mu.Lock()
switch {
case bdy.closed:
if !bdy.sawEOF {
// Body was closed in handler with non-EOF error.
w.closeAfterReply = true
}
case bdy.unreadDataSizeLocked() >= maxPostHandlerReadBytes:
tooBig = true
default:
discard = true
}
bdy.mu.Unlock()
default:
discard = true
}
if discard {
_, err := io.CopyN(ioutil.Discard, w.reqBody, maxPostHandlerReadBytes+1)
switch err {
case nil:
// There must be even more data left over.
tooBig = true
case ErrBodyReadAfterClose:
// Body was already consumed and closed.
case io.EOF:
// The remaining body was just consumed, close it.
err = w.reqBody.Close()
if err != nil {
w.closeAfterReply = true
}
default:
// Some other kind of error occurred, like a read timeout, or
// corrupt chunked encoding. In any case, whatever remains
// on the wire must not be parsed as another HTTP request.
w.closeAfterReply = true
}
}
if tooBig {
w.requestTooLarge()
delHeader("Connection")
setHeader.connection = "close"
}
}
code := w.status
if bodyAllowedForStatus(code) {
// If no content type, apply sniffing algorithm to body.
_, haveType := header["Content-Type"]
if !haveType && !hasTE {
setHeader.contentType = DetectContentType(p)
}
} else {
for _, k := range suppressedHeaders(code) {
delHeader(k)
}
}
if _, ok := header["Date"]; !ok {
setHeader.date = appendTime(cw.res.dateBuf[:0], time.Now())
}
if hasCL && hasTE && te != "identity" {
// TODO: return an error if WriteHeader gets a return parameter
// For now just ignore the Content-Length.
w.conn.server.logf("http: WriteHeader called with both Transfer-Encoding of %q and a Content-Length of %d",
te, w.contentLength)
delHeader("Content-Length")
hasCL = false
}
if w.req.Method == "HEAD" || !bodyAllowedForStatus(code) {
// do nothing
} else if code == StatusNoContent {
delHeader("Transfer-Encoding")
} else if hasCL {
delHeader("Transfer-Encoding")
} else if w.req.ProtoAtLeast(1, 1) {
// HTTP/1.1 or greater: Transfer-Encoding has been set to identity, and no
// content-length has been provided. The connection must be closed after the
// reply is written, and no chunking is to be done. This is the setup
// recommended in the Server-Sent Events candidate recommendation 11,
// section 8.
if hasTE && te == "identity" {
cw.chunking = false
w.closeAfterReply = true
} else {
// HTTP/1.1 or greater: use chunked transfer encoding
// to avoid closing the connection at EOF.
cw.chunking = true
setHeader.transferEncoding = "chunked"
if hasTE && te == "chunked" {
// We will send the chunked Transfer-Encoding header later.
delHeader("Transfer-Encoding")
}
}
} else {
// HTTP version < 1.1: cannot do chunked transfer
// encoding and we don't know the Content-Length so
// signal EOF by closing connection.
w.closeAfterReply = true
delHeader("Transfer-Encoding") // in case already set
}
// Cannot use Content-Length with non-identity Transfer-Encoding.
if cw.chunking {
delHeader("Content-Length")
}
if !w.req.ProtoAtLeast(1, 0) {
return
}
if w.closeAfterReply && (!keepAlivesEnabled || !hasToken(cw.header.get("Connection"), "close")) {
delHeader("Connection")
if w.req.ProtoAtLeast(1, 1) {
setHeader.connection = "close"
}
}
w.conn.bufw.WriteString(statusLine(w.req, code))
cw.header.WriteSubset(w.conn.bufw, excludeHeader)
setHeader.Write(w.conn.bufw)
w.conn.bufw.Write(crlf)
}
// foreachHeaderElement splits v according to the "#rule" construction
// in RFC 2616 section 2.1 and calls fn for each non-empty element.
func foreachHeaderElement(v string, fn func(string)) {
v = textproto.TrimString(v)
if v == "" {
return
}
if !strings.Contains(v, ",") {
fn(v)
return
}
for _, f := range strings.Split(v, ",") {
if f = textproto.TrimString(f); f != "" {
fn(f)
}
}
}
// statusLines is a cache of Status-Line strings, keyed by code (for
// HTTP/1.1) or negative code (for HTTP/1.0). This is faster than a
// map keyed by struct of two fields. This map's max size is bounded
// by 2*len(statusText), two protocol types for each known official
// status code in the statusText map.
var (
statusMu sync.RWMutex
statusLines = make(map[int]string)
)
// statusLine returns a response Status-Line (RFC 2616 Section 6.1)
// for the given request and response status code.
func statusLine(req *Request, code int) string {
// Fast path:
key := code
proto11 := req.ProtoAtLeast(1, 1)
if !proto11 {
key = -key
}
statusMu.RLock()
line, ok := statusLines[key]
statusMu.RUnlock()
if ok {
return line
}
// Slow path:
proto := "HTTP/1.0"
if proto11 {
proto = "HTTP/1.1"
}
codestring := fmt.Sprintf("%03d", code)
text, ok := statusText[code]
if !ok {
text = "status code " + codestring
}
line = proto + " " + codestring + " " + text + "\r\n"
if ok {
statusMu.Lock()
defer statusMu.Unlock()
statusLines[key] = line
}
return line
}
// bodyAllowed reports whether a Write is allowed for this response type.
// It's illegal to call this before the header has been flushed.
func (w *response) bodyAllowed() bool {
if !w.wroteHeader {
panic("")
}
return bodyAllowedForStatus(w.status)
}
// The Life Of A Write is like this:
//
// Handler starts. No header has been sent. The handler can either
// write a header, or just start writing. Writing before sending a header
// sends an implicitly empty 200 OK header.
//
// If the handler didn't declare a Content-Length up front, we either
// go into chunking mode or, if the handler finishes running before
// the chunking buffer size, we compute a Content-Length and send that
// in the header instead.
//
// Likewise, if the handler didn't set a Content-Type, we sniff that
// from the initial chunk of output.
//
// The Writers are wired together like:
//
// 1. *response (the ResponseWriter) ->
// 2. (*response).w, a *bufio.Writer of bufferBeforeChunkingSize bytes
// 3. chunkWriter.Writer (whose writeHeader finalizes Content-Length/Type)
// and which writes the chunk headers, if needed.
// 4. conn.buf, a bufio.Writer of default (4kB) bytes, writing to ->
// 5. checkConnErrorWriter{c}, which notes any non-nil error on Write
// and populates c.werr with it if so. but otherwise writes to:
// 6. the rwc, the net.Conn.
//
// TODO(bradfitz): short-circuit some of the buffering when the
// initial header contains both a Content-Type and Content-Length.
