Retro68/gcc/liboffloadmic/runtime/offload_host.cpp
2017-10-07 02:16:47 +02:00

7256 lines
274 KiB
C++

/*
Copyright (c) 2014-2016 Intel Corporation. All Rights Reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// Forward declaration as the following 2 functions are declared as friend
// in offload_engine.h.
// CLANG does not like static to been after friend declaration.
static void __offload_init_library_once(void);
static void __offload_fini_library(void);
#include "offload_host.h"
#ifdef MYO_SUPPORT
#include "offload_myo_host.h"
#endif
#include <malloc.h>
#ifndef TARGET_WINNT
#include <alloca.h>
#include <elf.h>
#endif // TARGET_WINNT
#include <errno.h>
#include <fcntl.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <algorithm>
#include <bitset>
#include <iostream>
#if defined(HOST_WINNT)
#define PATH_SEPARATOR ";"
#else
#define PATH_SEPARATOR ":"
#endif
#define GET_OFFLOAD_NUMBER(timer_data) \
timer_data? timer_data->offload_number : 0
static void (*task_completion_callback)(void *);
extern "C" {
#ifdef TARGET_WINNT
// Windows does not support imports from libraries without actually
// including them as dependence. We don't want to include in the
// dependence since is it used only for Fortran when traceback is enabled.
// Chose to implement it with GetProcAddress.
#define FORTRAN_TRACE_BACK win_for__continue_traceback
int win_for__continue_traceback( _Offload_result coi_offload_result )
{
HINSTANCE hDLL;
int (* TraceBackRoutine)(_Offload_result value);
hDLL = LoadLibrary("libifcoremd.dll");
if (hDLL != 0) {
TraceBackRoutine = (int (*)(_Offload_result)) GetProcAddress(hDLL,
"for__continue_traceback");
if (TraceBackRoutine != 0) {
return TraceBackRoutine(coi_offload_result);
}
else {
OFFLOAD_TRACE(3,
"Cannot find for__continue_traceback routine in libifcorert.dll\n");
exit(1);
}
}
else {
OFFLOAD_TRACE(3, "Cannot load libifcorert.dll\n");
exit(1);
}
return 0;
}
#else // TARGET_WINNT
#define FORTRAN_TRACE_BACK for__continue_traceback
// for__continue_traceback is provided as a dummy to resolve link time symbols
// for C/C++ programs. For Fortran the actual fortran library function in
// libifcore.so is used.
#pragma weak for__continue_traceback
int for__continue_traceback( _Offload_result coi_offload_result )
{
OFFLOAD_TRACE(3,
"liboffload function for_continue_traceback should not be called.\n");
exit(1);
}
#endif //TARGET_WINNT
} // extern "C"
#ifdef TARGET_WINNT
// Small subset of ELF declarations for Windows which is needed to compile
// this file. ELF header is used to understand what binary type is contained
// in the target image - shared library or executable.
typedef uint16_t Elf64_Half;
typedef uint32_t Elf64_Word;
typedef uint64_t Elf64_Addr;
typedef uint64_t Elf64_Off;
#define EI_NIDENT 16
#define ET_EXEC 2
#define ET_DYN 3
typedef struct
{
unsigned char e_ident[EI_NIDENT];
Elf64_Half e_type;
Elf64_Half e_machine;
Elf64_Word e_version;
Elf64_Addr e_entry;
Elf64_Off e_phoff;
Elf64_Off e_shoff;
Elf64_Word e_flags;
Elf64_Half e_ehsize;
Elf64_Half e_phentsize;
Elf64_Half e_phnum;
Elf64_Half e_shentsize;
Elf64_Half e_shnum;
Elf64_Half e_shstrndx;
} Elf64_Ehdr;
#endif // TARGET_WINNT
// Host console and file logging
const char *prefix;
int console_enabled = 0;
int offload_number = 0;
static const char *htrace_envname = "H_TRACE";
static const char *offload_report_envname = "OFFLOAD_REPORT";
static const char *timer_envname = "H_TIME";
// DMA channel count used by COI and set via
// OFFLOAD_DMA_CHANNEL_COUNT environment variable
uint32_t mic_dma_channel_count;
// Trace information
static const char* vardesc_direction_as_string[] = {
"NOCOPY",
"IN",
"OUT",
"INOUT"
};
static const char* vardesc_type_as_string[] = {
"unknown",
"data",
"data_ptr",
"func_ptr",
"void_ptr",
"string_ptr",
"dv",
"dv_data",
"dv_data_slice",
"dv_ptr",
"dv_ptr_data",
"dv_ptr_data_slice",
"cean_var",
"cean_var_ptr",
"c_data_ptr_array",
"c_extended_type",
"c_func_ptr_array",
"c_void_ptr_array",
"c_string_ptr_array",
"c_data_ptr_ptr",
"c_func_ptr_ptr",
"c_void_ptr_ptr",
"c_string_ptr_ptr",
"c_cean_var_ptr_ptr",
};
Engine* mic_engines = 0;
uint32_t mic_engines_total = 0;
pthread_key_t mic_thread_key;
MicEnvVar mic_env_vars;
uint64_t cpu_frequency = 0;
// MIC_STACKSIZE
uint32_t mic_stack_size = 12 * 1024 * 1024;
// MIC_BUFFERSIZE
uint64_t mic_buffer_size = 0;
// Preallocated 4K page memory size for buffers on MIC
uint64_t mic_4k_buffer_size = 0;
// Preallocated 2M page memory size for buffers on MIC
uint64_t mic_2m_buffer_size = 0;
// LD_LIBRARY_PATH for KNC
char* knc_library_path = 0;
// LD_LIBRARY_PATH for KNL
char* knl_library_path = 0;
// MIC_PROXY_IO
bool mic_proxy_io = true;
// MIC_PROXY_FS_ROOT
char* mic_proxy_fs_root = 0;
// Threshold for creating buffers with large pages. Buffer is created
// with large pages hint if its size exceeds the threshold value.
// By default large pages are disabled right now (by setting default
// value for threshold to MAX) due to HSD 4114629.
uint64_t __offload_use_2mb_buffers = 0xffffffffffffffffULL;
static const char *mic_use_2mb_buffers_envname =
"MIC_USE_2MB_BUFFERS";
static uint64_t __offload_use_async_buffer_write = 2 * 1024 * 1024;
static const char *mic_use_async_buffer_write_envname =
"MIC_USE_ASYNC_BUFFER_WRITE";
static uint64_t __offload_use_async_buffer_read = 2 * 1024 * 1024;
static const char *mic_use_async_buffer_read_envname =
"MIC_USE_ASYNC_BUFFER_READ";
// device initialization type
OffloadInitType __offload_init_type = c_init_on_offload_all;
static const char *offload_init_envname = "OFFLOAD_INIT";
// active wait
static bool __offload_active_wait = true;
static const char *offload_active_wait_envname = "OFFLOAD_ACTIVE_WAIT";
// wait even for asynchronous offload
// true for now still the performance issue with COI is not fixed
static bool __offload_always_wait = true;
static const char *offload_always_wait_envname = "OFFLOAD_ALWAYS_WAIT";
// OMP_DEFAULT_DEVICE
int __omp_device_num = 0;
static const char *omp_device_num_envname = "OMP_DEFAULT_DEVICE";
//OFFLOAD_PARALLEL_COPY
static bool __offload_parallel_copy = false;
static const char *parallel_copy_envname = "OFFLOAD_PARALLEL_COPY";
//Use COI interface for noncontiguous transfer if it exists.
static bool __offload_use_coi_noncontiguous_transfer = false;
static const char *use_coi_noncontiguous_transfer_envname =
"MIC_USE_COI_MULTI_D";
// The list of pending target libraries
static bool __target_libs;
static TargetImageList __target_libs_list;
static mutex_t __target_libs_lock;
static mutex_t stack_alloc_lock;
static mutex_t lock_complete;
// Set of OffloadDescriptors of asynchronous offloads that are not destroyed
std::map<void *, bool> offload_descr_map;
// Target executable
TargetImage* __target_exe;
// is true if last loaded image is dll
bool __current_image_is_dll = false;
// is true if myo library is loaded when dll is loaded
bool __myo_init_in_so = false;
// Print readable offload flags
static void trace_offload_flags(
OffloadHostTimerData* timer_data,
OffloadFlags offload_flags
)
{
// Sized big enough for all flag names
char fbuffer[256];
bool first = true;
if (!OFFLOAD_DO_TRACE && (console_enabled >= 1)) {
sprintf(fbuffer, " OffloadFlags=(");
if (offload_flags.bits.fortran_traceback) {
sprintf(fbuffer+strlen(fbuffer), "fortran_traceback");
first = false;
}
if (offload_flags.bits.omp_async) {
sprintf(fbuffer+strlen(fbuffer), first ? "omp_async" : ",omp_async");
first = false;
}
OFFLOAD_DEBUG_TRACE_1(1,
GET_OFFLOAD_NUMBER(timer_data), c_offload_init_func,
"%s)\n", fbuffer);
}
}
// Print readable varDesc flags
static void trace_varDesc_flags(
OffloadHostTimerData* timer_data,
varDescFlags offload_flags
)
{
// Sized big enough for all flag names
char fbuffer[256];
bool first = true;
if (!OFFLOAD_DO_TRACE && (console_enabled >= 1)) {
sprintf(fbuffer, " varDescFlags=(");
if (offload_flags.is_static) {
sprintf(fbuffer+strlen(fbuffer), "is_static");
first = false;
}
if (offload_flags.is_static_dstn) {
sprintf(fbuffer+strlen(fbuffer),
first ? "is_static_dstn" : ",is_static_dstn");
first = false;
}
if (offload_flags.has_length) {
sprintf(fbuffer+strlen(fbuffer),
first ? "has_length" : ",has_length");
first = false;
}
if (offload_flags.is_stack_buf) {
sprintf(fbuffer+strlen(fbuffer),
first ? "is_stack_buf" : ",is_stack_buf");
first = false;
}
if (offload_flags.targetptr) {
sprintf(fbuffer+strlen(fbuffer),
first ? "targetptr" : ",targetptr");
first = false;
}
if (offload_flags.preallocated) {
sprintf(fbuffer+strlen(fbuffer),
first ? "preallocated" : ",preallocated");
first = false;
}
if (offload_flags.is_pointer) {
sprintf(fbuffer+strlen(fbuffer),
first ? "is_pointer" : ",is_pointer");
first = false;
}
if (offload_flags.sink_addr) {
sprintf(fbuffer+strlen(fbuffer),
first ? "sink_addr" : ",sink_addr");
first = false;
}
if (offload_flags.alloc_disp) {
sprintf(fbuffer+strlen(fbuffer),
first ? "alloc_disp" : ",alloc_disp");
first = false;
}
if (offload_flags.is_noncont_src) {
sprintf(fbuffer+strlen(fbuffer),
first ? "is_noncont_src" : ",is_noncont_src");
first = false;
}
if (offload_flags.is_noncont_dst) {
sprintf(fbuffer+strlen(fbuffer),
first ? "is_noncont_dst" : ",is_noncont_dst");
first = false;
}
if (offload_flags.always_copy) {
sprintf(fbuffer+strlen(fbuffer),
first ? "always_copy" : ",always_copy");
first = false;
}
if (offload_flags.always_delete) {
sprintf(fbuffer+strlen(fbuffer),
first ? "always_delete" : ",always_delete");
first = false;
}
if (offload_flags.is_non_cont_struct) {
sprintf(fbuffer+strlen(fbuffer),
first ? "is_non_cont_struct" : ",is_non_cont_struct");
first = false;
}
if (offload_flags.pin) {
sprintf(fbuffer+strlen(fbuffer),
first ? "pin" : ",pin");
first = false;
}
if (offload_flags.is_device_ptr) {
sprintf(fbuffer+strlen(fbuffer),
first ? "is_device_ptr" : ",is_device_ptr");
first = false;
}
if (offload_flags.use_device_ptr) {
sprintf(fbuffer+strlen(fbuffer),
first ? "use_device_ptr" : ",use_device_ptr");
}
OFFLOAD_DEBUG_TRACE_1(1,
GET_OFFLOAD_NUMBER(timer_data), c_offload_init_func,
"%s)\n", fbuffer);
}
}
static char * offload_get_src_base(void * ptr, uint8_t type)
{
char *base;
if (VAR_TYPE_IS_PTR(type)) {
base = *static_cast<char**>(ptr);
}
else if (VAR_TYPE_IS_SCALAR(type)) {
base = static_cast<char*>(ptr);
}
else if (VAR_TYPE_IS_DV_DATA_SLICE(type) || VAR_TYPE_IS_DV_DATA(type)) {
ArrDesc *dvp;
if (VAR_TYPE_IS_DV_DATA_SLICE(type)) {
const Arr_Desc *ap = static_cast<const Arr_Desc*>(ptr);
dvp = (type == c_dv_data_slice) ?
reinterpret_cast<ArrDesc*>(ap->base) :
*reinterpret_cast<ArrDesc**>(ap->base);
}
else {
dvp = (type == c_dv_data) ?
static_cast<ArrDesc*>(ptr) :
*static_cast<ArrDesc**>(ptr);
}
base = reinterpret_cast<char*>(dvp->Base);
}
else {
base = NULL;
}
return base;
}
void OffloadDescriptor::report_coi_error(error_types msg, COIRESULT res)
{
// special case for the 'process died' error
if (res == COI_PROCESS_DIED) {
m_device.fini_process(true);
}
else {
switch (msg) {
case c_buf_create:
if (res == COI_OUT_OF_MEMORY) {
msg = c_buf_create_out_of_mem;
}
/* fallthru */
case c_buf_create_from_mem:
case c_buf_get_address:
case c_pipeline_create:
case c_pipeline_run_func:
LIBOFFLOAD_ERROR(msg, m_device.get_logical_index(), res);
break;
case c_buf_read:
case c_buf_write:
case c_buf_copy:
case c_buf_map:
case c_buf_unmap:
case c_buf_destroy:
case c_buf_set_state:
LIBOFFLOAD_ERROR(msg, res);
break;
default:
break;
}
}
exit(1);
}
_Offload_result OffloadDescriptor::translate_coi_error(COIRESULT res) const
{
switch (res) {
case COI_SUCCESS:
return OFFLOAD_SUCCESS;
case COI_PROCESS_DIED:
return OFFLOAD_PROCESS_DIED;
case COI_OUT_OF_MEMORY:
return OFFLOAD_OUT_OF_MEMORY;
default:
return OFFLOAD_ERROR;
}
}
// is_targetptr == 0 && is_prealloc == 0 - allocation of pointer data;
// is_targetptr == 1 && is_prealloc == 0 - allocation of target memory:
// allocate memory at target; use its value as base in target table.
// is_targetptr == 1 && is_prealloc == 1 - use preallocated target memory:
// base - is address at target of preallocated memory; use its value as
// base in target table.
bool OffloadDescriptor::alloc_ptr_data(
PtrData* &ptr_data,
void *base,
int64_t disp,
int64_t size,
int64_t alloc_disp,
int align,
bool is_targptr,
bool is_prealloc,
bool pin
)
{
// total length of base
int64_t length = size;
bool is_new;
COIBUFFER targptr_buf;
COIRESULT res;
uint32_t buffer_flags = 0;
char * base_disp = reinterpret_cast<char *>(base) + disp;
// create buffer with large pages if data length exceeds
// large page threshold
if (length >= __offload_use_2mb_buffers) {
buffer_flags = COI_OPTIMIZE_HUGE_PAGE_SIZE;
}
// Allocate memory at target for targetptr without preallocated as we need
// its address as base argument in call to m_device.insert_ptr_data
if (is_targptr && !is_prealloc) {
length = alloc_disp ? length : size + disp;
res = COI::BufferCreate(
length,
COI_BUFFER_OPENCL,
buffer_flags,
0,
1,
&m_device.get_process(),
&targptr_buf);
if (res != COI_SUCCESS) {
if (m_status != 0) {
m_status->result = translate_coi_error(res);
}
else if (m_is_mandatory) {
report_coi_error(c_buf_create, res);
}
return false;
}
res = COI::BufferGetSinkAddress(
targptr_buf, reinterpret_cast<uint64_t *>(&base));
if (res != COI_SUCCESS) {
if (m_status != 0) {
m_status->result = translate_coi_error(res);
}
else if (m_is_mandatory) {
report_coi_error(c_buf_get_address, res);
}
return false;
}
}
OFFLOAD_TRACE(3, "Creating association for data: addr %p, length %lld\n",
alloc_disp ? base : base_disp,
alloc_disp ? length : size + disp);
// add new entry
ptr_data = is_targptr ?
m_device.find_targetptr_data(base_disp) :
m_device.find_ptr_data(base_disp);
// if ptr_data is found just need to check it for overlapping
if (ptr_data) {
is_new = false;
base = base_disp;
}
else {
// If association is not found we must create it.
length = alloc_disp ? length : size + disp;
ptr_data = is_targptr ?
m_device.insert_targetptr_data(base, length, is_new) :
m_device.insert_ptr_data(base, length, is_new);
}
if (is_new) {
OFFLOAD_TRACE(3, "Added new association\n");
if (length > 0) {
OffloadTimer timer(get_timer_data(), c_offload_host_alloc_buffers);
// align should be a power of 2
if (!pin && !is_targptr &&
align > 0 && (align & (align - 1)) == 0) {
// offset within mic_buffer. Can do offset optimization
// only when source address alignment satisfies requested
// alignment on the target (cq172736).
if ((reinterpret_cast<intptr_t>(base) & (align - 1)) == 0) {
ptr_data->mic_offset =
reinterpret_cast<intptr_t>(base) & 4095;
}
}
// buffer size and flags
uint64_t buffer_size = length + ptr_data->mic_offset;
// For targetptr there is no CPU buffer
if (pin || !is_targptr) {
// create CPU buffer
OFFLOAD_DEBUG_TRACE_1(3,
GET_OFFLOAD_NUMBER(get_timer_data()),
c_offload_create_buf_host,
"Creating buffer from source memory %p, "
"length %lld\n", base, length);
// result is not checked because we can continue without cpu
// buffer. In this case we will use COIBufferRead/Write
// instead of COIBufferCopy.