// Also short-circuit in (1) when the header's been sent and not in
// chunking mode, writing directly to (4) instead, if (2) has no
// buffered data. More generally, we could short-circuit from (1) to
// (3) even in chunking mode if the write size from (1) is over some
// threshold and nothing is in (2). The answer might be mostly making
// bufferBeforeChunkingSize smaller and having bufio's fast-paths deal
// with this instead.
func (w *response) Write(data []byte) (n int, err error) {
return w.write(len(data), data, "")
}
func (w *response) WriteString(data string) (n int, err error) {
return w.write(len(data), nil, data)
}
// either dataB or dataS is non-zero.
func (w *response) write(lenData int, dataB []byte, dataS string) (n int, err error) {
if w.conn.hijacked() {
if lenData > 0 {
w.conn.server.logf("http: response.Write on hijacked connection")
}
return 0, ErrHijacked
}
if !w.wroteHeader {
w.WriteHeader(StatusOK)
}
if lenData == 0 {
return 0, nil
}
if !w.bodyAllowed() {
return 0, ErrBodyNotAllowed
}
w.written += int64(lenData) // ignoring errors, for errorKludge
if w.contentLength != -1 && w.written > w.contentLength {
return 0, ErrContentLength
}
if dataB != nil {
return w.w.Write(dataB)
} else {
return w.w.WriteString(dataS)
}
}
func (w *response) finishRequest() {
w.handlerDone.setTrue()
if !w.wroteHeader {
w.WriteHeader(StatusOK)
}
w.w.Flush()
putBufioWriter(w.w)
w.cw.close()
w.conn.bufw.Flush()
w.conn.r.abortPendingRead()
// Close the body (regardless of w.closeAfterReply) so we can
// re-use its bufio.Reader later safely.
w.reqBody.Close()
if w.req.MultipartForm != nil {
w.req.MultipartForm.RemoveAll()
}
}
// shouldReuseConnection reports whether the underlying TCP connection can be reused.
// It must only be called after the handler is done executing.
func (w *response) shouldReuseConnection() bool {
if w.closeAfterReply {
// The request or something set while executing the
// handler indicated we shouldn't reuse this
// connection.
return false
}
if w.req.Method != "HEAD" && w.contentLength != -1 && w.bodyAllowed() && w.contentLength != w.written {
// Did not write enough. Avoid getting out of sync.
return false
}
// There was some error writing to the underlying connection
// during the request, so don't re-use this conn.
if w.conn.werr != nil {
return false
}
if w.closedRequestBodyEarly() {
return false
}
return true
}
func (w *response) closedRequestBodyEarly() bool {
body, ok := w.req.Body.(*body)
return ok && body.didEarlyClose()
}
func (w *response) Flush() {
if !w.wroteHeader {
w.WriteHeader(StatusOK)
}
w.w.Flush()
w.cw.flush()
}
func (c *conn) finalFlush() {
if c.bufr != nil {
// Steal the bufio.Reader (~4KB worth of memory) and its associated
// reader for a future connection.
putBufioReader(c.bufr)
c.bufr = nil
}
if c.bufw != nil {
c.bufw.Flush()
// Steal the bufio.Writer (~4KB worth of memory) and its associated
// writer for a future connection.
putBufioWriter(c.bufw)
c.bufw = nil
}
}
// Close the connection.
func (c *conn) close() {
c.finalFlush()
c.rwc.Close()
}
// rstAvoidanceDelay is the amount of time we sleep after closing the
// write side of a TCP connection before closing the entire socket.
// By sleeping, we increase the chances that the client sees our FIN
// and processes its final data before they process the subsequent RST
// from closing a connection with known unread data.
// This RST seems to occur mostly on BSD systems. (And Windows?)
// This timeout is somewhat arbitrary (~latency around the planet).
const rstAvoidanceDelay = 500 * time.Millisecond
type closeWriter interface {
CloseWrite() error
}
var _ closeWriter = (*net.TCPConn)(nil)
// closeWrite flushes any outstanding data and sends a FIN packet (if
// client is connected via TCP), signalling that we're done. We then
// pause for a bit, hoping the client processes it before any
// subsequent RST.
//
// See https://golang.org/issue/3595
func (c *conn) closeWriteAndWait() {
c.finalFlush()
if tcp, ok := c.rwc.(closeWriter); ok {
tcp.CloseWrite()
}
time.Sleep(rstAvoidanceDelay)
}
// validNPN reports whether the proto is not a blacklisted Next
// Protocol Negotiation protocol. Empty and built-in protocol types
// are blacklisted and can't be overridden with alternate
// implementations.
func validNPN(proto string) bool {
switch proto {
case "", "http/1.1", "http/1.0":
return false
}
return true
}
func (c *conn) setState(nc net.Conn, state ConnState) {
srv := c.server
switch state {
case StateNew:
srv.trackConn(c, true)
case StateHijacked, StateClosed:
srv.trackConn(c, false)
}
c.curState.Store(connStateInterface[state])
if hook := srv.ConnState; hook != nil {
hook(nc, state)
}
}
// connStateInterface is an array of the interface{} versions of
// ConnState values, so we can use them in atomic.Values later without
// paying the cost of shoving their integers in an interface{}.
var connStateInterface = [...]interface{}{
StateNew: StateNew,
StateActive: StateActive,
StateIdle: StateIdle,
StateHijacked: StateHijacked,
StateClosed: StateClosed,
}
// badRequestError is a literal string (used by in the server in HTML,
// unescaped) to tell the user why their request was bad. It should
// be plain text without user info or other embedded errors.
type badRequestError string
func (e badRequestError) Error() string { return "Bad Request: " + string(e) }
// ErrAbortHandler is a sentinel panic value to abort a handler.
// While any panic from ServeHTTP aborts the response to the client,
// panicking with ErrAbortHandler also suppresses logging of a stack
// trace to the server's error log.
var ErrAbortHandler = errors.New("net/http: abort Handler")
// isCommonNetReadError reports whether err is a common error
// encountered during reading a request off the network when the
// client has gone away or had its read fail somehow. This is used to
// determine which logs are interesting enough to log about.
func isCommonNetReadError(err error) bool {
if err == io.EOF {
return true
}
if neterr, ok := err.(net.Error); ok && neterr.Timeout() {
return true
}
if oe, ok := err.(*net.OpError); ok && oe.Op == "read" {
return true
}
return false
}
// Serve a new connection.
func (c *conn) serve(ctx context.Context) {
c.remoteAddr = c.rwc.RemoteAddr().String()
defer func() {
if err := recover(); err != nil && err != ErrAbortHandler {
const size = 64 << 10
buf := make([]byte, size)
buf = buf[:runtime.Stack(buf, false)]
c.server.logf("http: panic serving %v: %v\n%s", c.remoteAddr, err, buf)
}
if !c.hijacked() {
c.close()
c.setState(c.rwc, StateClosed)
}
}()
if tlsConn, ok := c.rwc.(*tls.Conn); ok {
if d := c.server.ReadTimeout; d != 0 {
c.rwc.SetReadDeadline(time.Now().Add(d))
}
if d := c.server.WriteTimeout; d != 0 {
c.rwc.SetWriteDeadline(time.Now().Add(d))
}
if err := tlsConn.Handshake(); err != nil {
c.server.logf("http: TLS handshake error from %s: %v", c.rwc.RemoteAddr(), err)
return
}
c.tlsState = new(tls.ConnectionState)
*c.tlsState = tlsConn.ConnectionState()
if proto := c.tlsState.NegotiatedProtocol; validNPN(proto) {
if fn := c.server.TLSNextProto[proto]; fn != nil {
h := initNPNRequest{tlsConn, serverHandler{c.server}}
fn(c.server, tlsConn, h)
}
return
}
}
// HTTP/1.x from here on.
ctx, cancelCtx := context.WithCancel(ctx)
c.cancelCtx = cancelCtx
defer cancelCtx()
c.r = &connReader{conn: c}
c.bufr = newBufioReader(c.r)
c.bufw = newBufioWriterSize(checkConnErrorWriter{c}, 4<<10)
for {
w, err := c.readRequest(ctx)
if c.r.remain != c.server.initialReadLimitSize() {
// If we read any bytes off the wire, we're active.
c.setState(c.rwc, StateActive)
}
if err != nil {
const errorHeaders = "\r\nContent-Type: text/plain; charset=utf-8\r\nConnection: close\r\n\r\n"
if err == errTooLarge {
// Their HTTP client may or may not be
// able to read this if we're
// responding to them and hanging up
// while they're still writing their
// request. Undefined behavior.
const publicErr = "431 Request Header Fields Too Large"
fmt.Fprintf(c.rwc, "HTTP/1.1 "+publicErr+errorHeaders+publicErr)
c.closeWriteAndWait()
return
}
if isCommonNetReadError(err) {
return // don't reply
}
publicErr := "400 Bad Request"
if v, ok := err.(badRequestError); ok {
publicErr = publicErr + ": " + string(v)
}
fmt.Fprintf(c.rwc, "HTTP/1.1 "+publicErr+errorHeaders+publicErr)
return
}
// Expect 100 Continue support
req := w.req
if req.expectsContinue() {
if req.ProtoAtLeast(1, 1) && req.ContentLength != 0 {
// Wrap the Body reader with one that replies on the connection
req.Body = &expectContinueReader{readCloser: req.Body, resp: w}
}
} else if req.Header.get("Expect") != "" {
w.sendExpectationFailed()
return
}
c.curReq.Store(w)
if requestBodyRemains(req.Body) {
registerOnHitEOF(req.Body, w.conn.r.startBackgroundRead)
} else {
if w.conn.bufr.Buffered() > 0 {
w.conn.r.closeNotifyFromPipelinedRequest()
}
w.conn.r.startBackgroundRead()
}
// HTTP cannot have multiple simultaneous active requests.[*]
// Until the server replies to this request, it can't read another,
// so we might as well run the handler in this goroutine.
// [*] Not strictly true: HTTP pipelining. We could let them all process
// in parallel even if their responses need to be serialized.
// But we're not going to implement HTTP pipelining because it
// was never deployed in the wild and the answer is HTTP/2.
serverHandler{c.server}.ServeHTTP(w, w.req)
w.cancelCtx()
if c.hijacked() {
return
}
w.finishRequest()
if !w.shouldReuseConnection() {
if w.requestBodyLimitHit || w.closedRequestBodyEarly() {
c.closeWriteAndWait()
}
return
}
c.setState(c.rwc, StateIdle)
c.curReq.Store((*response)(nil))
if !w.conn.server.doKeepAlives() {
// We're in shutdown mode. We might've replied
// to the user without "Connection: close" and
// they might think they can send another
// request, but such is life with HTTP/1.1.
return
}
if d := c.server.idleTimeout(); d != 0 {
c.rwc.SetReadDeadline(time.Now().Add(d))
if _, err := c.bufr.Peek(4); err != nil {
return
}
}
c.rwc.SetReadDeadline(time.Time{})
}
}
func (w *response) sendExpectationFailed() {
// TODO(bradfitz): let ServeHTTP handlers handle
// requests with non-standard expectation[s]? Seems
// theoretical at best, and doesn't fit into the
// current ServeHTTP model anyway. We'd need to
// make the ResponseWriter an optional
// "ExpectReplier" interface or something.
//
// For now we'll just obey RFC 2616 14.20 which says
// "If a server receives a request containing an
// Expect field that includes an expectation-
// extension that it does not support, it MUST
// respond with a 417 (Expectation Failed) status."
w.Header().Set("Connection", "close")
w.WriteHeader(StatusExpectationFailed)
w.finishRequest()
}
// Hijack implements the Hijacker.Hijack method. Our response is both a ResponseWriter
// and a Hijacker.
func (w *response) Hijack() (rwc net.Conn, buf *bufio.ReadWriter, err error) {
if w.handlerDone.isSet() {
panic("net/http: Hijack called after ServeHTTP finished")
}
if w.wroteHeader {
w.cw.flush()
}
c := w.conn
c.mu.Lock()
defer c.mu.Unlock()
// Release the bufioWriter that writes to the chunk writer, it is not
// used after a connection has been hijacked.
rwc, buf, err = c.hijackLocked()
if err == nil {
putBufioWriter(w.w)
w.w = nil
}
return rwc, buf, err
}
func (w *response) CloseNotify() <-chan bool {
if w.handlerDone.isSet() {
panic("net/http: CloseNotify called after ServeHTTP finished")
}
return w.closeNotifyCh
}
func registerOnHitEOF(rc io.ReadCloser, fn func()) {
switch v := rc.(type) {
case *expectContinueReader:
registerOnHitEOF(v.readCloser, fn)
case *body:
v.registerOnHitEOF(fn)
default:
panic("unexpected type " + fmt.Sprintf("%T", rc))
}
}
// requestBodyRemains reports whether future calls to Read
// on rc might yield more data.
func requestBodyRemains(rc io.ReadCloser) bool {
if rc == NoBody {
return false
}
switch v := rc.(type) {
case *expectContinueReader:
return requestBodyRemains(v.readCloser)
case *body:
return v.bodyRemains()
default:
panic("unexpected type " + fmt.Sprintf("%T", rc))
}
}
// The HandlerFunc type is an adapter to allow the use of
// ordinary functions as HTTP handlers. If f is a function
// with the appropriate signature, HandlerFunc(f) is a
// Handler that calls f.
type HandlerFunc func(ResponseWriter, *Request)
// ServeHTTP calls f(w, r).
func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) {
f(w, r)
}
// Helper handlers
// Error replies to the request with the specified error message and HTTP code.
// It does not otherwise end the request; the caller should ensure no further
// writes are done to w.
// The error message should be plain text.
func Error(w ResponseWriter, error string, code int) {
w.Header().Set("Content-Type", "text/plain; charset=utf-8")
w.Header().Set("X-Content-Type-Options", "nosniff")
w.WriteHeader(code)
fmt.Fprintln(w, error)
}
// NotFound replies to the request with an HTTP 404 not found error.
func NotFound(w ResponseWriter, r *Request) { Error(w, "404 page not found", StatusNotFound) }
// NotFoundHandler returns a simple request handler
// that replies to each request with a ``404 page not found'' reply.
func NotFoundHandler() Handler { return HandlerFunc(NotFound) }
// StripPrefix returns a handler that serves HTTP requests
// by removing the given prefix from the request URL's Path
// and invoking the handler h. StripPrefix handles a
// request for a path that doesn't begin with prefix by
// replying with an HTTP 404 not found error.
func StripPrefix(prefix string, h Handler) Handler {
if prefix == "" {
return h
}
return HandlerFunc(func(w ResponseWriter, r *Request) {
if p := strings.TrimPrefix(r.URL.Path, prefix); len(p) < len(r.URL.Path) {
r.URL.Path = p
h.ServeHTTP(w, r)
} else {
NotFound(w, r)
}
})
}
// Redirect replies to the request with a redirect to url,
// which may be a path relative to the request path.