COI::BufferCreateFromMemory(length,
COI_BUFFER_OPENCL,
0,
base,
1,
&m_device.get_process(),
&ptr_data->cpu_buf);
}
// create MIC buffer
if (is_prealloc) {
OFFLOAD_DEBUG_TRACE_1(3,
GET_OFFLOAD_NUMBER(get_timer_data()),
c_offload_create_buf_mic,
"Creating buffer from sink memory: "
"addr %p, size %lld, offset %d, flags 0x%x\n",
base, buffer_size, ptr_data->mic_offset,
buffer_flags);
res = COI::BufferCreateFromMemory(ptr_data->cpu_addr.length(),
COI_BUFFER_NORMAL,
COI_SINK_MEMORY,
base,
1,
&m_device.get_process(),
&ptr_data->mic_buf);
if (res != COI_SUCCESS) {
if (m_status != 0) {
m_status->result = translate_coi_error(res);
}
else if (m_is_mandatory) {
report_coi_error(c_buf_create, res);
}
ptr_data->alloc_ptr_data_lock.unlock();
return false;
}
}
else if (is_targptr) {
ptr_data->mic_buf = targptr_buf;
}
else if (!pin) {
OFFLOAD_DEBUG_TRACE_1(3,
GET_OFFLOAD_NUMBER(get_timer_data()),
c_offload_create_buf_mic,
"Creating buffer for sink: size %lld, offset %d, "
"flags =0x%x\n", buffer_size,
ptr_data->mic_offset, buffer_flags);
res = COI::BufferCreate(buffer_size,
COI_BUFFER_NORMAL,
buffer_flags,
0,
1,
&m_device.get_process(),
&ptr_data->mic_buf);
if (res != COI_SUCCESS) {
if (m_status != 0) {
m_status->result = translate_coi_error(res);
}
else if (m_is_mandatory) {
report_coi_error(c_buf_create, res);
}
ptr_data->alloc_ptr_data_lock.unlock();
return false;
}
}
if (!pin) {
// make buffer valid on the device.
res = COI::BufferSetState(ptr_data->mic_buf,
m_device.get_process(),
COI_BUFFER_VALID,
COI_BUFFER_NO_MOVE,
0, 0, 0);
if (res != COI_SUCCESS) {
if (m_status != 0) {
m_status->result = translate_coi_error(res);
}
else if (m_is_mandatory) {
report_coi_error(c_buf_set_state, res);
}
ptr_data->alloc_ptr_data_lock.unlock();
return false;
}
res = COI::BufferSetState(ptr_data->mic_buf,
COI_PROCESS_SOURCE,
COI_BUFFER_INVALID,
COI_BUFFER_NO_MOVE,
0, 0, 0);
if (res != COI_SUCCESS) {
if (m_status != 0) {
m_status->result = translate_coi_error(res);
}
else if (m_is_mandatory) {
report_coi_error(c_buf_set_state, res);
}
ptr_data->alloc_ptr_data_lock.unlock();
return false;
}
}
}
ptr_data->alloc_disp = alloc_disp;
ptr_data->alloc_ptr_data_lock.unlock();
}
else {
mutex_locker_t locker(ptr_data->alloc_ptr_data_lock);
OFFLOAD_TRACE(3, "Found existing association: addr %p, length %lld, "
"is_static %d\n",
ptr_data->cpu_addr.start(), ptr_data->cpu_addr.length(),
ptr_data->is_static);
// This is not a new entry. Make sure that provided address range fits
// into existing one.
MemRange addr_range(base, length);
if (!ptr_data->cpu_addr.contains(addr_range)) {
LIBOFFLOAD_ERROR(c_bad_ptr_mem_alloc, base, length,
const_cast<void *>(ptr_data->cpu_addr.start()),
ptr_data->cpu_addr.length());
exit(1);
}
// if the entry is associated with static data it may not have buffers
// created because they are created on demand.
if (ptr_data->is_static && !init_static_ptr_data(ptr_data)) {
return false;
}
}
return true;
}
bool OffloadDescriptor::find_ptr_data(
PtrData* &ptr_data,
void *in_base,
int64_t disp,
int64_t size,
bool is_targetptr,
bool report_error
)
{
// total length of base
int64_t length = size;
char *base = reinterpret_cast<char *>(in_base) + disp;
OFFLOAD_TRACE(3, "Looking for association for data: addr %p, "
"length %lld\n", base, length);
// find existing association in pointer table
ptr_data = is_targetptr ?
m_device.find_targetptr_data(base) :
m_device.find_ptr_data(base);
if (ptr_data == 0) {
if (report_error) {
LIBOFFLOAD_ERROR(c_no_ptr_data, base);
exit(1);
}
OFFLOAD_TRACE(3, "Association does not exist\n");
return true;
}
OFFLOAD_TRACE(3, "Found association: base %p, length %lld, is_static %d\n",
ptr_data->cpu_addr.start(), ptr_data->cpu_addr.length(),
ptr_data->is_static);
// make sure that provided address range fits into existing one
MemRange addr_range(base, length);
if (!ptr_data->cpu_addr.contains(addr_range)) {
if (report_error) {
LIBOFFLOAD_ERROR(c_bad_ptr_mem_range, base, length,
const_cast<void *>(ptr_data->cpu_addr.start()),
ptr_data->cpu_addr.length());
exit(1);
}
OFFLOAD_TRACE(3, "Existing association partially overlaps with "
"data address range\n");
ptr_data = 0;
return true;
}
// if the entry is associated with static data it may not have buffers
// created because they are created on demand.
if (ptr_data->is_static && !init_static_ptr_data(ptr_data)) {
return false;
}
return true;
}
void OffloadDescriptor::find_device_ptr(
int64_t* &device_ptr,
void *host_ptr
)
{
PtrData* ptr_data;
char *base = reinterpret_cast<char *>(host_ptr);
OFFLOAD_TRACE(3, "Looking for association for data: addr %p\n", base);
// find existing association in pointer table
ptr_data = m_device.find_ptr_data(base);
// MIC address should have been assigned.
// For now assume does not exist and get the addr
// if ((ptr_data == 0) || ptr_data->mic_addr) {
if (ptr_data == 0) {
OFFLOAD_TRACE(3, "Association does not exist\n");
LIBOFFLOAD_ERROR(c_no_ptr_data, base);
exit(1);
}
if (!ptr_data->mic_addr) {
COIRESULT res = COI::BufferGetSinkAddress(ptr_data->mic_buf,
&ptr_data->mic_addr);
if (res != COI_SUCCESS) {
if (m_status != 0)
m_status->result = translate_coi_error(res);
report_coi_error(c_buf_get_address, res);
}
}
device_ptr = (int64_t *) ptr_data->mic_addr;
OFFLOAD_TRACE(3, "Found association: host_ptr %p, device_ptr = %p\n",
ptr_data->cpu_addr.start(), device_ptr);
}
bool OffloadDescriptor::init_static_ptr_data(PtrData *ptr_data)
{
OffloadTimer timer(get_timer_data(), c_offload_host_alloc_buffers);
if (ptr_data->cpu_buf == 0) {
OFFLOAD_TRACE(3, "Creating buffer from source memory %llx\n",
ptr_data->cpu_addr.start());
COIRESULT res = COI::BufferCreateFromMemory(
ptr_data->cpu_addr.length(),
COI_BUFFER_OPENCL,
0,
const_cast<void*>(ptr_data->cpu_addr.start()),
1, &m_device.get_process(),
&ptr_data->cpu_buf);
if (res != COI_SUCCESS) {
if (m_status != 0) {
m_status->result = translate_coi_error(res);
return false;
}
report_coi_error(c_buf_create_from_mem, res);
}
}
if (ptr_data->mic_buf == 0) {
OFFLOAD_TRACE(3, "Creating buffer from sink memory %llx\n",
ptr_data->mic_addr);
COIRESULT res = COI::BufferCreateFromMemory(
ptr_data->cpu_addr.length(),
COI_BUFFER_NORMAL,
COI_SINK_MEMORY,
reinterpret_cast<void*>(ptr_data->mic_addr),
1, &m_device.get_process(),
&ptr_data->mic_buf);
if (res != COI_SUCCESS) {
if (m_status != 0) {
m_status->result = translate_coi_error(res);
return false;
}
report_coi_error(c_buf_create_from_mem, res);
}
}
return true;
}
bool OffloadDescriptor::init_mic_address(PtrData *ptr_data)
{
if (ptr_data->mic_buf != 0 && ptr_data->mic_addr == 0) {
COIRESULT res = COI::BufferGetSinkAddress(ptr_data->mic_buf,
&ptr_data->mic_addr);
if (res != COI_SUCCESS) {
if (m_status != 0) {
m_status->result = translate_coi_error(res);
}
else if (m_is_mandatory) {
report_coi_error(c_buf_get_address, res);
}
return false;
}
}
return true;
}
bool OffloadDescriptor::nullify_target_stack(
COIBUFFER targ_buf,
uint64_t size
)
{
char * ptr = (char*)malloc(size);
if (ptr == NULL)
LIBOFFLOAD_ERROR(c_malloc);
COIRESULT res;
memset(ptr, 0, size);
res = COI::BufferWrite(
targ_buf,
0,
ptr,
size,
COI_COPY_UNSPECIFIED,
0, 0, 0);
free(ptr);
if (res != COI_SUCCESS) {
if (m_status != 0) {
m_status->result = translate_coi_error(res);
return false;
}
report_coi_error(c_buf_write, res);
}
return true;
}
static void print_persistList_item(
const char *msg,
PersistData *cur_el
)
{
OFFLOAD_TRACE(4, "%s\n", msg);
OFFLOAD_TRACE(4, " stack_cpu_addr = %p\n", cur_el->stack_cpu_addr);
OFFLOAD_TRACE(4, " routine_id = %d\n", cur_el->routine_id);
OFFLOAD_TRACE(4, " thread_id = %lld\n", cur_el->thread_id);
OFFLOAD_TRACE(4, " stack_ptr_data = %p\n", cur_el->stack_ptr_data);
OFFLOAD_TRACE(4, " MIC buffer = %p\n", cur_el->stack_ptr_data->mic_buf);
OFFLOAD_TRACE(4, " MIC addr = %p\n", cur_el->stack_ptr_data->mic_addr);
OFFLOAD_TRACE(4, " cpu_stack_addr = %p\n", cur_el->cpu_stack_addr);
}
static mutex_t stack_memory_manager_lock;
bool OffloadDescriptor::offload_stack_memory_manager(
const void * stack_begin,
int routine_id,
int buf_size,
int align,
bool thread_specific_function_locals,
bool *is_new)
{
//mutex_locker_t locker(stack_alloc_lock);
stack_memory_manager_lock.lock();
PersistData * new_el;
PersistDataList::iterator it_begin = m_device.m_persist_list.begin();
PersistDataList::iterator it_end;
int erase = 0;
uint64_t cur_thread_id = m_device.get_thread_id();
OFFLOAD_TRACE(3, "offload_stack_memory_manager("
"stack_begin=%p, routine_id=%d, buf_size=%d,"
"align=%d, thread_specific_function_locals=%d, bool=%p)\n",
stack_begin, routine_id, buf_size,
align, thread_specific_function_locals, is_new);
OFFLOAD_TRACE(3, "cur_thread_id=%lld\n", cur_thread_id);
*is_new = false;
for (PersistDataList::iterator it = m_device.m_persist_list.begin();
it != m_device.m_persist_list.end(); it++) {
PersistData cur_el = *it;
print_persistList_item("Current element in persist list:", &cur_el);
if (stack_begin > it->stack_cpu_addr) {
if (cur_thread_id == cur_el.thread_id) {
// this stack data must be destroyed
m_destroy_stack.push_front(cur_el.stack_ptr_data);
it_end = it;
erase++;
OFFLOAD_TRACE(3, "Current element below TOS: so delete\n");
}
}
else if (stack_begin == it->stack_cpu_addr) {
if (routine_id != it-> routine_id) {
// this stack data must be destroyed
// because the current function is a dynamic sibling
m_destroy_stack.push_front(cur_el.stack_ptr_data);
it_end = it;
erase++;
OFFLOAD_TRACE(3, "Current element is sibling: so delete\n");
break;
}
else if (!thread_specific_function_locals ||
cur_thread_id == cur_el.thread_id) {
// stack data is reused
m_stack_ptr_data = it->stack_ptr_data;
if (erase > 0) {
// all obsolete stack sections must be erased from the list
m_device.m_persist_list.erase(it_begin, ++it_end);
m_in_datalen +=
erase * sizeof(new_el->stack_ptr_data->mic_addr);
}
OFFLOAD_TRACE(3, "Reuse of stack buffer with addr %p\n",
m_stack_ptr_data->mic_addr);
stack_memory_manager_lock.unlock();
return true;
}
}
else if (stack_begin < it->stack_cpu_addr &&
cur_thread_id == cur_el.thread_id) {
OFFLOAD_TRACE(3, "Current element is above TOS\n");
break;
}
}
if (erase > 0) {
// all obsolete stack sections must be erased from the list
m_device.m_persist_list.erase(it_begin, ++it_end);
m_in_datalen += erase * sizeof(new_el->stack_ptr_data->mic_addr);
}
// new stack table is created
new_el = new PersistData(stack_begin, routine_id, buf_size, cur_thread_id);
// create MIC buffer
COIRESULT res;
uint32_t buffer_flags = 0;
// create buffer with large pages if data length exceeds
// large page threshold
if (buf_size >= __offload_use_2mb_buffers) {
buffer_flags = COI_OPTIMIZE_HUGE_PAGE_SIZE;
}
res = COI::BufferCreate(buf_size,
COI_BUFFER_NORMAL,
buffer_flags,
0,
1,
&m_device.get_process(),
&new_el->stack_ptr_data->mic_buf);
if (res != COI_SUCCESS) {
if (m_status != 0) {
m_status->result = translate_coi_error(res);
}
else if (m_is_mandatory) {
report_coi_error(c_buf_create, res);
}
stack_memory_manager_lock.unlock();
return false;
}
// make buffer valid on the device.
res = COI::BufferSetState(new_el->stack_ptr_data->mic_buf,
m_device.get_process(),
COI_BUFFER_VALID,
COI_BUFFER_NO_MOVE,
0, 0, 0);
if (res != COI_SUCCESS) {
if (m_status != 0) {
m_status->result = translate_coi_error(res);
}
else if (m_is_mandatory) {
report_coi_error(c_buf_set_state, res);
}
stack_memory_manager_lock.unlock();
return false;
}
res = COI::BufferSetState(new_el->stack_ptr_data->mic_buf,
COI_PROCESS_SOURCE,
COI_BUFFER_INVALID,
COI_BUFFER_NO_MOVE,
0, 0, 0);
if (res != COI_SUCCESS) {
if (m_status != 0) {
m_status->result = translate_coi_error(res);
}
else if (m_is_mandatory) {
report_coi_error(c_buf_set_state, res);
}
stack_memory_manager_lock.unlock();
return false;
}
// persistence algorithm requires target stack initialy to be nullified
if (!nullify_target_stack(new_el->stack_ptr_data->mic_buf, buf_size)) {
stack_memory_manager_lock.unlock();
return false;
}
m_stack_ptr_data = new_el->stack_ptr_data;
init_mic_address(m_stack_ptr_data);
OFFLOAD_TRACE(3, "Allocating stack buffer with addr %p\n",
m_stack_ptr_data->mic_addr);
m_device.m_persist_list.push_front(*new_el);
init_mic_address(new_el->stack_ptr_data);
*is_new = true;
stack_memory_manager_lock.unlock();
return true;
}
// Search through persistent stack buffers
// for the top-of-stack buffer for this thread
char* OffloadDescriptor::get_this_threads_cpu_stack_addr(
const void * stack_begin,
int routine_id,
bool thread_specific_function_locals
)
{
uint64_t cur_thread_id = m_device.get_thread_id();
char* matched = 0;
OFFLOAD_TRACE(3, "get_this_threads_cpu_stack_addr("
"stack_begin=%p, routine_id=%d, thread_specific_function_locals=%d)\n",
stack_begin, routine_id, thread_specific_function_locals);
OFFLOAD_TRACE(3, "cur_thread_id=%lld\n", cur_thread_id);
stack_memory_manager_lock.lock();
for (PersistDataList::iterator it = m_device.m_persist_list.begin();
it != m_device.m_persist_list.end(); it++)
{
PersistData cur_el = *it;
print_persistList_item("Current element in persist list:", &cur_el);
if (stack_begin == cur_el.stack_cpu_addr)
{
// For OpenMP shared function locals matching is done without
// regard to thread id. But, we return the last match, which
// corresponds to the outer stack.