//
// The provided code should be in the 3xx range and is usually
// StatusMovedPermanently, StatusFound or StatusSeeOther.
func Redirect(w ResponseWriter, r *Request, urlStr string, code int) {
if u, err := url.Parse(urlStr); err == nil {
// If url was relative, make absolute by
// combining with request path.
// The browser would probably do this for us,
// but doing it ourselves is more reliable.
// NOTE(rsc): RFC 2616 says that the Location
// line must be an absolute URI, like
// "http://www.google.com/redirect/",
// not a path like "/redirect/".
// Unfortunately, we don't know what to
// put in the host name section to get the
// client to connect to us again, so we can't
// know the right absolute URI to send back.
// Because of this problem, no one pays attention
// to the RFC; they all send back just a new path.
// So do we.
if u.Scheme == "" && u.Host == "" {
oldpath := r.URL.Path
if oldpath == "" { // should not happen, but avoid a crash if it does
oldpath = "/"
}
// no leading http://server
if urlStr == "" || urlStr[0] != '/' {
// make relative path absolute
olddir, _ := path.Split(oldpath)
urlStr = olddir + urlStr
}
var query string
if i := strings.Index(urlStr, "?"); i != -1 {
urlStr, query = urlStr[:i], urlStr[i:]
}
// clean up but preserve trailing slash
trailing := strings.HasSuffix(urlStr, "/")
urlStr = path.Clean(urlStr)
if trailing && !strings.HasSuffix(urlStr, "/") {
urlStr += "/"
}
urlStr += query
}
}
w.Header().Set("Location", hexEscapeNonASCII(urlStr))
w.WriteHeader(code)
// RFC 2616 recommends that a short note "SHOULD" be included in the
// response because older user agents may not understand 301/307.
// Shouldn't send the response for POST or HEAD; that leaves GET.
if r.Method == "GET" {
note := "<a href=\"" + htmlEscape(urlStr) + "\">" + statusText[code] + "</a>.\n"
fmt.Fprintln(w, note)
}
}
var htmlReplacer = strings.NewReplacer(
"&", "&amp;",
"<", "&lt;",
">", "&gt;",
// "&#34;" is shorter than "&quot;".
`"`, "&#34;",
// "&#39;" is shorter than "&apos;" and apos was not in HTML until HTML5.
"'", "&#39;",
)
func htmlEscape(s string) string {
return htmlReplacer.Replace(s)
}
// Redirect to a fixed URL
type redirectHandler struct {
url string
code int
}
func (rh *redirectHandler) ServeHTTP(w ResponseWriter, r *Request) {
Redirect(w, r, rh.url, rh.code)
}
// RedirectHandler returns a request handler that redirects
// each request it receives to the given url using the given
// status code.
//
// The provided code should be in the 3xx range and is usually
// StatusMovedPermanently, StatusFound or StatusSeeOther.
func RedirectHandler(url string, code int) Handler {
return &redirectHandler{url, code}
}
// ServeMux is an HTTP request multiplexer.
// It matches the URL of each incoming request against a list of registered
// patterns and calls the handler for the pattern that
// most closely matches the URL.
//
// Patterns name fixed, rooted paths, like "/favicon.ico",
// or rooted subtrees, like "/images/" (note the trailing slash).
// Longer patterns take precedence over shorter ones, so that
// if there are handlers registered for both "/images/"
// and "/images/thumbnails/", the latter handler will be
// called for paths beginning "/images/thumbnails/" and the
// former will receive requests for any other paths in the
// "/images/" subtree.
//
// Note that since a pattern ending in a slash names a rooted subtree,
// the pattern "/" matches all paths not matched by other registered
// patterns, not just the URL with Path == "/".
//
// If a subtree has been registered and a request is received naming the
// subtree root without its trailing slash, ServeMux redirects that
// request to the subtree root (adding the trailing slash). This behavior can
// be overridden with a separate registration for the path without
// the trailing slash. For example, registering "/images/" causes ServeMux
// to redirect a request for "/images" to "/images/", unless "/images" has
// been registered separately.
//
// Patterns may optionally begin with a host name, restricting matches to
// URLs on that host only. Host-specific patterns take precedence over
// general patterns, so that a handler might register for the two patterns
// "/codesearch" and "codesearch.google.com/" without also taking over
// requests for "http://www.google.com/".
//
// ServeMux also takes care of sanitizing the URL request path,
// redirecting any request containing . or .. elements or repeated slashes
// to an equivalent, cleaner URL.
type ServeMux struct {
mu sync.RWMutex
m map[string]muxEntry
hosts bool // whether any patterns contain hostnames
}
type muxEntry struct {
explicit bool
h Handler
pattern string
}
// NewServeMux allocates and returns a new ServeMux.
func NewServeMux() *ServeMux { return new(ServeMux) }
// DefaultServeMux is the default ServeMux used by Serve.
var DefaultServeMux = &defaultServeMux
var defaultServeMux ServeMux
// Does path match pattern?
func pathMatch(pattern, path string) bool {
if len(pattern) == 0 {
// should not happen
return false
}
n := len(pattern)
if pattern[n-1] != '/' {
return pattern == path
}
return len(path) >= n && path[0:n] == pattern
}
// Return the canonical path for p, eliminating . and .. elements.
func cleanPath(p string) string {
if p == "" {
return "/"
}
if p[0] != '/' {
p = "/" + p
}
np := path.Clean(p)
// path.Clean removes trailing slash except for root;
// put the trailing slash back if necessary.
if p[len(p)-1] == '/' && np != "/" {
np += "/"
}
return np
}
// Find a handler on a handler map given a path string
// Most-specific (longest) pattern wins
func (mux *ServeMux) match(path string) (h Handler, pattern string) {
var n = 0
for k, v := range mux.m {
if !pathMatch(k, path) {
continue
}
if h == nil || len(k) > n {
n = len(k)
h = v.h
pattern = v.pattern
}
}
return
}
// Handler returns the handler to use for the given request,
// consulting r.Method, r.Host, and r.URL.Path. It always returns
// a non-nil handler. If the path is not in its canonical form, the
// handler will be an internally-generated handler that redirects
// to the canonical path.
//
// Handler also returns the registered pattern that matches the
// request or, in the case of internally-generated redirects,
// the pattern that will match after following the redirect.
//
// If there is no registered handler that applies to the request,
// Handler returns a ``page not found'' handler and an empty pattern.
func (mux *ServeMux) Handler(r *Request) (h Handler, pattern string) {
if r.Method != "CONNECT" {
if p := cleanPath(r.URL.Path); p != r.URL.Path {
_, pattern = mux.handler(r.Host, p)
url := *r.URL
url.Path = p
return RedirectHandler(url.String(), StatusMovedPermanently), pattern
}
}
return mux.handler(r.Host, r.URL.Path)
}
// handler is the main implementation of Handler.
// The path is known to be in canonical form, except for CONNECT methods.
func (mux *ServeMux) handler(host, path string) (h Handler, pattern string) {
mux.mu.RLock()
defer mux.mu.RUnlock()
// Host-specific pattern takes precedence over generic ones
if mux.hosts {
h, pattern = mux.match(host + path)
}
if h == nil {
h, pattern = mux.match(path)
}
if h == nil {
h, pattern = NotFoundHandler(), ""
}
return
}
// ServeHTTP dispatches the request to the handler whose
// pattern most closely matches the request URL.
func (mux *ServeMux) ServeHTTP(w ResponseWriter, r *Request) {
if r.RequestURI == "*" {
if r.ProtoAtLeast(1, 1) {
w.Header().Set("Connection", "close")
}
w.WriteHeader(StatusBadRequest)
return
}
h, _ := mux.Handler(r)
h.ServeHTTP(w, r)
}
// Handle registers the handler for the given pattern.
// If a handler already exists for pattern, Handle panics.
func (mux *ServeMux) Handle(pattern string, handler Handler) {
mux.mu.Lock()
defer mux.mu.Unlock()
if pattern == "" {
panic("http: invalid pattern " + pattern)
}
if handler == nil {
panic("http: nil handler")
}
if mux.m[pattern].explicit {
panic("http: multiple registrations for " + pattern)
}
if mux.m == nil {
mux.m = make(map[string]muxEntry)
}
mux.m[pattern] = muxEntry{explicit: true, h: handler, pattern: pattern}
if pattern[0] != '/' {
mux.hosts = true
}
// Helpful behavior:
// If pattern is /tree/, insert an implicit permanent redirect for /tree.
// It can be overridden by an explicit registration.
n := len(pattern)
if n > 0 && pattern[n-1] == '/' && !mux.m[pattern[0:n-1]].explicit {
// If pattern contains a host name, strip it and use remaining
// path for redirect.
path := pattern
if pattern[0] != '/' {
// In pattern, at least the last character is a '/', so
// strings.Index can't be -1.
path = pattern[strings.Index(pattern, "/"):]
}
url := &url.URL{Path: path}
mux.m[pattern[0:n-1]] = muxEntry{h: RedirectHandler(url.String(), StatusMovedPermanently), pattern: pattern}
}
}
// HandleFunc registers the handler function for the given pattern.
func (mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
mux.Handle(pattern, HandlerFunc(handler))
}
// Handle registers the handler for the given pattern
// in the DefaultServeMux.
// The documentation for ServeMux explains how patterns are matched.
func Handle(pattern string, handler Handler) { DefaultServeMux.Handle(pattern, handler) }
// HandleFunc registers the handler function for the given pattern
// in the DefaultServeMux.
// The documentation for ServeMux explains how patterns are matched.
func HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
DefaultServeMux.HandleFunc(pattern, handler)
}
// Serve accepts incoming HTTP connections on the listener l,
// creating a new service goroutine for each. The service goroutines
// read requests and then call handler to reply to them.
// Handler is typically nil, in which case the DefaultServeMux is used.
func Serve(l net.Listener, handler Handler) error {
srv := &Server{Handler: handler}
return srv.Serve(l)
}
// A Server defines parameters for running an HTTP server.
// The zero value for Server is a valid configuration.
type Server struct {
Addr string // TCP address to listen on, ":http" if empty
Handler Handler // handler to invoke, http.DefaultServeMux if nil
TLSConfig *tls.Config // optional TLS config, used by ListenAndServeTLS
// ReadTimeout is the maximum duration for reading the entire
// request, including the body.
//
// Because ReadTimeout does not let Handlers make per-request
// decisions on each request body's acceptable deadline or
// upload rate, most users will prefer to use
// ReadHeaderTimeout. It is valid to use them both.
ReadTimeout time.Duration
// ReadHeaderTimeout is the amount of time allowed to read
// request headers. The connection's read deadline is reset
// after reading the headers and the Handler can decide what
// is considered too slow for the body.
ReadHeaderTimeout time.Duration
// WriteTimeout is the maximum duration before timing out
// writes of the response. It is reset whenever a new
// request's header is read. Like ReadTimeout, it does not
// let Handlers make decisions on a per-request basis.
WriteTimeout time.Duration
// IdleTimeout is the maximum amount of time to wait for the
// next request when keep-alives are enabled. If IdleTimeout
// is zero, the value of ReadTimeout is used. If both are
// zero, there is no timeout.
IdleTimeout time.Duration
// MaxHeaderBytes controls the maximum number of bytes the
// server will read parsing the request header's keys and
// values, including the request line. It does not limit the
// size of the request body.
// If zero, DefaultMaxHeaderBytes is used.
MaxHeaderBytes int
// TLSNextProto optionally specifies a function to take over
// ownership of the provided TLS connection when an NPN/ALPN
// protocol upgrade has occurred. The map key is the protocol
// name negotiated. The Handler argument should be used to
// handle HTTP requests and will initialize the Request's TLS
// and RemoteAddr if not already set. The connection is
// automatically closed when the function returns.
// If TLSNextProto is not nil, HTTP/2 support is not enabled
// automatically.
TLSNextProto map[string]func(*Server, *tls.Conn, Handler)
// ConnState specifies an optional callback function that is
// called when a client connection changes state. See the
// ConnState type and associated constants for details.
ConnState func(net.Conn, ConnState)
// ErrorLog specifies an optional logger for errors accepting
// connections and unexpected behavior from handlers.
// If nil, logging goes to os.Stderr via the log package's
// standard logger.
ErrorLog *log.Logger
disableKeepAlives int32 // accessed atomically.
inShutdown int32 // accessed atomically (non-zero means we're in Shutdown)
nextProtoOnce sync.Once // guards setupHTTP2_* init
nextProtoErr error // result of http2.ConfigureServer if used
mu sync.Mutex
listeners map[net.Listener]struct{}
activeConn map[*conn]struct{}
doneChan chan struct{}
}
func (s *Server) getDoneChan() <-chan struct{} {
s.mu.Lock()
defer s.mu.Unlock()
return s.getDoneChanLocked()
}
func (s *Server) getDoneChanLocked() chan struct{} {
if s.doneChan == nil {
s.doneChan = make(chan struct{})
}
return s.doneChan
}
func (s *Server) closeDoneChanLocked() {
ch := s.getDoneChanLocked()
select {
case <-ch:
// Already closed. Don't close again.
default:
// Safe to close here. We're the only closer, guarded
// by s.mu.
close(ch)
}
}
// Close immediately closes all active net.Listeners and any
// connections in state StateNew, StateActive, or StateIdle. For a
// graceful shutdown, use Shutdown.
//
// Close does not attempt to close (and does not even know about)
// any hijacked connections, such as WebSockets.
//
// Close returns any error returned from closing the Server's
// underlying Listener(s).
func (srv *Server) Close() error {
srv.mu.Lock()
defer srv.mu.Unlock()
srv.closeDoneChanLocked()
err := srv.closeListenersLocked()
for c := range srv.activeConn {
c.rwc.Close()
delete(srv.activeConn, c)
}
return err
}
// shutdownPollInterval is how often we poll for quiescence
// during Server.Shutdown. This is lower during tests, to
// speed up tests.
// Ideally we could find a solution that doesn't involve polling,
// but which also doesn't have a high runtime cost (and doesn't
// involve any contentious mutexes), but that is left as an
// exercise for the reader.
var shutdownPollInterval = 500 * time.Millisecond
// Shutdown gracefully shuts down the server without interrupting any
// active connections. Shutdown works by first closing all open
// listeners, then closing all idle connections, and then waiting
// indefinitely for connections to return to idle and then shut down.