if (!thread_specific_function_locals)
{
matched = cur_el.cpu_stack_addr;
continue;
}
// For non-OpenMP shared function-local variables
// the thread-id must match
if (cur_thread_id == cur_el.thread_id)
{
matched = cur_el.cpu_stack_addr;
break;
}
}
}
stack_memory_manager_lock.unlock();
if (matched != 0)
{
OFFLOAD_TRACE(3, "get_this_threads_cpu_stack_addr() => %p\n", matched);
return matched;
}
OFFLOAD_TRACE(1,
"Could not find persistent data; expect Read/Write failure\n");
return 0;
}
// Search through persistent stack buffers
// for the top-of-stack MIC buffer for this thread
PtrData* OffloadDescriptor::get_this_threads_mic_stack_addr(
const void * stack_begin,
int routine_id,
bool thread_specific_function_locals
)
{
uint64_t cur_thread_id = m_device.get_thread_id();
PtrData* matched = 0;
OFFLOAD_TRACE(3, "get_this_threads_mic_stack_addr("
"stack_begin=%p, routine_id=%d, thread_specific_function_locals=%d)\n",
stack_begin, routine_id, thread_specific_function_locals);
OFFLOAD_TRACE(3, "cur_thread_id=%lld\n", cur_thread_id);
stack_memory_manager_lock.lock();
for (PersistDataList::iterator it = m_device.m_persist_list.begin();
it != m_device.m_persist_list.end(); it++)
{
PersistData cur_el = *it;
print_persistList_item("Current element in persist list:", &cur_el);
if (stack_begin == cur_el.stack_cpu_addr)
{
// For OpenMP shared function locals matching is done without
// regard to thread id. But, we return the last match, which
// corresponds to the outer stack.
if (!thread_specific_function_locals)
{
matched = cur_el.stack_ptr_data;
continue;
}
// For non-OpenMP shared function-local variables
// the thread-id must match
if (cur_thread_id == cur_el.thread_id)
{
matched = cur_el.stack_ptr_data;
break;
}
}
}
stack_memory_manager_lock.unlock();
if (matched != 0)
{
OFFLOAD_TRACE(3, "get_this_threads_mic_stack_addr() => %p\n", matched);
return matched;
}
OFFLOAD_TRACE(1,
"Could not find persistent data; expect Read/Write failure\n");
return 0;
}
void OffloadDescriptor::setup_use_device_ptr(int i)
{
PtrData *ptr_data;
ArrDesc *dvp;
void *base;
if (m_vars_extra[i].type_src == c_dv_ptr) {
dvp = *static_cast<ArrDesc**>(m_vars[i].ptr);
base = reinterpret_cast<void*>(dvp->Base);
}
else {
base = *static_cast<void**>(m_vars[i].ptr);
}
if (m_vars[i].direction.in) {
int64_t *device_ptr;
bool is_new = true;
find_device_ptr(device_ptr, base);
// Create a entry in targetptr table using device_ptr
// as lookup for later recover the host pointer
ptr_data = m_device.insert_targetptr_data(device_ptr,
0, is_new);
// Actually the base is a host pointer and cpu_addr is
// device pointer. This is special case where the 2
// address usage is reversed to enable using existing
// PtrData structure instead of adding new fields.
ptr_data->mic_addr = (uint64_t) base;
ptr_data->alloc_ptr_data_lock.unlock();
// Replace host pointer with device pointer
if (m_vars_extra[i].type_src == c_dv_ptr) {
dvp->Base = reinterpret_cast<dv_size>(device_ptr);
}
else {
*static_cast<void**>(m_vars[i].ptr) = device_ptr;
}
}
else if (m_vars[i].direction.out) {
// For use_device_ptr and out find associated host ptr
// and assign to host ptr
ptr_data = m_device.find_targetptr_data(base);
if (!ptr_data) {
LIBOFFLOAD_ERROR(c_no_ptr_data, base);
exit(1);
}
if (m_vars_extra[i].type_src == c_dv_ptr) {
dvp->Base = ptr_data->mic_addr;
}
else {
*static_cast<void**>(m_vars[i].ptr) =
reinterpret_cast<void*>(ptr_data->mic_addr);
}
m_device.remove_targetptr_data(
ptr_data->cpu_addr.start());
}
}
bool OffloadDescriptor::setup_descriptors(
VarDesc *vars,
VarDesc2 *vars2,
int vars_total,
int entry_id,
const void *stack_addr
)
{
COIRESULT res;
// To enable caching the CPU stack base address for stack variables
char* this_threads_cpu_stack_addr = 0;
// To properly deal with non-OpenMP threading and function-local variables
// For OpenMP threading we support all function-locals in shared mode only
bool thread_specific_function_locals = !omp_in_parallel();
OffloadTimer timer(get_timer_data(), c_offload_host_setup_buffers);
// make a copy of variable descriptors
m_vars_total = vars_total;
if (vars_total > 0) {
m_vars = (VarDesc*) malloc(m_vars_total * sizeof(VarDesc));
if (m_vars == NULL)
LIBOFFLOAD_ERROR(c_malloc);
memcpy(m_vars, vars, m_vars_total * sizeof(VarDesc));
m_vars_extra = (VarExtra*) malloc(m_vars_total * sizeof(VarExtra));
if (m_vars_extra == NULL)
LIBOFFLOAD_ERROR(c_malloc);
}
// dependencies
m_in_deps_allocated = m_vars_total + 1;
m_in_deps = (COIEVENT*) malloc(sizeof(COIEVENT) * m_in_deps_allocated);
if (m_in_deps == NULL)
LIBOFFLOAD_ERROR(c_malloc);
if (m_vars_total > 0) {
m_out_deps_allocated = m_vars_total;
m_out_deps = (COIEVENT*) malloc(sizeof(COIEVENT) * m_out_deps_allocated);
if (m_out_deps == NULL)
LIBOFFLOAD_ERROR(c_malloc);
}
// copyin/copyout data length
m_in_datalen = 0;
m_out_datalen = 0;
// First pass over variable descriptors
// - Calculate size of the input and output non-pointer data
// - Allocate buffers for input and output pointers
for (int i = 0; i < m_vars_total; i++) {
void* alloc_base = NULL;
int64_t alloc_disp = 0;
int64_t alloc_size = 0;
bool src_is_for_mic = (m_vars[i].direction.out ||
m_vars[i].into == NULL);
bool src_is_for_host = (m_vars[i].direction.in ||
m_vars[i].into == NULL);
const char *var_sname = "";
if (vars2 != NULL && i < vars_total) {
if (vars2[i].sname != NULL) {
var_sname = vars2[i].sname;
}
}
// instead of m_vars[i].type.src we will use m_vars_extra[i].type_src
if (m_vars[i].type.src == c_extended_type) {
VarDescExtendedType *etype =
reinterpret_cast<VarDescExtendedType*>(m_vars[i].ptr);
m_vars_extra[i].type_src = etype->extended_type;
m_vars[i].ptr = etype->ptr;
}
else {
m_vars_extra[i].type_src = m_vars[i].type.src;
}
// instead of m_vars[i].type.dst we will use m_vars_extra[i].type_dst
if (m_vars[i].type.dst == c_extended_type) {
VarDescExtendedType *etype =
reinterpret_cast<VarDescExtendedType*>(m_vars[i].into);
if (etype) {
m_vars_extra[i].type_dst = etype->extended_type;
m_vars[i].into = etype->ptr;
}
else {
m_vars_extra[i].type_dst = m_vars_extra[i].type_src;
}
}
else {
m_vars_extra[i].type_dst = m_vars[i].type.dst;
}
OFFLOAD_TRACE(2, " VarDesc %d, var=%s, %s, %s\n",
i, var_sname,
vardesc_direction_as_string[m_vars[i].direction.bits],
vardesc_type_as_string[m_vars_extra[i].type_src]);
if (vars2 != NULL && i < vars_total && vars2[i].dname != NULL) {
OFFLOAD_TRACE(2, " into=%s, %s\n", vars2[i].dname,
vardesc_type_as_string[m_vars_extra[i].type_dst]);
}
OFFLOAD_TRACE(2,
" type_src=%d, type_dstn=%d, direction=%d, "
"alloc_if=%d, free_if=%d, align=%d, mic_offset=%d, flags=0x%x, "
"offset=%lld, size=%lld, count/disp=%lld, ptr=%p, into=%p\n",
m_vars_extra[i].type_src,
m_vars_extra[i].type_dst,
m_vars[i].direction.bits,
m_vars[i].alloc_if,
m_vars[i].free_if,
m_vars[i].align,
m_vars[i].mic_offset,
m_vars[i].flags.bits,
m_vars[i].offset,
m_vars[i].size,
m_vars[i].count,
m_vars[i].ptr,
m_vars[i].into);
// If any varDesc flags bits set, show them
if (console_enabled >= 1 && m_vars[i].flags.bits != 0) {
trace_varDesc_flags(get_timer_data(), m_vars[i].flags);
}
// preallocated implies targetptr
if (m_vars[i].flags.preallocated) {
// targetptr preallocated alloc_if(1) may not be used with
// an in clause
if (m_vars[i].direction.in && m_vars[i].alloc_if) {
LIBOFFLOAD_ERROR(c_in_with_preallocated);
exit(1);
}
m_vars[i].flags.targetptr = 1;
}
if (m_vars[i].alloc != NULL) {
// array descriptor
const Arr_Desc *ap =
static_cast<const Arr_Desc*>(m_vars[i].alloc);
// debug dump
ARRAY_DESC_DUMP(" ", "ALLOC", ap, 0, 1);
__arr_data_offset_and_length(ap, alloc_disp, alloc_size);
alloc_base = reinterpret_cast<void*>(ap->base);
}
m_vars_extra[i].alloc = m_vars[i].alloc;
m_vars_extra[i].auto_data = 0;
m_vars_extra[i].cpu_disp = 0;
m_vars_extra[i].cpu_offset = 0;
m_vars_extra[i].src_data = 0;
m_vars_extra[i].read_rng_src = 0;
m_vars_extra[i].read_rng_dst = 0;
m_vars_extra[i].omp_last_event_type = c_last_not;
// flag is_arr_ptr_el is 1 only for var_descs generated
// for c_data_ptr_array type
if (i < vars_total) {
m_vars_extra[i].is_arr_ptr_el = 0;
}
if (TYPE_IS_PTR_TO_PTR(m_vars_extra[i].type_src) ||
TYPE_IS_PTR_TO_PTR(m_vars_extra[i].type_dst) ||
m_vars[i].flags.is_pointer) {
m_vars_extra[i].pointer_offset = m_vars[i].offset;
m_vars[i].offset = 0;
m_in_datalen += sizeof(m_vars[i].offset);
}
switch (m_vars_extra[i].type_src) {
case c_data_ptr_array:
{
const Arr_Desc *ap;
const VarDesc3 *vd3 =
static_cast<const VarDesc3*>(m_vars[i].ptr);
int flags = vd3->array_fields;
OFFLOAD_TRACE(2,
" pointer array flags = %04x\n", flags);
OFFLOAD_TRACE(2,
" pointer array type is %s\n",
vardesc_type_as_string[flags & 0x3f]);
ap = static_cast<const Arr_Desc*>(vd3->ptr_array);
ARRAY_DESC_DUMP(" ", "ptr array", ap,
m_vars[i].flags.is_pointer, 1);
if (m_vars[i].into) {
ap = static_cast<const Arr_Desc*>(m_vars[i].into);
ARRAY_DESC_DUMP(
" ", "into array", ap, 0, 1);
}
if ((flags & (1<<flag_align_is_array)) != 0) {
ap = static_cast<const Arr_Desc*>(vd3->align_array);
ARRAY_DESC_DUMP(
" ", "align array", ap, 0, 1);
}
if ((flags & (1<<flag_alloc_if_is_array)) != 0) {
ap = static_cast<const Arr_Desc*>(vd3->alloc_if_array);
ARRAY_DESC_DUMP(
" ", "alloc_if array", ap, 0, 1);
}
if ((flags & (1<<flag_free_if_is_array)) != 0) {
ap = static_cast<const Arr_Desc*>(vd3->free_if_array);
ARRAY_DESC_DUMP(
" ", "free_if array", ap, 0, 1);
}
if ((flags & (1<<flag_extent_start_is_array)) != 0) {
ap = static_cast<const Arr_Desc*>(vd3->extent_start);
ARRAY_DESC_DUMP(
" ", "extent_start array", ap, 0, 1);
} else if ((flags &
(1<<flag_extent_start_is_scalar)) != 0) {
OFFLOAD_TRACE(2,
" extent_start scalar = %d\n",
(int64_t)vd3->extent_start);
}
if ((flags & (1<<flag_extent_elements_is_array)) != 0) {
ap = static_cast<const Arr_Desc*>
(vd3->extent_elements);
ARRAY_DESC_DUMP(" ",
"extent_elements array", ap, 0, 1);
} else if ((flags &
(1<<flag_extent_elements_is_scalar)) != 0) {
OFFLOAD_TRACE(2,
" extent_elements scalar = %d\n",
(int64_t)vd3->extent_elements);
}
if ((flags & (1<<flag_into_start_is_array)) != 0) {
ap = static_cast<const Arr_Desc*>(vd3->into_start);
ARRAY_DESC_DUMP(
" ", "into_start array", ap, 0, 1);
} else if ((flags &
(1<<flag_into_start_is_scalar)) != 0) {
OFFLOAD_TRACE(2,
" into_start scalar = %d\n",
(int64_t)vd3->into_start);
}
if ((flags & (1<<flag_into_elements_is_array)) != 0) {
ap = static_cast<const Arr_Desc*>(vd3->into_elements);
ARRAY_DESC_DUMP(
" ", "into_elements array", ap, 0, 1);
} else if ((flags &
(1<<flag_into_elements_is_scalar)) != 0) {
OFFLOAD_TRACE(2,
" into_elements scalar = %d\n",
(int64_t)vd3->into_elements);
}
if ((flags & (1<<flag_alloc_start_is_array)) != 0) {
ap = static_cast<const Arr_Desc*>(vd3->alloc_start);
ARRAY_DESC_DUMP(
" ", "alloc_start array", ap, 0, 1);
} else if ((flags &
(1<<flag_alloc_start_is_scalar)) != 0) {
OFFLOAD_TRACE(2,
" alloc_start scalar = %d\n",
(int64_t)vd3->alloc_start);
}
if ((flags & (1<<flag_alloc_elements_is_array)) != 0) {
ap = static_cast<const Arr_Desc*>(vd3->alloc_elements);
ARRAY_DESC_DUMP(" ",
"alloc_elements array", ap, 0, 1);
} else if ((flags &
(1<<flag_alloc_elements_is_scalar)) != 0) {
OFFLOAD_TRACE(2,
" alloc_elements scalar = %d\n",
(int64_t)vd3->alloc_elements);
}
}
if (!gen_var_descs_for_pointer_array(i)) {
return false;
}
break;
case c_data:
case c_void_ptr:
case c_void_ptr_ptr:
case c_cean_var:
// In all uses later
// VarDesc.size will have the length of the data to be
// transferred
// VarDesc.disp will have an offset from base
if (m_vars[i].flags.is_non_cont_struct && src_is_for_host) {
NonContigDesc *desc =
static_cast<NonContigDesc*>(m_vars[i].ptr);
noncont_struct_dump(" ", "DATA", desc);
m_vars_extra[i].noncont_desc = desc;
m_vars[i].ptr = reinterpret_cast<void*>(desc->base);
m_vars[i].size = get_noncont_struct_size(desc);
m_vars[i].disp = 0;
}
else if (m_vars_extra[i].type_src == c_cean_var) {
// array descriptor
const Arr_Desc *ap =
static_cast<const Arr_Desc*>(m_vars[i].ptr);
// debug dump
ARRAY_DESC_DUMP("", "IN/OUT", ap, 0, !src_is_for_mic);
// offset and length are derived from the array descriptor
__arr_data_offset_and_length(ap, m_vars[i].disp,
m_vars[i].size);
if (!is_arr_desc_contiguous(ap)) {
m_vars[i].flags.is_noncont_src = 1;
m_vars_extra[i].read_rng_src =
init_read_ranges_arr_desc(ap);
}
// all necessary information about length and offset is
// transferred in var descriptor. There is no need to send
// array descriptor to the target side.
m_vars[i].ptr = reinterpret_cast<void*>(ap->base);
}
else {
m_vars[i].size *= m_vars[i].count;
m_vars[i].disp = 0;
}
if (m_vars[i].direction.bits) {
// make sure that transfer size > 0
if (m_vars[i].size <= 0) {
LIBOFFLOAD_ERROR(c_zero_or_neg_transfer_size);
exit(1);
}
if (m_vars[i].flags.is_static) {
PtrData *ptr_data;
// find data associated with variable
if (!find_ptr_data(ptr_data,
m_vars[i].ptr,
m_vars[i].disp,
m_vars[i].size,
false, false)) {
return false;
}
if (ptr_data != 0) {
// offset to base from the beginning of the buffer
// memory
m_vars[i].offset =
(char*) m_vars[i].ptr -
(char*) ptr_data->cpu_addr.start();
}
else {
m_vars[i].flags.is_static = false;
if (m_vars[i].into == NULL) {
m_vars[i].flags.is_static_dstn = false;
}
}
m_vars_extra[i].src_data = ptr_data;
}
if (m_vars[i].direction.in &&
!m_vars[i].flags.is_static &&
!m_vars[i].flags.is_stack_buf) {
m_in_datalen += m_vars[i].size;
// for non-static target destination defined as CEAN
// expression we pass to target its size and dist
if (m_vars[i].into == NULL &&
m_vars_extra[i].type_src == c_cean_var) {
m_in_datalen += 2 * sizeof(uint64_t);
}
m_need_runfunction = true;
}
if (m_vars[i].direction.out &&
!m_vars[i].flags.is_static &&
!m_vars[i].flags.is_stack_buf) {
m_out_datalen += m_vars[i].size;
m_need_runfunction = true;
}
}
if (m_is_openmp && src_is_for_host &&
!m_vars[i].flags.is_device_ptr) {
if (m_vars[i].flags.is_static) {
PtrData *ptr_data = m_vars_extra[i].src_data;
// Static data is transferred either by omp target
// update construct which passes zeros for
// alloc_if and free_if or by always modifier.