// If the provided context expires before the shutdown is complete,
// then the context's error is returned.
//
// Shutdown does not attempt to close nor wait for hijacked
// connections such as WebSockets. The caller of Shutdown should
// separately notify such long-lived connections of shutdown and wait
// for them to close, if desired.
func (srv *Server) Shutdown(ctx context.Context) error {
atomic.AddInt32(&srv.inShutdown, 1)
defer atomic.AddInt32(&srv.inShutdown, -1)
srv.mu.Lock()
lnerr := srv.closeListenersLocked()
srv.closeDoneChanLocked()
srv.mu.Unlock()
ticker := time.NewTicker(shutdownPollInterval)
defer ticker.Stop()
for {
if srv.closeIdleConns() {
return lnerr
}
select {
case <-ctx.Done():
return ctx.Err()
case <-ticker.C:
}
}
}
// closeIdleConns closes all idle connections and reports whether the
// server is quiescent.
func (s *Server) closeIdleConns() bool {
s.mu.Lock()
defer s.mu.Unlock()
quiescent := true
for c := range s.activeConn {
st, ok := c.curState.Load().(ConnState)
if !ok || st != StateIdle {
quiescent = false
continue
}
c.rwc.Close()
delete(s.activeConn, c)
}
return quiescent
}
func (s *Server) closeListenersLocked() error {
var err error
for ln := range s.listeners {
if cerr := ln.Close(); cerr != nil && err == nil {
err = cerr
}
delete(s.listeners, ln)
}
return err
}
// A ConnState represents the state of a client connection to a server.
// It's used by the optional Server.ConnState hook.
type ConnState int
const (
// StateNew represents a new connection that is expected to
// send a request immediately. Connections begin at this
// state and then transition to either StateActive or
// StateClosed.
StateNew ConnState = iota
// StateActive represents a connection that has read 1 or more
// bytes of a request. The Server.ConnState hook for
// StateActive fires before the request has entered a handler
// and doesn't fire again until the request has been
// handled. After the request is handled, the state
// transitions to StateClosed, StateHijacked, or StateIdle.
// For HTTP/2, StateActive fires on the transition from zero
// to one active request, and only transitions away once all
// active requests are complete. That means that ConnState
// cannot be used to do per-request work; ConnState only notes
// the overall state of the connection.
StateActive
// StateIdle represents a connection that has finished
// handling a request and is in the keep-alive state, waiting
// for a new request. Connections transition from StateIdle
// to either StateActive or StateClosed.
StateIdle
// StateHijacked represents a hijacked connection.
// This is a terminal state. It does not transition to StateClosed.
StateHijacked
// StateClosed represents a closed connection.
// This is a terminal state. Hijacked connections do not
// transition to StateClosed.
StateClosed
)
var stateName = map[ConnState]string{
StateNew: "new",
StateActive: "active",
StateIdle: "idle",
StateHijacked: "hijacked",
StateClosed: "closed",
}
func (c ConnState) String() string {
return stateName[c]
}
// serverHandler delegates to either the server's Handler or
// DefaultServeMux and also handles "OPTIONS *" requests.
type serverHandler struct {
srv *Server
}
func (sh serverHandler) ServeHTTP(rw ResponseWriter, req *Request) {
handler := sh.srv.Handler
if handler == nil {
handler = DefaultServeMux
}
if req.RequestURI == "*" && req.Method == "OPTIONS" {
handler = globalOptionsHandler{}
}
handler.ServeHTTP(rw, req)
}
// ListenAndServe listens on the TCP network address srv.Addr and then
// calls Serve to handle requests on incoming connections.
// Accepted connections are configured to enable TCP keep-alives.
// If srv.Addr is blank, ":http" is used.
// ListenAndServe always returns a non-nil error.
func (srv *Server) ListenAndServe() error {
addr := srv.Addr
if addr == "" {
addr = ":http"
}
ln, err := net.Listen("tcp", addr)
if err != nil {
return err
}
return srv.Serve(tcpKeepAliveListener{ln.(*net.TCPListener)})
}
var testHookServerServe func(*Server, net.Listener) // used if non-nil
// shouldDoServeHTTP2 reports whether Server.Serve should configure
// automatic HTTP/2. (which sets up the srv.TLSNextProto map)
func (srv *Server) shouldConfigureHTTP2ForServe() bool {
if srv.TLSConfig == nil {
// Compatibility with Go 1.6:
// If there's no TLSConfig, it's possible that the user just
// didn't set it on the http.Server, but did pass it to
// tls.NewListener and passed that listener to Serve.
// So we should configure HTTP/2 (to set up srv.TLSNextProto)
// in case the listener returns an "h2" *tls.Conn.
return true
}
// The user specified a TLSConfig on their http.Server.
// In this, case, only configure HTTP/2 if their tls.Config
// explicitly mentions "h2". Otherwise http2.ConfigureServer
// would modify the tls.Config to add it, but they probably already
// passed this tls.Config to tls.NewListener. And if they did,
// it's too late anyway to fix it. It would only be potentially racy.
// See Issue 15908.
return strSliceContains(srv.TLSConfig.NextProtos, http2NextProtoTLS)
}
var ErrServerClosed = errors.New("http: Server closed")
// Serve accepts incoming connections on the Listener l, creating a
// new service goroutine for each. The service goroutines read requests and
// then call srv.Handler to reply to them.
//
// For HTTP/2 support, srv.TLSConfig should be initialized to the
// provided listener's TLS Config before calling Serve. If
// srv.TLSConfig is non-nil and doesn't include the string "h2" in
// Config.NextProtos, HTTP/2 support is not enabled.
//
// Serve always returns a non-nil error. After Shutdown or Close, the
// returned error is ErrServerClosed.
func (srv *Server) Serve(l net.Listener) error {
defer l.Close()
if fn := testHookServerServe; fn != nil {
fn(srv, l)
}
var tempDelay time.Duration // how long to sleep on accept failure
if err := srv.setupHTTP2_Serve(); err != nil {
return err
}
srv.trackListener(l, true)
defer srv.trackListener(l, false)
baseCtx := context.Background() // base is always background, per Issue 16220
ctx := context.WithValue(baseCtx, ServerContextKey, srv)
ctx = context.WithValue(ctx, LocalAddrContextKey, l.Addr())
for {
rw, e := l.Accept()
if e != nil {
select {
case <-srv.getDoneChan():
return ErrServerClosed
default:
}
if ne, ok := e.(net.Error); ok && ne.Temporary() {
if tempDelay == 0 {
tempDelay = 5 * time.Millisecond
} else {
tempDelay *= 2
}
if max := 1 * time.Second; tempDelay > max {
tempDelay = max
}
srv.logf("http: Accept error: %v; retrying in %v", e, tempDelay)
time.Sleep(tempDelay)
continue
}
return e
}
tempDelay = 0
c := srv.newConn(rw)
c.setState(c.rwc, StateNew) // before Serve can return
go c.serve(ctx)
}
}
func (s *Server) trackListener(ln net.Listener, add bool) {
s.mu.Lock()
defer s.mu.Unlock()
if s.listeners == nil {
s.listeners = make(map[net.Listener]struct{})
}
if add {
// If the *Server is being reused after a previous
// Close or Shutdown, reset its doneChan:
if len(s.listeners) == 0 && len(s.activeConn) == 0 {
s.doneChan = nil
}
s.listeners[ln] = struct{}{}
} else {
delete(s.listeners, ln)
}
}
func (s *Server) trackConn(c *conn, add bool) {
s.mu.Lock()
defer s.mu.Unlock()
if s.activeConn == nil {
s.activeConn = make(map[*conn]struct{})
}
if add {
s.activeConn[c] = struct{}{}
} else {
delete(s.activeConn, c)
}
}
func (s *Server) idleTimeout() time.Duration {
if s.IdleTimeout != 0 {
return s.IdleTimeout
}
return s.ReadTimeout
}
func (s *Server) readHeaderTimeout() time.Duration {
if s.ReadHeaderTimeout != 0 {
return s.ReadHeaderTimeout
}
return s.ReadTimeout
}
func (s *Server) doKeepAlives() bool {
return atomic.LoadInt32(&s.disableKeepAlives) == 0 && !s.shuttingDown()
}
func (s *Server) shuttingDown() bool {
return atomic.LoadInt32(&s.inShutdown) != 0
}
// SetKeepAlivesEnabled controls whether HTTP keep-alives are enabled.