// Implicit openmp reference is transfered also
// if its reference count is equal to 1
if (ptr_data &&
IS_OPENMP_IMPLICIT_OR_LINK(ptr_data->var_alloc_type)) {
if (m_vars[i].alloc_if) {
ptr_data->add_reference();
}
if (!m_vars[i].flags.always_copy &&
(m_vars[i].alloc_if || m_vars[i].free_if) &&
ptr_data->get_reference() != 1) {
m_vars[i].direction.bits = c_parameter_nocopy;
}
}
else if (
!m_vars[i].flags.always_copy &&
(m_vars[i].alloc_if || m_vars[i].free_if)) {
m_vars[i].direction.bits = c_parameter_nocopy;
}
}
else {
AutoData *auto_data;
if (m_vars[i].alloc_if) {
auto_data = m_device.insert_auto_data(
m_vars[i].ptr, m_vars[i].size);
auto_data->add_reference();
}
else {
// TODO: what should be done if var is not in
// the table?
auto_data = m_device.find_auto_data(
m_vars[i].ptr);
}
// For automatic variables data is transferred:
// - if always modifier is used OR
// - if alloc_if == 0 && free_if == 0 OR
// - if reference count is 1
if (!m_vars[i].flags.always_copy &&
(m_vars[i].alloc_if || m_vars[i].free_if) &&
auto_data != 0 &&
auto_data->get_reference() != 1) {
m_vars[i].direction.bits = c_parameter_nocopy;
}
// save data for later use
m_vars_extra[i].auto_data = auto_data;
}
}
break;
case c_dv:
if (m_vars[i].flags.use_device_ptr) {
setup_use_device_ptr(i);
break;
}
else if (m_vars[i].direction.bits ||
m_vars[i].alloc_if ||
m_vars[i].free_if) {
ArrDesc *dvp = static_cast<ArrDesc*>(m_vars[i].ptr);
// debug dump
__dv_desc_dump("IN/OUT", dvp);
// send dope vector contents excluding base
m_in_datalen += m_vars[i].size - sizeof(uint64_t);
m_need_runfunction = true;
}
break;
case c_string_ptr:
case c_string_ptr_ptr:
if ((m_vars[i].direction.bits ||
m_vars[i].alloc_if ||
m_vars[i].free_if) &&
m_vars[i].size == 0) {
m_vars[i].size = 1;
m_vars[i].count =
strlen(*static_cast<char**>(m_vars[i].ptr)) + 1;
}
/* fallthru */
case c_data_ptr:
case c_data_ptr_ptr:
if (m_vars[i].flags.is_stack_buf &&
!m_vars[i].direction.bits &&
m_vars[i].alloc_if) {
// this var_desc is for stack buffer
bool is_new;
if (!offload_stack_memory_manager(
stack_addr, entry_id,
m_vars[i].count, m_vars[i].align,
thread_specific_function_locals, &is_new)) {
return false;
}
if (is_new) {
m_compute_buffers.push_back(
m_stack_ptr_data->mic_buf);
m_device.m_persist_list.front().cpu_stack_addr =
static_cast<char*>(m_vars[i].ptr);
PersistData *new_el = &m_device.m_persist_list.front();
print_persistList_item(
"New element in persist list:",
new_el);
}
else {
m_vars[i].flags.sink_addr = 1;
m_in_datalen += sizeof(m_stack_ptr_data->mic_addr);
if (thread_specific_function_locals) {
m_stack_ptr_data = get_this_threads_mic_stack_addr(
stack_addr, entry_id,
thread_specific_function_locals);
}
}
m_vars[i].size = m_destroy_stack.size();
m_vars_extra[i].src_data = m_stack_ptr_data;
// need to add or remove references for stack buffer at target
if (is_new || m_destroy_stack.size()) {
m_need_runfunction = true;
}
break;
}
/* fallthru */
case c_cean_var_ptr:
case c_cean_var_ptr_ptr:
case c_dv_ptr:
if (m_vars[i].flags.is_non_cont_struct && src_is_for_host) {
NonContigDesc *desc =
static_cast<NonContigDesc*>(m_vars[i].ptr);
noncont_struct_dump(" ", "PTR", desc);
m_vars_extra[i].noncont_desc = desc;
m_vars[i].ptr = reinterpret_cast<void*>(desc->base);
m_vars[i].disp = 0;
}
else if (m_vars_extra[i].type_src == c_cean_var_ptr ||
m_vars_extra[i].type_src == c_cean_var_ptr_ptr) {
// array descriptor
const Arr_Desc *ap =
static_cast<const Arr_Desc*>(m_vars[i].ptr);
// debug dump
ARRAY_DESC_DUMP("", "IN/OUT", ap, 1, !src_is_for_mic);
// offset and length are derived from the array descriptor
__arr_data_offset_and_length(ap, m_vars[i].disp,
m_vars[i].size);
if (!is_arr_desc_contiguous(ap)) {
m_vars[i].flags.is_noncont_src = 1;
m_vars_extra[i].read_rng_src =
init_read_ranges_arr_desc(ap);
}
// all necessary information about length and offset is
// transferred in var descriptor. There is no need to send
// array descriptor to the target side.
m_vars[i].ptr = reinterpret_cast<void*>(ap->base);
}
else if (m_vars_extra[i].type_src == c_dv_ptr) {
// need to send DV to the device unless it is 'nocopy'
if (m_vars[i].direction.bits ||
m_vars[i].alloc_if ||
m_vars[i].free_if) {
ArrDesc *dvp = *static_cast<ArrDesc**>(m_vars[i].ptr);
// debug dump
__dv_desc_dump("IN/OUT", dvp);
// for use_device_ptr don't need to change
// OUT direction to IN direction
if (!m_vars[i].flags.use_device_ptr) {
m_vars[i].direction.bits = c_parameter_in;
}
}
// no displacement
m_vars[i].disp = 0;
}
else {
// For "use_device_ptr" if direction is "in" then need to
// find the associated device pointer and replace the host
// pointer with device pointer. Also save the host pointer
// to restore when "out" is encountered.
// For "out" find the host pointer associated with the
// device pointer and restore the host pointer
if (m_vars[i].flags.use_device_ptr && src_is_for_host) {
setup_use_device_ptr(i);
break;
}
// c_data_ptr or c_string_ptr
m_vars[i].size *= m_vars[i].count;
m_vars[i].disp = 0;
}
if (m_vars[i].direction.bits ||
m_vars[i].alloc_if ||
m_vars[i].free_if) {
PtrData *ptr_data;
// check that buffer length > 0
if (m_vars[i].alloc_if &&
m_vars[i].disp + m_vars[i].size <
(m_is_openmp ? 0 : 1)) {
LIBOFFLOAD_ERROR(c_zero_or_neg_ptr_len);
exit(1);
}
// base address
void *base = *static_cast<void**>(m_vars[i].ptr);
// allocate buffer if we have no INTO and don't need
// allocation for the ptr at target
if (src_is_for_mic) {
if (m_vars[i].flags.is_stack_buf) {
// for stack persistent objects ptr data is created
// by var_desc with number 0.
// Its ptr_data is stored at m_stack_ptr_data
ptr_data = m_stack_ptr_data;
}
else if (m_vars[i].alloc_if) {
if (m_vars[i].flags.preallocated) {
m_out_datalen += sizeof(void*);
m_need_runfunction = true;
break;
}
// add new entry
if (!alloc_ptr_data(
ptr_data,
reinterpret_cast<char *>(base) + alloc_disp,
(alloc_base != NULL) ?
alloc_disp : m_vars[i].disp,
(alloc_base != NULL) ?
alloc_size : m_vars[i].size,
alloc_disp,
(alloc_base != NULL) ?
0 : m_vars[i].align,
m_vars[i].flags.targetptr,
0,
m_vars[i].flags.pin)) {
return false;
}
if (m_vars[i].flags.targetptr) {
if (!init_mic_address(ptr_data)) {
return false;
}
*static_cast<void**>(m_vars[i].ptr) = base =
reinterpret_cast<void*>(ptr_data->mic_addr);
}
if (ptr_data->add_reference() == 0 &&
ptr_data->mic_buf != 0) {
// add buffer to the list of buffers that
// are passed to dispatch call
m_compute_buffers.push_back(
ptr_data->mic_buf);
}
else if (!m_vars[i].flags.pin &&
!m_vars[i].flags.preallocated) {
// will send buffer address to device
m_vars[i].flags.sink_addr = 1;
m_in_datalen += sizeof(ptr_data->mic_addr);
}
if (!m_vars[i].flags.pin &&
!ptr_data->is_static) {
// need to add reference for buffer
m_need_runfunction = true;
}
}
else {
bool error_if_not_found = true;
if (m_is_openmp) {
// For omp target update variable is ignored
// if it does not exist.
if (m_vars[i].flags.always_copy ||
(!m_vars[i].alloc_if &&
!m_vars[i].free_if)) {
error_if_not_found = false;
}
}
// use existing association from pointer table
if (!find_ptr_data(ptr_data,
base,
m_vars[i].disp,
m_vars[i].size,
m_vars[i].flags.targetptr,
error_if_not_found)) {
return false;
}
if (m_is_openmp) {
// make var nocopy if it does not exist
if (ptr_data == 0) {
m_vars[i].direction.bits =
c_parameter_nocopy;
}
}
if (ptr_data != 0) {
m_vars[i].flags.sink_addr = 1;
m_in_datalen += sizeof(ptr_data->mic_addr);
}
}
if (ptr_data != 0) {
if (ptr_data->alloc_disp != 0) {
m_vars[i].flags.alloc_disp = 1;
m_in_datalen += sizeof(alloc_disp);
}
if (m_vars[i].flags.sink_addr) {
// get buffers's address on the sink
if (!init_mic_address(ptr_data)) {
return false;
}
m_in_datalen += sizeof(ptr_data->mic_addr);
}
if (!m_vars[i].flags.pin &&
!ptr_data->is_static && m_vars[i].free_if) {
// need to decrement buffer reference on target
m_need_runfunction = true;
}
// offset to base from the beginning of the buffer
// memory
m_vars[i].offset = (char*) base -
(char*) ptr_data->cpu_addr.start();
// copy other pointer properties to var descriptor
m_vars[i].mic_offset = ptr_data->mic_offset;
m_vars[i].flags.is_static = ptr_data->is_static;
}
}
else {
if (!find_ptr_data(ptr_data,
base,
m_vars[i].disp,
m_vars[i].size,
false, false)) {
return false;
}
if (ptr_data) {
m_vars[i].offset =
(char*) base -
(char*) ptr_data->cpu_addr.start();
}
}
if (m_is_openmp) {
if (m_vars[i].flags.use_device_ptr) {
setup_use_device_ptr(i);
}
// for TO transfer of stack buffer's variable
if (src_is_for_host && m_vars[i].flags.is_stack_buf) {
AutoData *auto_data;
char *base = *static_cast<char**>(m_vars[i].ptr);
if (m_vars[i].alloc_if) {
auto_data =m_device.insert_auto_data(
base + m_vars[i].disp,
m_vars[i].size);
auto_data->add_reference();
}
else {
auto_data = m_device.find_auto_data(
base + m_vars[i].disp);
}
// save data for later use
m_vars_extra[i].auto_data = auto_data;
// For automatic variables
// data is transferred:
// - if always modifier is used OR
// - if alloc_if == 0 && free_if == 0 OR
// - if reference count is 1
if (!m_vars[i].flags.always_copy &&
(m_vars[i].alloc_if ||
m_vars[i].free_if) &&
auto_data != 0 &&
auto_data->get_reference() != 1) {
m_vars[i].direction.bits =
c_parameter_nocopy;
}
}
// for FROM transfer of global pointer variable
// FROM transfer of stack buffer's variable
// is treated at INTO branch
else if (src_is_for_mic &&
!m_vars[i].flags.is_stack_buf) {
// data is transferred only if
// alloc_if == 0 && free_if == 0
// or reference count is 1
if (!m_vars[i].flags.always_copy &&
(m_vars[i].alloc_if ||
m_vars[i].free_if) &&
ptr_data &&
ptr_data->get_reference() != 1)
{
m_vars[i].direction.bits =
c_parameter_nocopy;
}
}
}
// save pointer data
m_vars_extra[i].src_data = ptr_data;
}
break;
case c_func_ptr:
case c_func_ptr_ptr:
if (m_vars[i].direction.in) {
m_in_datalen += __offload_funcs.max_name_length();
}
if (m_vars[i].direction.out) {
m_out_datalen += __offload_funcs.max_name_length();
}
m_need_runfunction = true;
break;
case c_dv_data:
case c_dv_ptr_data:
case c_dv_data_slice:
case c_dv_ptr_data_slice:
ArrDesc *dvp;
if (m_vars[i].flags.is_non_cont_struct) {
NonContigDesc *desc =
static_cast<NonContigDesc*>(m_vars[i].ptr);
noncont_struct_dump(" ", "DV-DATA", desc);
dvp = reinterpret_cast<ArrDesc*>(desc->base);
}
else if (VAR_TYPE_IS_DV_DATA_SLICE(m_vars_extra[i].type_src)) {
const Arr_Desc *ap;
ap = static_cast<const Arr_Desc*>(m_vars[i].ptr);
dvp = (m_vars_extra[i].type_src == c_dv_data_slice) ?
reinterpret_cast<ArrDesc*>(ap->base) :
*reinterpret_cast<ArrDesc**>(ap->base);
}
else {
dvp = (m_vars_extra[i].type_src == c_dv_data) ?
static_cast<ArrDesc*>(m_vars[i].ptr) :
*static_cast<ArrDesc**>(m_vars[i].ptr);
}
// if allocatable dope vector isn't allocated don't
// transfer its data
if (!__dv_is_allocated(dvp)) {
m_vars[i].direction.bits = c_parameter_nocopy;
m_vars[i].alloc_if = 0;
m_vars[i].free_if = 0;
}
if (m_vars[i].direction.bits ||
m_vars[i].alloc_if ||
m_vars[i].free_if) {
const Arr_Desc *ap;
if (VAR_TYPE_IS_DV_DATA_SLICE(m_vars_extra[i].type_src)) {
ap = static_cast<const Arr_Desc*>(m_vars[i].ptr);
// debug dump
ARRAY_DESC_DUMP("", "IN/OUT", ap, 0, !src_is_for_mic);
}
if (!__dv_is_contiguous(dvp)) {
m_vars[i].flags.is_noncont_src = 1;
m_vars_extra[i].read_rng_src =
init_read_ranges_dv(dvp);
}
// size and displacement
if (VAR_TYPE_IS_DV_DATA_SLICE(m_vars_extra[i].type_src)) {
// offset and length are derived from the
// array descriptor
__arr_data_offset_and_length(ap,
m_vars[i].disp,
m_vars[i].size);
if (m_vars[i].direction.bits) {
if (!is_arr_desc_contiguous(ap)) {
if (m_vars[i].flags.is_noncont_src) {
LIBOFFLOAD_ERROR(c_slice_of_noncont_array);
return false;
}
m_vars[i].flags.is_noncont_src = 1;
m_vars_extra[i].read_rng_src =
init_read_ranges_arr_desc(ap);
}
}
}
else {
if (m_vars[i].flags.has_length) {
m_vars[i].size =
__dv_data_length(dvp, m_vars[i].count);
}
else {
m_vars[i].size = __dv_data_length(dvp);
}
m_vars[i].disp = 0;
}
// check that length >= 0
if (m_vars[i].alloc_if &&
(m_vars[i].disp + m_vars[i].size < 0)) {
LIBOFFLOAD_ERROR(c_zero_or_neg_ptr_len);
exit(1);
}
// base address
void *base = reinterpret_cast<void*>(dvp->Base);
PtrData *ptr_data;
// allocate buffer if we have no INTO and don't need
// allocation for the ptr at target
if (src_is_for_mic) {
if (m_vars[i].alloc_if) {
// add new entry
if (!alloc_ptr_data(
ptr_data,
reinterpret_cast<char *>(base) + alloc_disp,
(alloc_base != NULL) ?
alloc_disp : m_vars[i].disp,
(alloc_base != NULL) ?
alloc_size : m_vars[i].size,
alloc_disp,
(alloc_base != NULL) ?