// By default, keep-alives are always enabled. Only very
// resource-constrained environments or servers in the process of
// shutting down should disable them.
func (srv *Server) SetKeepAlivesEnabled(v bool) {
if v {
atomic.StoreInt32(&srv.disableKeepAlives, 0)
return
}
atomic.StoreInt32(&srv.disableKeepAlives, 1)
// Close idle HTTP/1 conns:
srv.closeIdleConns()
// Close HTTP/2 conns, as soon as they become idle, but reset
// the chan so future conns (if the listener is still active)
// still work and don't get a GOAWAY immediately, before their
// first request:
srv.mu.Lock()
defer srv.mu.Unlock()
srv.closeDoneChanLocked() // closes http2 conns
srv.doneChan = nil
}
func (s *Server) logf(format string, args ...interface{}) {
if s.ErrorLog != nil {
s.ErrorLog.Printf(format, args...)
} else {
log.Printf(format, args...)
}
}
// ListenAndServe listens on the TCP network address addr
// and then calls Serve with handler to handle requests
// on incoming connections.
// Accepted connections are configured to enable TCP keep-alives.
// Handler is typically nil, in which case the DefaultServeMux is
// used.
//
// A trivial example server is:
//
// package main
//
// import (
// "io"
// "net/http"
// "log"
// )
//
// // hello world, the web server
// func HelloServer(w http.ResponseWriter, req *http.Request) {
// io.WriteString(w, "hello, world!\n")
// }
//
// func main() {
// http.HandleFunc("/hello", HelloServer)
// log.Fatal(http.ListenAndServe(":12345", nil))
// }
//
// ListenAndServe always returns a non-nil error.
func ListenAndServe(addr string, handler Handler) error {
server := &Server{Addr: addr, Handler: handler}
return server.ListenAndServe()
}
// ListenAndServeTLS acts identically to ListenAndServe, except that it
// expects HTTPS connections. Additionally, files containing a certificate and
// matching private key for the server must be provided. If the certificate
// is signed by a certificate authority, the certFile should be the concatenation
// of the server's certificate, any intermediates, and the CA's certificate.
//
// A trivial example server is:
//
// import (
// "log"
// "net/http"
// )
//
// func handler(w http.ResponseWriter, req *http.Request) {
// w.Header().Set("Content-Type", "text/plain")
// w.Write([]byte("This is an example server.\n"))
// }
//
// func main() {
// http.HandleFunc("/", handler)
// log.Printf("About to listen on 10443. Go to https://127.0.0.1:10443/")
// err := http.ListenAndServeTLS(":10443", "cert.pem", "key.pem", nil)
// log.Fatal(err)
// }
//
// One can use generate_cert.go in crypto/tls to generate cert.pem and key.pem.
//
// ListenAndServeTLS always returns a non-nil error.
func ListenAndServeTLS(addr, certFile, keyFile string, handler Handler) error {
server := &Server{Addr: addr, Handler: handler}
return server.ListenAndServeTLS(certFile, keyFile)
}
// ListenAndServeTLS listens on the TCP network address srv.Addr and
// then calls Serve to handle requests on incoming TLS connections.
// Accepted connections are configured to enable TCP keep-alives.
//
// Filenames containing a certificate and matching private key for the
// server must be provided if neither the Server's TLSConfig.Certificates
// nor TLSConfig.GetCertificate are populated. If the certificate is
// signed by a certificate authority, the certFile should be the
// concatenation of the server's certificate, any intermediates, and
// the CA's certificate.
//
// If srv.Addr is blank, ":https" is used.
//
// ListenAndServeTLS always returns a non-nil error.
func (srv *Server) ListenAndServeTLS(certFile, keyFile string) error {
addr := srv.Addr
if addr == "" {
addr = ":https"
}
// Setup HTTP/2 before srv.Serve, to initialize srv.TLSConfig
// before we clone it and create the TLS Listener.
if err := srv.setupHTTP2_ListenAndServeTLS(); err != nil {
return err
}
config := cloneTLSConfig(srv.TLSConfig)
if !strSliceContains(config.NextProtos, "http/1.1") {
config.NextProtos = append(config.NextProtos, "http/1.1")
}
configHasCert := len(config.Certificates) > 0 || config.GetCertificate != nil
if !configHasCert || certFile != "" || keyFile != "" {
var err error
config.Certificates = make([]tls.Certificate, 1)
config.Certificates[0], err = tls.LoadX509KeyPair(certFile, keyFile)
if err != nil {
return err
}
}
ln, err := net.Listen("tcp", addr)
if err != nil {
return err
}
tlsListener := tls.NewListener(tcpKeepAliveListener{ln.(*net.TCPListener)}, config)
return srv.Serve(tlsListener)
}
// setupHTTP2_ListenAndServeTLS conditionally configures HTTP/2 on
// srv and returns whether there was an error setting it up. If it is
// not configured for policy reasons, nil is returned.
func (srv *Server) setupHTTP2_ListenAndServeTLS() error {
srv.nextProtoOnce.Do(srv.onceSetNextProtoDefaults)
return srv.nextProtoErr
}
// setupHTTP2_Serve is called from (*Server).Serve and conditionally
// configures HTTP/2 on srv using a more conservative policy than
// setupHTTP2_ListenAndServeTLS because Serve may be called
// concurrently.
//
// The tests named TestTransportAutomaticHTTP2* and
// TestConcurrentServerServe in server_test.go demonstrate some
// of the supported use cases and motivations.
func (srv *Server) setupHTTP2_Serve() error {
srv.nextProtoOnce.Do(srv.onceSetNextProtoDefaults_Serve)
return srv.nextProtoErr
}
func (srv *Server) onceSetNextProtoDefaults_Serve() {
if srv.shouldConfigureHTTP2ForServe() {
srv.onceSetNextProtoDefaults()
}
}
// onceSetNextProtoDefaults configures HTTP/2, if the user hasn't
// configured otherwise. (by setting srv.TLSNextProto non-nil)
// It must only be called via srv.nextProtoOnce (use srv.setupHTTP2_*).
func (srv *Server) onceSetNextProtoDefaults() {
if strings.Contains(os.Getenv("GODEBUG"), "http2server=0") {
return
}
// Enable HTTP/2 by default if the user hasn't otherwise
// configured their TLSNextProto map.
if srv.TLSNextProto == nil {
srv.nextProtoErr = http2ConfigureServer(srv, nil)
}
}
// TimeoutHandler returns a Handler that runs h with the given time limit.