0 : m_vars[i].align,
m_vars[i].flags.targetptr,
m_vars[i].flags.preallocated,
m_vars[i].flags.pin)) {
return false;
}
if (ptr_data->add_reference() == 0 &&
ptr_data->mic_buf != 0) {
// add buffer to the list of buffers
// that are passed to dispatch call
m_compute_buffers.push_back(
ptr_data->mic_buf);
}
else {
// will send buffer address to device
m_vars[i].flags.sink_addr = 1;
}
if (!ptr_data->is_static) {
// need to add reference for buffer
m_need_runfunction = true;
}
}
else {
bool error_if_not_found = true;
if (m_is_openmp) {
// For omp target update variable is ignored
// if it does not exist.
if (m_vars[i].flags.always_copy ||
(!m_vars[i].alloc_if &&
!m_vars[i].free_if)) {
error_if_not_found = false;
}
}
// use existing association from pointer table
if (!find_ptr_data(ptr_data,
base,
m_vars[i].disp,
m_vars[i].size,
m_vars[i].flags.targetptr,
error_if_not_found)) {
return false;
}
if (m_is_openmp) {
// make var nocopy if it does not exist
if (ptr_data == 0) {
m_vars[i].direction.bits =
c_parameter_nocopy;
}
}
if (ptr_data != 0) {
// need to update base in dope vector on device
m_vars[i].flags.sink_addr = 1;
}
}
if (ptr_data != 0) {
if (m_is_openmp) {
// data is transferred if
// - if always modifier is used OR
// - if alloc_if == 0 && free_if == 0 OR
// - if reference count is 1
if (!m_vars[i].flags.always_copy &&
(m_vars[i].alloc_if ||
m_vars[i].free_if) &&
ptr_data->get_reference() != 1) {
m_vars[i].direction.bits =
c_parameter_nocopy;
}
}
if (ptr_data->alloc_disp != 0) {
m_vars[i].flags.alloc_disp = 1;
m_in_datalen += sizeof(alloc_disp);
}
if (m_vars[i].flags.sink_addr) {
// get buffers's address on the sink
if (!init_mic_address(ptr_data)) {
return false;
}
m_in_datalen += sizeof(ptr_data->mic_addr);
}
if (!ptr_data->is_static && m_vars[i].free_if) {
// need to decrement buffer reference on target
m_need_runfunction = true;
}
// offset to base from the beginning of the buffer
// memory
m_vars[i].offset =
(char*) base -
(char*) ptr_data->cpu_addr.start();
// copy other pointer properties to var descriptor
m_vars[i].mic_offset = ptr_data->mic_offset;
m_vars[i].flags.is_static = ptr_data->is_static;
}
}
else { // !src_is_for_mic
if (!find_ptr_data(ptr_data,
base,
m_vars[i].disp,
m_vars[i].size,
false, false)) {
return false;
}
m_vars[i].offset = !ptr_data ? 0 :
(char*) base -
(char*) ptr_data->cpu_addr.start();
}
// save pointer data
m_vars_extra[i].src_data = ptr_data;
}
break;
default:
LIBOFFLOAD_ERROR(c_unknown_var_type, m_vars_extra[i].type_src);
LIBOFFLOAD_ABORT;
}
if (m_vars_extra[i].type_src == c_data_ptr_array) {
continue;
}
if (src_is_for_mic && m_vars[i].flags.is_stack_buf) {
if (this_threads_cpu_stack_addr == 0) {
this_threads_cpu_stack_addr =
get_this_threads_cpu_stack_addr(
stack_addr, entry_id, thread_specific_function_locals);
}
m_vars[i].offset = static_cast<char*>
(m_vars[i].ptr) -
this_threads_cpu_stack_addr;
}
// if source is used at CPU save its offset and disp
if (m_vars[i].into == NULL || m_vars[i].direction.in) {
m_vars_extra[i].cpu_offset = m_vars[i].offset;
m_vars_extra[i].cpu_disp = m_vars[i].disp;
}
// If "into" is define we need to do the similar work for it
if (!m_vars[i].into) {
continue;
}
int64_t into_disp =0, into_offset = 0;
switch (m_vars_extra[i].type_dst) {
case c_data_ptr_array:
break;
case c_data:
case c_void_ptr:
case c_void_ptr_ptr:
case c_cean_var: {
int64_t size = m_vars[i].size;
if (m_vars[i].flags.is_non_cont_struct && src_is_for_mic) {
NonContigDesc *desc =
static_cast<NonContigDesc*>(m_vars[i].into);
noncont_struct_dump("", "INTO DATA", desc);
m_vars_extra[i].noncont_desc = desc;
m_vars[i].into = reinterpret_cast<void*>(desc->base);
size = get_noncont_struct_size(desc);
into_disp = 0;
}
else if (m_vars_extra[i].type_dst == c_cean_var) {
// array descriptor
const Arr_Desc *ap =
static_cast<const Arr_Desc*>(m_vars[i].into);
// debug dump
ARRAY_DESC_DUMP(" ", "INTO", ap, 0, src_is_for_mic);
// offset and length are derived from the array descriptor
__arr_data_offset_and_length(ap, into_disp, size);
if (!is_arr_desc_contiguous(ap)) {
m_vars[i].flags.is_noncont_dst = 1;
m_vars_extra[i].read_rng_dst =
init_read_ranges_arr_desc(ap);
if (!cean_ranges_match(
m_vars_extra[i].read_rng_src,
m_vars_extra[i].read_rng_dst)) {
LIBOFFLOAD_ERROR(c_ranges_dont_match);
exit(1);
}
}
m_vars[i].into = reinterpret_cast<void*>(ap->base);
}
int64_t size_src = m_vars_extra[i].read_rng_src &&
!m_vars[i].flags.is_non_cont_struct ?
cean_get_transf_size(m_vars_extra[i].read_rng_src) :
m_vars[i].size;
int64_t size_dst = m_vars_extra[i].read_rng_dst ?
cean_get_transf_size(m_vars_extra[i].read_rng_dst) :
size;
// It's supposed that "into" size must be not less
// than src size
if (size_src > size_dst) {
LIBOFFLOAD_ERROR(c_different_src_and_dstn_sizes,
size_src, size_dst);
exit(1);
}
if (m_vars[i].direction.bits) {
if (m_vars[i].flags.is_static_dstn) {
PtrData *ptr_data;
// find data associated with variable
if (!find_ptr_data(ptr_data, m_vars[i].into,
into_disp, size, false, false)) {
return false;
}
if (ptr_data != 0) {
// offset to base from the beginning of the buffer
// memory
into_offset =
(char*) m_vars[i].into -
(char*) ptr_data->cpu_addr.start();
}
else {
m_vars[i].flags.is_static_dstn = false;
}
m_vars_extra[i].dst_data = ptr_data;
}
}
if (m_vars[i].direction.in &&
!m_vars[i].flags.is_static_dstn) {
m_in_datalen += m_vars[i].size;
// for non-static target destination defined as CEAN
// expression we pass to target its size and dist
if (m_vars_extra[i].type_dst == c_cean_var) {
m_in_datalen += 2 * sizeof(uint64_t);
}
m_need_runfunction = true;
}
if (m_is_openmp && src_is_for_mic) {
if (m_vars[i].flags.is_static_dstn) {
// Static data is transferred either by omp target
// update construct which passes zeros for
// alloc_if and free_if or by always modifier.
if (!m_vars[i].flags.always_copy &&
(m_vars[i].alloc_if || m_vars[i].free_if)) {
m_vars[i].direction.bits = c_parameter_nocopy;
}
}
else {
AutoData *auto_data;
if (m_vars[i].alloc_if) {
auto_data = m_device.insert_auto_data(
m_vars[i].into, size_dst);
auto_data->add_reference();
}
else {
// TODO: what should be done if var is not in
// the table?
auto_data = m_device.find_auto_data(
m_vars[i].into);
}
// For automatic variables data is transferred:
// - if always modifier is used OR
// - if alloc_if == 0 && free_if == 0 OR
// - if reference count is 1
if (!m_vars[i].flags.always_copy &&
(m_vars[i].alloc_if || m_vars[i].free_if) &&
(auto_data == 0 ||
auto_data->get_reference() != 1)) {
m_vars[i].direction.bits = c_parameter_nocopy;
}
// save data for later use
m_vars_extra[i].auto_data = auto_data;
}
}
break;
}
case c_dv:
if (m_vars[i].direction.bits ||
m_vars[i].alloc_if ||
m_vars[i].free_if) {
ArrDesc *dvp = static_cast<ArrDesc*>(m_vars[i].into);
// debug dump
__dv_desc_dump("INTO", dvp);
// send dope vector contents excluding base
m_in_datalen += m_vars[i].size - sizeof(uint64_t);
m_need_runfunction = true;
}
break;
case c_string_ptr:
case c_data_ptr:
case c_string_ptr_ptr:
case c_data_ptr_ptr:
case c_cean_var_ptr:
case c_cean_var_ptr_ptr:
case c_dv_ptr: {
int64_t size = m_vars[i].size;
if (m_vars_extra[i].type_dst == c_cean_var_ptr ||
m_vars_extra[i].type_dst == c_cean_var_ptr_ptr) {
// array descriptor
const Arr_Desc *ap =
static_cast<const Arr_Desc*>(m_vars[i].into);
// debug dump
ARRAY_DESC_DUMP(" ", "INTO", ap, 1, src_is_for_mic);
// offset and length are derived from the array descriptor
__arr_data_offset_and_length(ap, into_disp, size);
if (!is_arr_desc_contiguous(ap)) {
m_vars[i].flags.is_noncont_src = 1;
m_vars_extra[i].read_rng_dst =
init_read_ranges_arr_desc(ap);
if (!cean_ranges_match(
m_vars_extra[i].read_rng_src,
m_vars_extra[i].read_rng_dst)) {
LIBOFFLOAD_ERROR(c_ranges_dont_match);
}
}
m_vars[i].into = reinterpret_cast<char**>(ap->base);
}
else if (m_vars_extra[i].type_dst == c_dv_ptr) {
// need to send DV to the device unless it is 'nocopy'
if (m_vars[i].direction.bits ||
m_vars[i].alloc_if ||
m_vars[i].free_if) {
ArrDesc *dvp = *static_cast<ArrDesc**>(m_vars[i].into);
// debug dump
__dv_desc_dump("INTO", dvp);
m_vars[i].direction.bits = c_parameter_in;
}
}
int64_t size_src = m_vars_extra[i].read_rng_src &&
!m_vars[i].flags.is_non_cont_struct ?
cean_get_transf_size(m_vars_extra[i].read_rng_src) :
m_vars[i].size;
int64_t size_dst = m_vars_extra[i].read_rng_dst ?
cean_get_transf_size(m_vars_extra[i].read_rng_dst) :
size;
// It's supposed that "into" size must be not less than
// src size
if (size_src > size_dst) {
LIBOFFLOAD_ERROR(c_different_src_and_dstn_sizes,
size_src, size_dst);
exit(1);
}
if (m_vars[i].direction.bits) {
PtrData *ptr_data;
// base address
void *base = *static_cast<void**>(m_vars[i].into);
if (m_vars[i].direction.in) {
// allocate buffer
if (m_vars[i].flags.is_stack_buf) {
// for stack persistent objects ptr data is created
// by var_desc with number 0.
// Its ptr_data is stored at m_stack_ptr_data
ptr_data = m_stack_ptr_data;
}
else if (m_vars[i].alloc_if) {
if (m_vars[i].flags.preallocated) {
m_out_datalen += sizeof(void*);
m_need_runfunction = true;
break;
}
// add new entry
if (!alloc_ptr_data(
ptr_data,
reinterpret_cast<char *>(base) + alloc_disp,
(alloc_base != NULL) ?
alloc_disp : into_disp,
(alloc_base != NULL) ?
alloc_size : size,
alloc_disp,
(alloc_base != NULL) ?
0 : m_vars[i].align,
m_vars[i].flags.targetptr,
m_vars[i].flags.preallocated,
m_vars[i].flags.pin)) {
return false;
}
if (m_vars[i].flags.targetptr) {
if (!init_mic_address(ptr_data)) {
return false;
}
*static_cast<void**>(m_vars[i].into) = base =
reinterpret_cast<void*>(ptr_data->mic_addr);
}
if (ptr_data->add_reference() == 0 &&
ptr_data->mic_buf != 0) {
// add buffer to the list of buffers that
// are passed to dispatch call
m_compute_buffers.push_back(
ptr_data->mic_buf);
}
else {
// will send buffer address to device
m_vars[i].flags.sink_addr = 1;
}
if (!ptr_data->is_static) {
// need to add reference for buffer
m_need_runfunction = true;
}
}
else {
// use existing association from pointer table
if (!find_ptr_data(ptr_data, base, into_disp,
size, m_vars[i].flags.targetptr, true)) {
return false;
}
m_vars[i].flags.sink_addr = 1;
}
if (ptr_data->alloc_disp != 0) {
m_vars[i].flags.alloc_disp = 1;
m_in_datalen += sizeof(alloc_disp);
}
if (m_vars[i].flags.sink_addr) {
// get buffers's address on the sink
if (!init_mic_address(ptr_data)) {
return false;
}
m_in_datalen += sizeof(ptr_data->mic_addr);
}
if (!ptr_data->is_static && m_vars[i].free_if) {
// need to decrement buffer reference on target
m_need_runfunction = true;
}
// copy other pointer properties to var descriptor
m_vars[i].mic_offset = ptr_data->mic_offset;
m_vars[i].flags.is_static_dstn = ptr_data->is_static;
}
else {
if (!find_ptr_data(ptr_data,
base,
into_disp,
m_vars[i].size,
false, false)) {
return false;
}
}
if (ptr_data) {
into_offset = ptr_data ?
(char*) base -
(char*) ptr_data->cpu_addr.start() :
0;
}
if (m_is_openmp) {
// for FROM transfer of stack buffer's variable
if (src_is_for_mic && m_vars[i].flags.is_stack_buf) {
AutoData *auto_data;
char *base = *static_cast<char**>(m_vars[i].into);
if (m_vars[i].alloc_if) {
auto_data =m_device.insert_auto_data(
base + into_disp,
size);
auto_data->add_reference();
}
else {
auto_data = m_device.find_auto_data(
base + into_disp);
}
// save data for later use
m_vars_extra[i].auto_data = auto_data;
// For automatic variables
// data is transferred:
// - if always modifier is used OR
// - if alloc_if == 0 && free_if == 0 OR
// - if reference count is 1
if (!m_vars[i].flags.always_copy &&
(m_vars[i].alloc_if ||
m_vars[i].free_if) &&
auto_data != 0 &&
auto_data->get_reference() != 1) {
m_vars[i].direction.bits =
c_parameter_nocopy;
}
}
}
// save pointer data
m_vars_extra[i].dst_data = ptr_data;
}
break;
}
case c_func_ptr:
case c_func_ptr_ptr:
break;
case c_dv_data:
case c_dv_ptr_data:
case c_dv_data_slice:
case c_dv_ptr_data_slice:
if (m_vars[i].direction.bits ||
m_vars[i].alloc_if ||
m_vars[i].free_if) {
const Arr_Desc *ap;
ArrDesc *dvp;
PtrData *ptr_data;
int64_t disp;
int64_t size;
if (VAR_TYPE_IS_DV_DATA_SLICE(m_vars_extra[i].type_dst)) {
ap = static_cast<const Arr_Desc*>(m_vars[i].into);
// debug dump
ARRAY_DESC_DUMP(" ", "INTO", ap, 0, src_is_for_mic);
dvp = (m_vars_extra[i].type_dst == c_dv_data_slice) ?
reinterpret_cast<ArrDesc*>(ap->base) :
*reinterpret_cast<ArrDesc**>(ap->base);
}
else {
dvp = (m_vars_extra[i].type_dst == c_dv_data) ?
static_cast<ArrDesc*>(m_vars[i].into) :
*static_cast<ArrDesc**>(m_vars[i].into);
}
if (!__dv_is_contiguous(dvp)) {
m_vars[i].flags.is_noncont_dst = 1;
m_vars_extra[i].read_rng_dst =
init_read_ranges_dv(dvp);
}
// size and displacement
if (VAR_TYPE_IS_DV_DATA_SLICE(m_vars_extra[i].type_dst)) {
// offset and length are derived from the array
// descriptor
__arr_data_offset_and_length(ap, into_disp, size);
if (m_vars[i].direction.bits) {
if (!is_arr_desc_contiguous(ap)) {
if (m_vars[i].flags.is_noncont_dst) {
LIBOFFLOAD_ERROR(c_slice_of_noncont_array);
return false;
}
m_vars[i].flags.is_noncont_dst = 1;
m_vars_extra[i].read_rng_dst =
init_read_ranges_arr_desc(ap);
if (!cean_ranges_match(
m_vars_extra[i].read_rng_src,
m_vars_extra[i].read_rng_dst)) {
LIBOFFLOAD_ERROR(c_ranges_dont_match);
}
}
}
}
else {
if (m_vars[i].flags.has_length) {
size = __dv_data_length(dvp, m_vars[i].count);
}
else {
size = __dv_data_length(dvp);
}
disp = 0;
}
int64_t size_src =
m_vars_extra[i].read_rng_src &&
(!m_vars[i].flags.is_non_cont_struct ||
src_is_for_mic) ?
cean_get_transf_size(m_vars_extra[i].read_rng_src) :
m_vars[i].size;
int64_t size_dst =
m_vars_extra[i].read_rng_dst ?
cean_get_transf_size(m_vars_extra[i].read_rng_dst) :
size;
// It's supposed that "into" size must be not less
// than src size
if (size_src > size_dst) {
LIBOFFLOAD_ERROR(c_different_src_and_dstn_sizes,
size_src, size_dst);
exit(1);
}
// base address
void *base = reinterpret_cast<void*>(dvp->Base);
// allocate buffer
if (m_vars[i].direction.in) {
if (m_vars[i].alloc_if) {
// add new entry
if (!alloc_ptr_data(
ptr_data,
reinterpret_cast<char *>(base) + alloc_disp,
(alloc_base != NULL) ?
alloc_disp : into_disp,
(alloc_base != NULL) ?
alloc_size : size,
alloc_disp,
(alloc_base != NULL) ?
0 : m_vars[i].align,
m_vars[i].flags.targetptr,
m_vars[i].flags.preallocated,
m_vars[i].flags.pin)) {
return false;
}
if (ptr_data->add_reference() == 0 &&
ptr_data->mic_buf !=0) {
// add buffer to the list of buffers
// that are passed to dispatch call
m_compute_buffers.push_back(
ptr_data->mic_buf);
}
else {
// will send buffer address to device
m_vars[i].flags.sink_addr = 1;
}
if (!ptr_data->is_static) {
// need to add reference for buffer
m_need_runfunction = true;
}
}
else {
// use existing association from pointer table
if (!find_ptr_data(ptr_data, base, into_disp,
size, m_vars[i].flags.targetptr, true)) {
return false;
}
// need to update base in dope vector on device
m_vars[i].flags.sink_addr = 1;
}
if (ptr_data->alloc_disp != 0) {
m_vars[i].flags.alloc_disp = 1;
m_in_datalen += sizeof(alloc_disp);
}
if (m_vars[i].flags.sink_addr) {
// get buffers's address on the sink
if (!init_mic_address(ptr_data)) {
return false;
}
m_in_datalen += sizeof(ptr_data->mic_addr);
}
if (!ptr_data->is_static && m_vars[i].free_if) {
// need to decrement buffer reference on target
m_need_runfunction = true;
}
// offset to base from the beginning of the buffer
// memory
into_offset =
(char*) base - (char*) ptr_data->cpu_addr.start();
// copy other pointer properties to var descriptor
m_vars[i].mic_offset = ptr_data->mic_offset;
m_vars[i].flags.is_static_dstn = ptr_data->is_static;
}
else { // src_is_for_mic
if (!find_ptr_data(ptr_data,
base,
into_disp,
size,
false, false)) {
return false;
}
into_offset = !ptr_data ?
0 :
(char*) base - (char*) ptr_data->cpu_addr.start();
}
// save pointer data
m_vars_extra[i].dst_data = ptr_data;
}
break;
default:
LIBOFFLOAD_ERROR(c_unknown_var_type, m_vars_extra[i].type_src);
LIBOFFLOAD_ABORT;
}
// if into is used at CPU save its offset and disp
if (m_vars[i].direction.out) {
m_vars_extra[i].cpu_offset = into_offset;
m_vars_extra[i].cpu_disp = into_disp;
}
else {
if (m_vars[i].flags.is_stack_buf) {
if (this_threads_cpu_stack_addr == 0) {
this_threads_cpu_stack_addr =
get_this_threads_cpu_stack_addr(
stack_addr, entry_id,
thread_specific_function_locals);
}
into_offset = static_cast<char*>
(m_vars[i].into) -
this_threads_cpu_stack_addr;
}
m_vars[i].offset = into_offset;
m_vars[i].disp = into_disp;
}
}
return true;
}
bool OffloadDescriptor::setup_misc_data(const char *name)
{
OffloadTimer timer(get_timer_data(), c_offload_host_setup_misc_data);
// we can skip run functon call together with wait if offloaded
// region is empty and there is no user defined non-pointer IN/OUT data
if (m_need_runfunction) {
// variable descriptors are sent as input data
m_in_datalen += m_vars_total * sizeof(VarDesc);
// timer data is sent as a part of the output data
m_out_datalen += OFFLOAD_TIMER_DATALEN();
// max from input data and output data length
uint64_t data_len = m_in_datalen > m_out_datalen ? m_in_datalen :
m_out_datalen;
// Misc data has the following layout
// <Function Descriptor>
// <Function Name>
// <In/Out Data> (optional)
//
// We can transfer copyin/copyout data in misc/return data which can
// be passed to run function call if its size does not exceed
// COI_PIPELINE_MAX_IN_MISC_DATA_LEN. Otherwise we have to allocate
// buffer for it.
m_func_desc_size = sizeof(FunctionDescriptor) + strlen(name) + 1;
m_func_desc_size = (m_func_desc_size + 7) & ~7;
int misc_data_offset = 0;
int misc_data_size = 0;
if (data_len > 0) {
if (m_func_desc_size +
m_in_datalen <= COI_PIPELINE_MAX_IN_MISC_DATA_LEN &&
m_out_datalen <= COI_PIPELINE_MAX_IN_MISC_DATA_LEN) {
// use misc/return data for copyin/copyout
misc_data_offset = m_func_desc_size;
misc_data_size = data_len;
}
else {
OffloadTimer timer_buf(get_timer_data(),
c_offload_host_alloc_data_buffer);
// send/receive data using buffer
COIRESULT res = COI::BufferCreate(data_len,
COI_BUFFER_OPENCL,
0, 0,
1, &m_device.get_process(),
&m_inout_buf);
if (res != COI_SUCCESS) {
if (m_status != 0) {
m_status->result = translate_coi_error(res);
return false;
}
report_coi_error(c_buf_create, res);
}
m_compute_buffers.push_back(m_inout_buf);
m_destroy_buffers.push_back(m_inout_buf);
}
}
// initialize function descriptor
m_func_desc = (FunctionDescriptor*) malloc(m_func_desc_size +
misc_data_size);
if (m_func_desc == NULL)
LIBOFFLOAD_ERROR(c_malloc);
m_func_desc->console_enabled = console_enabled;
m_func_desc->timer_enabled = offload_report_enabled &&
(timer_enabled || offload_report_level);
m_func_desc->offload_report_level = offload_report_enabled ?
offload_report_level : 0;
m_func_desc->offload_number = GET_OFFLOAD_NUMBER(get_timer_data());
m_func_desc->in_datalen = m_in_datalen;
m_func_desc->out_datalen = m_out_datalen;
m_func_desc->vars_num = m_vars_total;
m_func_desc->data_offset = misc_data_offset;
// append entry name
strcpy(m_func_desc->data, name);
}
return true;
}
void OffloadDescriptor::setup_omp_async_info()
{
OFFLOAD_TRACE(2, "setup_omp_async_info\n");
OmpAsyncLastEventType event_type = m_need_runfunction ?
c_last_runfunc : c_last_write;
int last_in = m_need_runfunction ? 0 : -1;
int i;
for (i = m_vars_total - 1; i >=0; i--) {
bool src_is_target = (m_vars[i].direction.out || !m_vars[i].into);
int var_type = src_is_target ? m_vars_extra[i].type_src :
m_vars_extra[i].type_dst;
bool target_is_static = src_is_target ? m_vars[i].flags.is_static :
m_vars[i].flags.is_static_dstn;
switch (var_type) {
case c_data:
case c_void_ptr:
case c_cean_var:
if (m_vars[i].direction.out && target_is_static) {
event_type = c_last_read;
}
else if (last_in < 0 && m_vars[i].direction.in &&
target_is_static) {
last_in = i;
}
break;
case c_string_ptr:
case c_data_ptr:
case c_string_ptr_ptr:
case c_data_ptr_ptr:
case c_cean_var_ptr:
case c_cean_var_ptr_ptr:
case c_dv_ptr:
case c_dv_data:
case c_dv_ptr_data:
case c_dv_data_slice:
case c_dv_ptr_data_slice:
if (m_vars[i].direction.out) {
event_type = c_last_read;
}
else if (last_in < 0 && m_vars[i].direction.in) {
last_in = i;
}
break;
default:
break;
}
if (event_type == c_last_read) {
break;
}
}
if (event_type == c_last_read) {
m_vars_extra[i].omp_last_event_type = c_last_read;
}
else if (event_type == c_last_write) {
m_vars_extra[last_in].omp_last_event_type = c_last_write;
}
m_omp_async_last_event_type = event_type;
OFFLOAD_TRACE(2, "setup_omp_async_info: event_type=%d\n",
m_omp_async_last_event_type);
}
extern "C" {
void offload_proxy_task_completed_ooo(
COIEVENT e,
const COIRESULT r,
const void *info
)
{
task_completion_callback ((void *) info);
}
// Callback function for asynchronous offloads
void offload_complete_task(
COIEVENT e,
const COIRESULT r,
const void *info
)
{
Stream *stream;
OffloadDescriptor *task = const_cast<OffloadDescriptor*>(
reinterpret_cast<const OffloadDescriptor*>(info));
uint32_t events_remained;
lock_complete.lock();
if (!offload_descr_map[task]) {
lock_complete.unlock();
return;
}
#ifndef TARGET_WINNT
events_remained = __sync_sub_and_fetch(&task->m_event_count, 1);
#else // TARGET_WINNT
events_remained = _InterlockedDecrement(&task->m_event_count);
#endif // TARGET_WINNT
// Waiting for the last event
if (events_remained != 0) {
lock_complete.unlock();
return;
}
// Callback could be called when execution at host is completed.
// Do nothing as engine data is destructed
if (!task->get_device().get_ready()) {
lock_complete.unlock();
return;
}
void * signal = task->get_signal();
_Offload_stream stream_handle = task->get_stream();
OFFLOAD_TRACE(2, "Call function offload_complete_task(%p)\n", info);
// Completed offload has a signal
if (task->m_has_signal) {
if (!offload_descr_map[task]) {
lock_complete.unlock();
return;
}
task->get_device().complete_signaled_ofld(signal);
// Asynchronous offload can have both signal and stream. Need to
// clean stream if any.
stream_handle = task->get_stream();
if (stream_handle != -1) {
stream = Stream::find_stream(stream_handle, false);
if (stream && stream->get_last_offload() == task) {
stream->set_last_offload(NULL);
}
}
offload_descr_map[task] = false;
lock_complete.unlock();
if (task->offload_finish(0)) { //arg is 0 for is_traceback
task->cleanup();
}
delete task;
}
// Asynchronous by stream
else {
if (stream_handle != 0) {
stream = Stream::find_stream(stream_handle, false);
// the stream was not created or was destroyed
if (!stream) {
LIBOFFLOAD_ERROR(c_offload_no_stream,
task->get_device().get_logical_index());
LIBOFFLOAD_ABORT;
}
if (!offload_descr_map[task]) {
lock_complete.unlock();
return;
}
if (task == stream->get_last_offload()) {
stream->set_last_offload(NULL);
}
// if the offload has both signal and stream we will complete
// it as it has the signal. So we don't need to mark signal
// as completed.
offload_descr_map[task] = false;
lock_complete.unlock();
if (task->offload_finish(0)) { //arg is 0 for is_traceback
task->cleanup();
}
delete task;
}
}
}
}
void OffloadDescriptor::register_omp_event_call_back(
const COIEVENT *event,
const void *info)
{
register_event_call_back(&offload_proxy_task_completed_ooo, event, info);
}
void OffloadDescriptor::register_event_call_back(
void (*func)(COIEVENT, const COIRESULT, const void*),
const COIEVENT *event,
const void *info)
{
OFFLOAD_TRACE(2, "register_event_call_back(event=%p, info=%p)\n",
event, info);
if (COI::EventRegisterCallback) {
COI::EventRegisterCallback(
*event,
func,
info, 0);
OFFLOAD_TRACE(2,
"COI::EventRegisterCallback found; callback registered\n");
}
}
bool OffloadDescriptor::wait_dependencies(
const void **waits,
int num_waits,
_Offload_stream handle
)
{
OffloadTimer timer(get_timer_data(), c_offload_host_wait_deps);
bool ret = true;
OffloadDescriptor *task;
void * signal;
if (num_waits == 0) {
// Prepare in dependencies for stream
get_stream_in_dependencies(m_num_in_dependencies,m_p_in_dependencies);
return true;
}
// wait for streams
if (num_waits == -1) {
Stream * stream;
// some specific stream of the device
if (handle != 0) {
lock_complete.lock();
stream = Stream::find_stream(handle, false);
// the stream was not created or was destroyed
if (!stream) {
LIBOFFLOAD_ERROR(c_offload_no_stream, m_device.get_logical_index());
LIBOFFLOAD_ABORT;
}
task = stream->get_last_offload();
// offload was completed by previous offload_wait pragma
// or wait clause
if (!offload_descr_map[task]) {
lock_complete.unlock();
return true;
}
stream->set_last_offload(NULL);
if (task->m_has_signal) {
signal = task->get_signal();
if (m_device.find_signal(signal, false) == task) {
m_device.complete_signaled_ofld(signal);
}
}
offload_descr_map[task] = false;
lock_complete.unlock();
if (!task->offload_finish(0)) { //arg is 0 for is_traceback
ret = false;
}
task->cleanup();
delete task;
}
// all streams of the device or over all devices
else {
StreamMap stream_map = Stream::all_streams;
for (StreamMap::iterator it = stream_map.begin();
it != stream_map.end(); it++) {
Stream * stream = it->second;
if (!m_wait_all_devices &&
stream->get_device() != m_device.get_logical_index()) {
continue;
}
lock_complete.lock();
// get associated async task
OffloadDescriptor *task = stream->get_last_offload();
// offload was completed by offload_wait pragma or wait clause
if (!offload_descr_map[task]) {
lock_complete.unlock();
continue;
}
if (task->m_has_signal) {
signal = task->get_signal();
if (task->get_device().find_signal(signal, false) ==
task) {
task->get_device().complete_signaled_ofld(signal);
}
}
stream->set_last_offload(NULL);
offload_descr_map[task] = false;
lock_complete.unlock();
if (!task->offload_finish(0)) { //arg is 0 for is_traceback
ret = false;
}
task->cleanup();
delete task;
}
// no uncompleted streams
return true;
}
}
else {
// If offload is asynchronous we will not really wait for signals.
// We will collect all waited events into m_p_in_dependencies vector
// to be used in future calls to COI::Copy... API.
if (!__offload_always_wait && (m_has_signal || (get_stream() > 0))) {
uint64_t num_in_dep = 0,
num_in_dep_prev = 0;
COIEVENT *p_in_dep = NULL;
_Offload_stream stream_handle = get_stream();
Stream *stream;
bool stream_need_connection = stream_handle > 0;
if (stream_need_connection) {
stream = Stream::find_stream(stream_handle, false);
// check previous offload with the stream_handle
// to be noncompleted
if (!stream) {
stream_need_connection = false;
}
}
for (int i = 0; i < num_waits; i++) {
task = m_device.find_signal(waits[i], false);
if (task == 0) {
LIBOFFLOAD_ERROR(c_offload1, m_device.get_logical_index(),
waits[i]);
LIBOFFLOAD_ABORT;
}
else if (task == SIGNAL_HAS_COMPLETED) {
continue;
}
if (stream_need_connection &&
stream->get_last_offload() == task) {
stream_need_connection = false;
}
if (!task->m_num_in_dependencies) {
continue;
}
num_in_dep += task->m_num_in_dependencies;
p_in_dep = (COIEVENT*)realloc(p_in_dep,
sizeof(COIEVENT) * num_in_dep);
if (p_in_dep == NULL)
LIBOFFLOAD_ERROR(c_malloc);
memcpy(p_in_dep + num_in_dep_prev, task->m_p_in_dependencies,
task->m_num_in_dependencies * sizeof(COIEVENT));
num_in_dep_prev = num_in_dep;
}
if (stream_need_connection) {
task = stream->get_last_offload();
if (task) {
num_in_dep += task->m_num_in_dependencies;
p_in_dep = (COIEVENT*)realloc(p_in_dep,
sizeof(COIEVENT) * num_in_dep);
if (p_in_dep == NULL)
LIBOFFLOAD_ERROR(c_malloc);
memcpy(p_in_dep + num_in_dep_prev,
task->m_p_in_dependencies,
task->m_num_in_dependencies * sizeof(COIEVENT));
num_in_dep_prev = num_in_dep;
}
}
m_num_in_dependencies = num_in_dep ? num_in_dep :
m_num_in_dependencies;
m_p_in_dependencies = num_in_dep ? p_in_dep : m_p_in_dependencies;
}
// wait and do offload_finish for serial offload
else {
for (int i = 0; i < num_waits; i++) {
_Offload_stream stream_handle;
Stream *stream;
lock_complete.lock();
task = m_device.find_signal(waits[i], false);
if (task == 0) {
LIBOFFLOAD_ERROR(c_offload1, m_device.get_logical_index(),
waits[i]);
LIBOFFLOAD_ABORT;
}
else if (!offload_descr_map[task]) {
lock_complete.unlock();
continue;
}
// Need to mark signal as completed to prevent run condition
// with the call to "offload_complete_task" for the same
// signal.
m_device.complete_signaled_ofld(waits[i]);
// Asynchronous offload can have both signal and stream.