//
// The new Handler calls h.ServeHTTP to handle each request, but if a
// call runs for longer than its time limit, the handler responds with
// a 503 Service Unavailable error and the given message in its body.
// (If msg is empty, a suitable default message will be sent.)
// After such a timeout, writes by h to its ResponseWriter will return
// ErrHandlerTimeout.
//
// TimeoutHandler buffers all Handler writes to memory and does not
// support the Hijacker or Flusher interfaces.
func TimeoutHandler(h Handler, dt time.Duration, msg string) Handler {
return &timeoutHandler{
handler: h,
body: msg,
dt: dt,
}
}
// ErrHandlerTimeout is returned on ResponseWriter Write calls
// in handlers which have timed out.
var ErrHandlerTimeout = errors.New("http: Handler timeout")
type timeoutHandler struct {
handler Handler
body string
dt time.Duration
// When set, no timer will be created and this channel will
// be used instead.
testTimeout <-chan time.Time
}
func (h *timeoutHandler) errorBody() string {
if h.body != "" {
return h.body
}
return "<html><head><title>Timeout</title></head><body><h1>Timeout</h1></body></html>"
}
func (h *timeoutHandler) ServeHTTP(w ResponseWriter, r *Request) {
var t *time.Timer
timeout := h.testTimeout
if timeout == nil {
t = time.NewTimer(h.dt)
timeout = t.C
}
done := make(chan struct{})
tw := &timeoutWriter{
w: w,
h: make(Header),
}
go func() {
h.handler.ServeHTTP(tw, r)
close(done)
}()
select {
case <-done:
tw.mu.Lock()
defer tw.mu.Unlock()
dst := w.Header()
for k, vv := range tw.h {
dst[k] = vv
}
if !tw.wroteHeader {
tw.code = StatusOK
}
w.WriteHeader(tw.code)
w.Write(tw.wbuf.Bytes())
if t != nil {
t.Stop()
}
case <-timeout:
tw.mu.Lock()
defer tw.mu.Unlock()
w.WriteHeader(StatusServiceUnavailable)
io.WriteString(w, h.errorBody())
tw.timedOut = true
return
}
}
type timeoutWriter struct {
w ResponseWriter
h Header
wbuf bytes.Buffer
mu sync.Mutex
timedOut bool
wroteHeader bool
code int
}
func (tw *timeoutWriter) Header() Header { return tw.h }
func (tw *timeoutWriter) Write(p []byte) (int, error) {
tw.mu.Lock()
defer tw.mu.Unlock()
if tw.timedOut {
return 0, ErrHandlerTimeout
}
if !tw.wroteHeader {
tw.writeHeader(StatusOK)
}
return tw.wbuf.Write(p)
}
func (tw *timeoutWriter) WriteHeader(code int) {
tw.mu.Lock()
defer tw.mu.Unlock()
if tw.timedOut || tw.wroteHeader {
return
}
tw.writeHeader(code)
}
func (tw *timeoutWriter) writeHeader(code int) {
tw.wroteHeader = true
tw.code = code
}
// tcpKeepAliveListener sets TCP keep-alive timeouts on accepted
// connections. It's used by ListenAndServe and ListenAndServeTLS so
// dead TCP connections (e.g. closing laptop mid-download) eventually
// go away.
type tcpKeepAliveListener struct {
*net.TCPListener
}
func (ln tcpKeepAliveListener) Accept() (c net.Conn, err error) {
tc, err := ln.AcceptTCP()
if err != nil {
return
}
tc.SetKeepAlive(true)
tc.SetKeepAlivePeriod(3 * time.Minute)
return tc, nil
}
// globalOptionsHandler responds to "OPTIONS *" requests.
type globalOptionsHandler struct{}
func (globalOptionsHandler) ServeHTTP(w ResponseWriter, r *Request) {
w.Header().Set("Content-Length", "0")
if r.ContentLength != 0 {
// Read up to 4KB of OPTIONS body (as mentioned in the
// spec as being reserved for future use), but anything
// over that is considered a waste of server resources
// (or an attack) and we abort and close the connection,
// courtesy of MaxBytesReader's EOF behavior.
mb := MaxBytesReader(w, r.Body, 4<<10)
io.Copy(ioutil.Discard, mb)
}
}
// initNPNRequest is an HTTP handler that initializes certain
// uninitialized fields in its *Request. Such partially-initialized
// Requests come from NPN protocol handlers.
type initNPNRequest struct {
c *tls.Conn
h serverHandler
}
func (h initNPNRequest) ServeHTTP(rw ResponseWriter, req *Request) {
if req.TLS == nil {
req.TLS = &tls.ConnectionState{}
*req.TLS = h.c.ConnectionState()
}
if req.Body == nil {
req.Body = NoBody
}
if req.RemoteAddr == "" {
req.RemoteAddr = h.c.RemoteAddr().String()
}
h.h.ServeHTTP(rw, req)
}
// loggingConn is used for debugging.
type loggingConn struct {
name string
net.Conn
}
var (
uniqNameMu sync.Mutex
uniqNameNext = make(map[string]int)
)
func newLoggingConn(baseName string, c net.Conn) net.Conn {
uniqNameMu.Lock()
defer uniqNameMu.Unlock()
uniqNameNext[baseName]++
return &loggingConn{
name: fmt.Sprintf("%s-%d", baseName, uniqNameNext[baseName]),
Conn: c,
}
}
func (c *loggingConn) Write(p []byte) (n int, err error) {
log.Printf("%s.Write(%d) = ....", c.name, len(p))
n, err = c.Conn.Write(p)
log.Printf("%s.Write(%d) = %d, %v", c.name, len(p), n, err)
return
}
func (c *loggingConn) Read(p []byte) (n int, err error) {
log.Printf("%s.Read(%d) = ....", c.name, len(p))
n, err = c.Conn.Read(p)
log.Printf("%s.Read(%d) = %d, %v", c.name, len(p), n, err)
return
}
func (c *loggingConn) Close() (err error) {
log.Printf("%s.Close() = ...", c.name)
err = c.Conn.Close()
log.Printf("%s.Close() = %v", c.name, err)
return
}
// checkConnErrorWriter writes to c.rwc and records any write errors to c.werr.
// It only contains one field (and a pointer field at that), so it
// fits in an interface value without an extra allocation.
type checkConnErrorWriter struct {
c *conn
}
func (w checkConnErrorWriter) Write(p []byte) (n int, err error) {
n, err = w.c.rwc.Write(p)
if err != nil && w.c.werr == nil {
w.c.werr = err
w.c.cancelCtx()
}
return
}
func numLeadingCRorLF(v []byte) (n int) {
for _, b := range v {
if b == '\r' || b == '\n' {
n++
continue
}
break
}
return
}
func strSliceContains(ss []string, s string) bool {
for _, v := range ss {
if v == s {
return true
}
}
return false
}