// Need to clean stream if any.
stream_handle = task->m_stream;
if (stream_handle != -1) {
stream = Stream::find_stream(stream_handle, false);
if (stream && stream->get_last_offload() == task) {
stream->set_last_offload(NULL);
}
}
offload_descr_map[task] = false;
lock_complete.unlock();
if (!task->offload_finish(0)) { //arg is 0 for is_traceback
ret = false;
}
task->cleanup();
delete task;
}
}
}
return ret;
}
bool OffloadDescriptor::offload_wrap(
const char *name,
bool is_empty,
VarDesc *vars,
VarDesc2 *vars2,
int vars_total,
const void **waits,
int num_waits,
const void **signal,
int entry_id,
const void *stack_addr,
OffloadFlags offload_flags
)
{
OffloadWaitKind wait_kind = c_offload_wait_signal;
bool is_traceback = offload_flags.bits.fortran_traceback;
// define kind of wait if any;
// there can be one of the following kind:
// 1. c_offload_wait_signal for "offload_wait wait(signal)"
// 2. c_offload_wait_stream for "offload_wait stream(stream)"
// 3. c_offload_wait_all_streams for "offload_wait stream(0)"
if (num_waits == -1) {
wait_kind = (m_stream == 0) ?
c_offload_wait_all_streams :
c_offload_wait_stream;
}
char buf[35];
const char *stream_str;
if (m_stream == no_stream || num_waits ==-1) {
stream_str = "none";
}
else if (m_stream == 0) {
stream_str = "all";
}
else {
sprintf(buf, "%#llx", m_stream);
stream_str = buf;
}
if (m_has_signal) {
OFFLOAD_DEBUG_TRACE_1(1,
GET_OFFLOAD_NUMBER(get_timer_data()),
c_offload_init_func,
"Offload function %s, is_empty=%d, #varDescs=%d, "
"signal=none, stream=%s, #waits=%d%c",
name, is_empty, vars_total, stream_str, num_waits,
num_waits == 0 ? '\n' : ' ');
// Breaks the norm of using OFFLOAD_DEBUG_TRACE to print the waits
// since the number of waits is not fixed.
if (!OFFLOAD_DO_TRACE && (console_enabled >= 1)) {
if (num_waits) {
printf("(");
if (m_stream == no_stream) {
printf("%p", waits[0]);
for (int i = 1; i < num_waits; i++) {
printf(", %p", waits[i]);
}
}
else if (m_stream != 0) {
printf("%#x", m_stream);
}
else {
printf(" all streams");
}
printf(")");
}
printf("\n");
fflush(NULL);
}
// stream in wait is reported further in OFFLOAD_REPORT for waits
if (m_stream != no_stream && num_waits == 0) {
OFFLOAD_REPORT(3, GET_OFFLOAD_NUMBER(get_timer_data()),
c_offload_stream,
"%d\n", m_stream);
}
OFFLOAD_REPORT(3, GET_OFFLOAD_NUMBER(get_timer_data()),
c_offload_signal,
"none %d\n", 0);
}
else {
OFFLOAD_DEBUG_TRACE_1(1,
GET_OFFLOAD_NUMBER(get_timer_data()),
c_offload_init_func,
"Offload function %s, is_empty=%d, #varDescs=%d, "
"signal=%p, stream=%s, #waits=%d%c",
name, is_empty, vars_total, signal, stream_str,
num_waits, num_waits == 0 ? '\n' : ' ');
// Breaks the norm of using OFFLOAD_DEBUG_TRACE to print the waits
// since the number of waits is not fixed.
if (!OFFLOAD_DO_TRACE && (console_enabled >= 1)) {
if (num_waits) {
printf("(");
if (m_stream == no_stream) {
printf("%p", waits[0]);
for (int i = 1; i < num_waits; i++) {
printf(", %p", waits[i]);
}
printf(")");
}
else if (m_stream != 0) {
printf("%#x", m_stream);
}
else {
printf(" all streams");
}
printf(")");
}
printf("\n");
fflush(NULL);
}
// stream in wait is reported further in OFFLOAD_REPORT for waits
if (m_stream != no_stream && num_waits == 0) {
OFFLOAD_REPORT(3, GET_OFFLOAD_NUMBER(get_timer_data()),
c_offload_stream,
"%d\n", m_stream);
}
OFFLOAD_REPORT(3, GET_OFFLOAD_NUMBER(get_timer_data()),
c_offload_signal,
"%d\n", signal);
}
if (console_enabled >= 1 && offload_flags.flags != 0) {
trace_offload_flags(get_timer_data(), offload_flags);
}
OFFLOAD_REPORT(3, GET_OFFLOAD_NUMBER(get_timer_data()),
c_offload_wait, "%d\n",
wait_kind, num_waits,
(wait_kind == c_offload_wait_signal) ?
waits :
reinterpret_cast<const void **>(m_stream));
if (m_status != 0) {
m_status->result = OFFLOAD_SUCCESS;
m_status->device_number = m_device.get_logical_index();
}
m_initial_need_runfunction = m_need_runfunction = !is_empty;
// wait for dependencies to finish or set
// m_num_in_dependencies and m_p_in_dependencies for asynchronous offload
if (!wait_dependencies(waits, num_waits, m_stream)) {
cleanup();
return false;
}
// setup buffers
if (!setup_descriptors(vars, vars2, vars_total, entry_id, stack_addr)) {
cleanup();
return false;
}
if (offload_flags.bits.omp_async) {
setup_omp_async_info();
}
// initiate send for pointers. Want to do it as early as possible.
if (!send_pointer_data(signal != 0 || offload_flags.bits.omp_async,
signal)) {
cleanup();
return false;
}
// setup misc data for run function
if (!setup_misc_data(name)) {
cleanup();
return false;
}
// gather copyin data into buffer
if (!gather_copyin_data()) {
cleanup();
return false;
}
// Start the computation
if (!compute(signal)) {
cleanup();
return false;
}
// initiate receive for pointers
if (!receive_pointer_data(signal != 0 || offload_flags.bits.omp_async,
true, signal)) {
cleanup();
return false;
}
if (offload_flags.bits.omp_async) {
return true;
}
// if there is a signal or stream save descriptor for the later use.
// num_waits == -1 is for offload_wait and there is nothing to save
if (num_waits != -1 && (signal != 0 || m_stream != no_stream)) {
if (signal != 0) {
m_device.add_signal(*signal, this);
}
if (m_stream != no_stream && m_stream != 0) {
Stream* stream = Stream::find_stream(m_stream, false);
if (stream) {
stream->set_last_offload(this);
}
else {
LIBOFFLOAD_ERROR(c_offload_no_stream, m_device.get_logical_index());
LIBOFFLOAD_ABORT;
}
}
// Register callback function "offload_complete_task" for all out
// events or for all in events if there are no out transfers
if (!m_preallocated_alloc) {
m_event_count = m_out_deps_total ?
m_out_deps_total : m_in_deps_total;
COIEVENT *event_list = m_out_deps_total ? m_out_deps : m_in_deps;
for (int i = 0; i < m_event_count; i++) {
register_event_call_back(&offload_complete_task,
&event_list[i], this);
}
offload_descr_map[this] = true;
return true;
}
}
// wait for the offload to finish.
if (!offload_finish(is_traceback)) {
cleanup();
return false;
}
cleanup();
return true;
}
bool OffloadDescriptor::offload(
const char *name,
bool is_empty,
VarDesc *vars,
VarDesc2 *vars2,
int vars_total,
const void **waits,
int num_waits,
const void **signal,
int entry_id,
const void *stack_addr,
OffloadFlags offload_flags
)
{
bool res;
res = offload_wrap(name, is_empty, vars, vars2, vars_total,
waits, num_waits, signal, entry_id,
stack_addr, offload_flags);
if (res == false && !m_traceback_called) {
if (offload_flags.bits.fortran_traceback) {
OFFLOAD_TRACE(3,
"Calling Fortran library to continue traceback from MIC\n");
FORTRAN_TRACE_BACK(m_status->result);
m_traceback_called = true;
}
}
return res;
}
bool OffloadDescriptor::offload_finish(
bool is_traceback
)
{
COIRESULT res;
// wait for compute dependencies to become signaled
if (m_in_deps_total > 0 &&
(m_out_deps_total <= 0 || m_preallocated_alloc)) {
OffloadTimer timer(get_timer_data(), c_offload_host_wait_compute);
if (__offload_active_wait) {
// keep CPU busy
do {
res = COI::EventWait(m_in_deps_total, m_in_deps, 0, 1, 0, 0);
}
while (res == COI_TIME_OUT_REACHED);
}
else {
res = COI::EventWait(m_in_deps_total, m_in_deps, -1, 1, 0, 0);
}
if (res != COI_SUCCESS) {
if (m_status != 0 && !m_traceback_called) {
m_status->result = translate_coi_error(res);
if (is_traceback) {
OFFLOAD_TRACE(3,
"Calling Fortran library to continue traceback from MIC\n");
FORTRAN_TRACE_BACK(m_status->result);
m_traceback_called = true;
}
return false;
}
if (is_traceback && !m_traceback_called) {
OFFLOAD_TRACE(3,
"Calling Fortran library to continue traceback from MIC\n");
FORTRAN_TRACE_BACK(OFFLOAD_ERROR);
exit(1);
}
report_coi_error(c_event_wait, res);
}
}
// need to do scatter copyout data received from target after
// completing in dependencies to get preallocated buffers.
// If there are no preallocated buffers we will scatter_copyout_data
// after completing out dependencies. In this case we dont need wait
// in dependencies as they are already in DAG.
if (m_out_with_preallocated) {
if (!scatter_copyout_data()) {
return false;
}
if (!receive_pointer_data(m_out_deps_total > 0, false, NULL)) {
cleanup();
return false;
}
}
// wait for receive dependencies to become signaled
if (m_out_deps_total > 0) {
OffloadTimer timer(get_timer_data(), c_offload_host_wait_buffers_reads);
if (__offload_active_wait) {
// keep CPU busy
do {
res = COI::EventWait(m_out_deps_total, m_out_deps, 0, 1, 0, 0);
}
while (res == COI_TIME_OUT_REACHED);
}
else {
res = COI::EventWait(m_out_deps_total, m_out_deps, -1, 1, 0, 0);
}
if (res != COI_SUCCESS) {
if (m_status != 0 && !m_traceback_called) {
m_status->result = translate_coi_error(res);
if (is_traceback) {
OFFLOAD_TRACE(3,
"Calling Fortran library to continue traceback from MIC\n");
FORTRAN_TRACE_BACK(m_status->result);
m_traceback_called = true;
}
return false;
}
if (is_traceback && !m_traceback_called) {
OFFLOAD_TRACE(3,
"Calling Fortran library to continue traceback from MIC\n");
FORTRAN_TRACE_BACK(OFFLOAD_ERROR);
exit(1);
}
report_coi_error(c_event_wait, res);
}
}
if (!m_out_with_preallocated && !scatter_copyout_data()) {
return false;
}
// destroy buffers
{
OffloadTimer timer(get_timer_data(), c_offload_host_destroy_buffers);
for (BufferList::const_iterator it = m_destroy_buffers.begin();
it != m_destroy_buffers.end(); it++) {
res = COI::BufferDestroy(*it);
if (res != COI_SUCCESS) {
if (m_status != 0) {
m_status->result = translate_coi_error(res);
return false;
}
report_coi_error(c_buf_destroy, res);
}
}
}
return true;
}
void OffloadDescriptor::cleanup()
{
// release device in orsl
ORSL::release(m_device.get_logical_index());
OFFLOAD_TIMER_STOP(get_timer_data(), c_offload_host_total_offload);
// report stuff
Offload_Report_Epilog(get_timer_data());
}
bool OffloadDescriptor::is_signaled()
{
bool signaled = true;
COIRESULT res;
// check compute and receive dependencies
if (m_out_deps_total > 0) {
res = COI::EventWait(m_out_deps_total, m_out_deps, 0, 1, 0, 0);
signaled = signaled && (res == COI_SUCCESS);
}
else if (m_in_deps_total > 0) {
res = COI::EventWait(m_in_deps_total, m_in_deps, 0, 1, 0, 0);
signaled = signaled && (res == COI_SUCCESS);
}
return signaled;
}
static Arr_Desc * make_arr_desc(
void* ptr_val,
int64_t extent_start_val,
int64_t extent_elements_val,
int64_t size
)
{
Arr_Desc *res;
res = (Arr_Desc *)malloc(sizeof(Arr_Desc));
if (res == NULL)
LIBOFFLOAD_ERROR(c_malloc);
res->base = reinterpret_cast<int64_t>(ptr_val);
res->rank = 1;
res->dim[0].size = size;
res->dim[0].lindex = 0;
res->dim[0].lower = extent_start_val;
res->dim[0].upper = extent_elements_val + extent_start_val - 1;
res->dim[0].stride = 1;
return res;
}
// Send pointer data if source or destination or both of them are
// noncontiguous. There is guarantee that length of destination enough for
// transferred data.
bool OffloadDescriptor::send_noncontiguous_pointer_data(
int i,
PtrData* src_data,
PtrData* dst_data,
COIEVENT *event,
uint64_t &data_sent,
uint32_t in_deps_amount,
COIEVENT *in_deps
)
{
NonContigDesc *desc;
int noncont_num;
int64_t offset_src, offset_dst;
int64_t length_src, length_dst;
int64_t length_src_cur, length_dst_cur;
int64_t send_size;
COIRESULT res;
bool dst_is_empty = true;
bool src_is_empty = true;
// If BufferWriteMultiD is defined we can set values of required arguments
// and transfer noncontiguous data via call to the COI routine.
if (!m_vars[i].flags.is_non_cont_struct &&
__offload_use_coi_noncontiguous_transfer && COI::BufferWriteMultiD) {
struct Arr_Desc* arr_desc_dst;
struct Arr_Desc* arr_desc_src;
int64_t size_src, size_dst;
char *base = offload_get_src_base(static_cast<char*>(m_vars[i].ptr),
m_vars_extra[i].type_src);
COIBUFFER dst_buf = m_vars[i].into ?
m_vars_extra[i].dst_data->mic_buf :
m_vars_extra[i].src_data->mic_buf;
offset_src = (m_vars_extra[i].read_rng_src)?
m_vars_extra[i].read_rng_src->init_offset : m_vars_extra[i].cpu_disp;
size_src = m_vars_extra[i].read_rng_src ?
cean_get_transf_size(m_vars_extra[i].read_rng_src) :
m_vars[i].size;
offset_dst = (m_vars_extra[i].read_rng_dst)?
m_vars_extra[i].read_rng_dst->init_offset : m_vars[i].disp;
size_dst = m_vars_extra[i].read_rng_dst ?
cean_get_transf_size(m_vars_extra[i].read_rng_dst) : m_vars[i].size;
int64_t el_size = (!m_vars[i].into ||
(m_vars_extra[i].read_rng_src && m_vars_extra[i].read_rng_dst)) ?
1 :
m_vars_extra[i].read_rng_src ?
m_vars_extra[i].read_rng_src->arr_desc->dim[
m_vars_extra[i].read_rng_src->arr_desc->rank - 1].size :
m_vars_extra[i].read_rng_dst->arr_desc->dim[
m_vars_extra[i].read_rng_dst->arr_desc->rank - 1].size;
arr_desc_src = (m_vars_extra[i].read_rng_src) ?
m_vars_extra[i].read_rng_src->arr_desc :
make_arr_desc(NULL, // don't required for source
offset_src/el_size, size_src/el_size, el_size);
arr_desc_dst = !m_vars[i].into ?
arr_desc_src :
(m_vars_extra[i].read_rng_dst) ?
m_vars_extra[i].read_rng_dst->arr_desc :
make_arr_desc(NULL,
offset_dst/el_size, size_src/el_size, el_size);
int64_t alloc_disp = m_vars[i].into ?
m_vars_extra[i].dst_data->alloc_disp :
m_vars_extra[i].src_data->alloc_disp;
arr_desc_dst->base = 0;
arr_desc_src->base = reinterpret_cast<int64_t>(base);
res = COI::BufferWriteMultiD(
dst_buf, // in_DestBuffer,
NULL, // DestProcess,
m_vars[i].offset + m_vars[i].mic_offset -
alloc_disp, // Offset
(void*)arr_desc_dst, // descriptor of DestArray
(void*)arr_desc_src, // descriptor of SrcArray
COI_COPY_UNSPECIFIED, // Type
m_num_in_dependencies, // Number of in Dependencies
m_p_in_dependencies, // array of in Dependencies
event); // out Dependency
if (res != COI_SUCCESS) {
if (m_status != 0) {
m_status->result = translate_coi_error(res);
return false;
}
report_coi_error(c_buf_copy, res);
}
return(true);
}
data_sent = 0;
if (m_vars[i].flags.is_non_cont_struct) {
desc = m_vars_extra[i].noncont_desc;
noncont_num = 0;
}
else {
// Set length_src and length_dst
length_src = (m_vars_extra[i].read_rng_src) ?
m_vars_extra[i].read_rng_src->range_size : m_vars[i].size;
length_dst = !m_vars[i].into ? length_src :
(m_vars_extra[i].read_rng_dst) ?
m_vars_extra[i].read_rng_dst->range_size :
m_vars[i].size;
send_size = (length_src < length_dst) ? length_src : length_dst;
}
// if event is defined we must multiplate it for all contiguous ranges
// that will be Copied/Write.
// Take in account that we already have 1 event.
if (event) {
uint32_t range_num = m_vars[i].flags.is_non_cont_struct ?
desc->interval_cnt :
(length_src / send_size) *
((m_vars_extra[i].read_rng_src) ?
m_vars_extra[i].read_rng_src->range_max_number : 1) ;
m_in_deps_allocated += range_num ;
m_in_deps =
(COIEVENT*)realloc(m_in_deps, sizeof(COIEVENT) * m_in_deps_allocated);
m_in_deps_total--;
}
// consequently get contiguous ranges,
// define corresponded destination offset and send data
do {
if (m_vars[i].flags.is_non_cont_struct) {
// ranges are over
if (noncont_num >= desc->interval_cnt) {
break;
}
offset_src = offset_dst = desc->interval[noncont_num].lower;
send_size = desc->interval[noncont_num].size;
noncont_num++;
}
else {
if (src_is_empty) {
if (m_vars_extra[i].read_rng_src) {
if (!get_next_range(m_vars_extra[i].read_rng_src,
&offset_src)) {
// source ranges are over - nothing to send
break;
}
}
else if (data_sent == 0) {
offset_src = m_vars_extra[i].cpu_disp;
}
else {
break;
}
length_src_cur = length_src;
}
else {
// if source is contiguous or its contiguous range is greater
// than destination one
offset_src += send_size;
}
length_src_cur -= send_size;
src_is_empty = length_src_cur == 0;
if (dst_is_empty) {
if (m_vars[i].into) {
if (m_vars_extra[i].read_rng_dst) {
if (!get_next_range(m_vars_extra[i].read_rng_dst,
&offset_dst)) {
// destination ranges are over
LIBOFFLOAD_ERROR(c_destination_is_over);
return false;
}
}
// into is contiguous.
else {
offset_dst = m_vars[i].disp;
}
length_dst_cur = length_dst;
}
// same as source
else {
offset_dst = offset_src;
length_dst_cur = length_src;
}
}
else {
// if destination is contiguous or its contiguous range is greater
// than source one
offset_dst += send_size;
}
length_dst_cur -= send_size;
dst_is_empty = length_dst_cur == 0;
}
if (event) {
event = &m_in_deps[m_in_deps_total++];
}
if (src_data != 0 && src_data->cpu_buf != 0) {
res = COI::BufferCopy(
dst_data->mic_buf,
src_data->cpu_buf,
m_vars[i].mic_offset +
m_vars[i].offset + offset_dst,
m_vars_extra[i].cpu_offset + offset_src,
send_size,
COI_COPY_UNSPECIFIED,
m_num_in_dependencies,
m_p_in_dependencies,
event);
if (res != COI_SUCCESS) {
if (m_status != 0) {
m_status->result = translate_coi_error(res);
return false;
}
report_coi_error(c_buf_copy, res);
}
}
else {
char *base = offload_get_src_base(m_vars[i].ptr,
m_vars_extra[i].type_src);
res = COI::BufferWrite(
dst_data->mic_buf,
m_vars[i].mic_offset +
m_vars[i].offset + offset_dst,
base + offset_src,
send_size,
COI_COPY_UNSPECIFIED,
m_num_in_dependencies,
m_p_in_dependencies,
event);
if (res != COI_SUCCESS) {
if (m_status != 0) {
m_status->result = translate_coi_error(res);
return false;
}
report_coi_error(c_buf_write, res);
}
}
data_sent += send_size;
}
while (true);
return true;
}
bool OffloadDescriptor::send_pointer_data(bool is_async, void* info)
{
OffloadTimer timer(get_timer_data(), c_offload_host_send_pointers);
bool should_use_async_buffer_write = m_initial_need_runfunction;
uint64_t ptr_sent = 0;
COIRESULT res;
uint32_t in_deps_amount = 0;
COIEVENT *in_deps = NULL;
// For offload_transfer and offload with empty body without signal:
// - if there is only one buffer copy - send data synchronously
// - if there are multiple buffer copy and
// __offload_parallel_copy is false - send data synchronously
// - if there are multiple buffer copy and
// __offload_parallel_copy is true - send data asynchronously
// It concerns only big size data - greater than __offload_use_async_buffer_write.
// Data of size less than __offload_use_async_buffer_write are sent synchronously.
// Synchronous transfer results in better performance in COI.
// __offload_parallel_copy is false by default but can be changed
// via environment variable OFFLOAD_PARALLEL_COPY
if (!m_initial_need_runfunction && __offload_parallel_copy) {
int big_size_count = 0;
for (int i = 0; i < m_vars_total; i++) {
if (m_vars[i].direction.in &&
m_vars[i].size >= __offload_use_async_buffer_write) {
switch (m_vars_extra[i].type_dst) {
case c_data:
case c_void_ptr:
case c_void_ptr_ptr:
case c_cean_var:
if (m_vars[i].flags.is_static_dstn) {
big_size_count++;
}
break;
case c_string_ptr:
case c_string_ptr_ptr:
case c_data_ptr:
case c_data_ptr_ptr:
case c_cean_var_ptr:
case c_cean_var_ptr_ptr:
case c_dv_ptr:
case c_dv_data:
case c_dv_ptr_data:
case c_dv_data_slice:
case c_dv_ptr_data_slice:
big_size_count++;
break;
default:
break;
}
}
}
if (big_size_count > 1) {
should_use_async_buffer_write = true;
}
}
// Initiate send for pointer data
for (int i = 0; i < m_vars_total; i++) {
uint64_t sent_data = m_vars[i].size;
if (m_vars_extra[i].omp_last_event_type == c_last_write &&
m_in_deps_total > 0) {
m_num_in_dependencies = m_in_deps_total;
m_p_in_dependencies = m_in_deps;
}
switch (m_vars_extra[i].type_dst) {
case c_data_ptr_array:
break;
case c_data:
case c_void_ptr:
case c_void_ptr_ptr:
case c_cean_var:
if (m_vars[i].direction.in &&
m_vars[i].flags.is_static_dstn) {
COIEVENT *event =
(m_stream != no_stream ||
is_async ||
(should_use_async_buffer_write &&
m_vars[i].size >= __offload_use_async_buffer_write)) ?
&m_in_deps[m_in_deps_total++] : 0;
PtrData* dst_data = m_vars[i].into ?
m_vars_extra[i].dst_data :
m_vars_extra[i].src_data;
PtrData* src_data =
VAR_TYPE_IS_PTR(m_vars_extra[i].type_src) ||
VAR_TYPE_IS_SCALAR(m_vars_extra[i].type_src) &&
m_vars[i].flags.is_static ?
m_vars_extra[i].src_data : 0;
if (m_vars[i].flags.is_non_cont_struct ||
m_vars[i].flags.is_noncont_src ||
m_vars[i].flags.is_noncont_dst) {
if (!send_noncontiguous_pointer_data(
i, src_data, dst_data, event, sent_data,
m_num_in_dependencies, m_p_in_dependencies)) {
return false;
}
}
else if (src_data != 0 && src_data->cpu_buf != 0) {
res = COI::BufferCopy(
dst_data->mic_buf,
src_data->cpu_buf,
m_vars[i].mic_offset +
m_vars[i].offset + m_vars[i].disp,
m_vars_extra[i].cpu_offset +
m_vars_extra[i].cpu_disp,
m_vars[i].size,
COI_COPY_UNSPECIFIED,
m_num_in_dependencies,
m_p_in_dependencies,
event);
if (res != COI_SUCCESS) {
if (m_status != 0) {
m_status->result = translate_coi_error(res);
return false;
}
report_coi_error(c_buf_copy, res);
}
}
else {
char *base = offload_get_src_base(m_vars[i].ptr,
m_vars_extra[i].type_src);
res = COI::BufferWrite(
dst_data->mic_buf,
m_vars[i].mic_offset +
m_vars[i].offset + m_vars[i].disp,
base + m_vars_extra[i].cpu_disp,
m_vars[i].size,
COI_COPY_UNSPECIFIED,
m_num_in_dependencies,
m_p_in_dependencies,
event);
if (res != COI_SUCCESS) {
if (m_status != 0) {
m_status->result = translate_coi_error(res);
return false;
}
report_coi_error(c_buf_write, res);
}
}
ptr_sent += sent_data;
}
break;
case c_data_ptr:
// If use_device_ptr no data needs to be sent
if (m_vars[i].flags.use_device_ptr) {
break;
}
case c_string_ptr:
case c_string_ptr_ptr:
case c_data_ptr_ptr:
case c_cean_var_ptr:
case c_cean_var_ptr_ptr:
case c_dv_ptr:
if (m_vars[i].direction.in && m_vars[i].size > 0) {
COIEVENT *event =
(m_stream != no_stream ||
is_async ||
(should_use_async_buffer_write &&
m_vars[i].size >= __offload_use_async_buffer_write)) ?
&m_in_deps[m_in_deps_total++] : 0;
PtrData* dst_data = m_vars[i].into ?
m_vars_extra[i].dst_data :
m_vars_extra[i].src_data;
PtrData* src_data =
VAR_TYPE_IS_PTR(m_vars_extra[i].type_src) ||
VAR_TYPE_IS_SCALAR(m_vars_extra[i].type_src) &&
m_vars[i].flags.is_static ?
m_vars_extra[i].src_data : 0;
if (m_vars[i].flags.is_non_cont_struct ||
m_vars[i].flags.is_noncont_src ||
m_vars[i].flags.is_noncont_dst) {
send_noncontiguous_pointer_data(
i, src_data, dst_data, event, sent_data,
in_deps_amount, in_deps);
}
else if (src_data != 0 && src_data->cpu_buf != 0) {
res = COI::BufferCopy(
dst_data->mic_buf,
src_data->cpu_buf,
m_vars[i].mic_offset +
m_vars[i].offset + m_vars[i].disp,
m_vars_extra[i].cpu_offset +
m_vars_extra[i].cpu_disp,
m_vars[i].size,
COI_COPY_UNSPECIFIED,
m_num_in_dependencies,
m_p_in_dependencies,
event);
if (res != COI_SUCCESS) {
if (m_status != 0) {
m_status->result = translate_coi_error(res);
return false;
}
report_coi_error(c_buf_copy, res);
}
}
else {
char *base = offload_get_src_base(m_vars[i].ptr,
m_vars_extra[i].type_src);
res = COI::BufferWrite(
dst_data->mic_buf,
m_vars[i].mic_offset +
m_vars[i].offset + m_vars[i].disp,
base + m_vars_extra[i].cpu_disp,
m_vars[i].size,
COI_COPY_UNSPECIFIED,
m_num_in_dependencies,
m_p_in_dependencies,
event);
if (res != COI_SUCCESS) {
if (m_status != 0) {
m_status->result = translate_coi_error(res);
return false;
}
report_coi_error(c_buf_write, res);
}
}
ptr_sent += sent_data;
}
break;
case c_dv_data:
case c_dv_ptr_data:
if (m_vars[i].direction.in &&
m_vars[i].size > 0) {
PtrData *ptr_data = m_vars[i].into ?
m_vars_extra[i].dst_data :
m_vars_extra[i].src_data;
PtrData* src_data = m_vars_extra[i].src_data;
COIEVENT *event =
(m_stream != no_stream ||
is_async ||
(should_use_async_buffer_write &&
m_vars[i].size >= __offload_use_async_buffer_write)) ?
&m_in_deps[m_in_deps_total++] : 0;
if (m_vars[i].flags.is_non_cont_struct ||
m_vars[i].flags.is_noncont_src ||
m_vars[i].flags.is_noncont_dst) {
send_noncontiguous_pointer_data(
i, src_data, ptr_data, event, sent_data,
in_deps_amount, in_deps);
}
else if (src_data && src_data->cpu_buf != 0) {
res = COI::BufferCopy(
ptr_data->mic_buf,
src_data->cpu_buf,
m_vars[i].offset + ptr_data->mic_offset +
m_vars[i].disp,
m_vars_extra[i].cpu_offset +
m_vars_extra[i].cpu_disp,
m_vars[i].size,
COI_COPY_UNSPECIFIED,
m_num_in_dependencies,
m_p_in_dependencies,
event);
if (res != COI_SUCCESS) {
if (m_status != 0) {
m_status->result = translate_coi_error(res);
return false;
}
report_coi_error(c_buf_copy, res);
}
}
else {
char *base = offload_get_src_base(m_vars[i].ptr,
m_vars_extra[i].type_src);
res = COI::BufferWrite(
ptr_data->mic_buf,
ptr_data->mic_offset +
m_vars[i].offset + m_vars[i].disp,
base + m_vars_extra[i].cpu_disp,
m_vars[i].size,
COI_COPY_UNSPECIFIED,
m_num_in_dependencies,
m_p_in_dependencies,
event);
if (res != COI_SUCCESS) {
if (m_status != 0) {
m_status->result = translate_coi_error(res);
return false;
}
report_coi_error(c_buf_write, res);
}
}
ptr_sent += sent_data;
}
break;
case c_dv_data_slice:
case c_dv_ptr_data_slice:
if (m_vars[i].direction.in &&
m_vars[i].size > 0) {
PtrData *dst_data = m_vars[i].into ?
m_vars_extra[i].dst_data :
m_vars_extra[i].src_data;
PtrData* src_data =
(VAR_TYPE_IS_PTR(m_vars_extra[i].type_src) ||
VAR_TYPE_IS_DV_DATA(m_vars_extra[i].type_src) ||
VAR_TYPE_IS_DV_DATA_SLICE(m_vars_extra[i].type_src) ||
VAR_TYPE_IS_SCALAR(m_vars_extra[i].type_src) &&
m_vars[i].flags.is_static) ?
m_vars_extra[i].src_data : 0;
COIEVENT *event =
(m_stream != no_stream ||
is_async ||
(should_use_async_buffer_write &&
m_vars[i].size >= __offload_use_async_buffer_write)) ?
&m_in_deps[m_in_deps_total++] : 0;
if (m_vars[i].flags.is_non_cont_struct ||
m_vars[i].flags.is_noncont_src ||
m_vars[i].flags.is_noncont_dst) {
send_noncontiguous_pointer_data(
i, src_data, dst_data, event, sent_data,
in_deps_amount, in_deps);
}
else if (src_data && src_data->cpu_buf != 0) {
res = COI::BufferCopy(
dst_data->mic_buf,
src_data->cpu_buf,
m_vars[i].offset +
dst_data->mic_offset +
m_vars[i].disp,
m_vars_extra[i].cpu_offset +
m_vars_extra[i].cpu_disp,
m_vars[i].size,
COI_COPY_UNSPECIFIED,
m_num_in_dependencies,
m_p_in_dependencies,
event);
if (res != COI_SUCCESS) {
if (m_status != 0) {
m_status->result = translate_coi_error(res);
return false;
}
report_coi_error(c_buf_copy, res);
}
}
else {
char *base = offload_get_src_base(m_vars[i].ptr,
m_vars_extra[i].type_src);
res = COI::BufferWrite(
dst_data->mic_buf,
dst_data->mic_offset +
m_vars[i].offset + m_vars[i].disp,
base + m_vars_extra[i].cpu_disp,
m_vars[i].size,
COI_COPY_UNSPECIFIED,
m_num_in_dependencies,
m_p_in_dependencies,
event);
if (res != COI_SUCCESS) {
if (m_status != 0) {
m_status->result = translate_coi_error(res);
return false;
}
report_coi_error(c_buf_write, res);
}
}
ptr_sent += sent_data;
}
break;
default:
break;
}
if (m_vars_extra[i].omp_last_event_type == c_last_write) {
register_omp_event_call_back(&m_in_deps[m_in_deps_total - 1], info);
}
// alloc field isn't used at target.
// We can reuse it for offset of array pointers.
if (m_vars_extra[i].is_arr_ptr_el) {
m_vars[i].ptr_arr_offset = m_vars_extra[i].ptr_arr_offset;
}
}
// list of out events created while send_pointer_data now became input
// dependencies for runfunction (or Read transfers from target if
// runfunction is absent)
m_num_in_dependencies = m_in_deps_total ? m_in_deps_total :
m_num_in_dependencies;
m_p_in_dependencies = m_in_deps_total ? m_in_deps : m_p_in_dependencies;
if (m_status) {
m_status->data_sent += ptr_sent;
}
OFFLOAD_TIMER_HOST_SDATA(get_timer_data(), ptr_sent);
OFFLOAD_DEBUG_TRACE_1(1, GET_OFFLOAD_NUMBER(get_timer_data()),
c_offload_sent_pointer_data,
"Total pointer data sent to target: [%lld] bytes\n",
ptr_sent);
return true;
}
bool OffloadDescriptor::gather_copyin_data()
{
OffloadTimer timer(get_timer_data(), c_offload_host_gather_inputs);
if (m_need_runfunction && m_in_datalen > 0) {
COIMAPINSTANCE map_inst;
char *data;
// init marshaller
if (m_inout_buf != 0) {
OffloadTimer timer_map(get_timer_data(),
c_offload_host_map_in_data_buffer);
COIRESULT res = COI::BufferMap(m_inout_buf, 0, m_in_datalen,
COI_MAP_WRITE_ENTIRE_BUFFER,
0, 0, 0, &map_inst,
reinterpret_cast<void**>(&data));
if (res != COI_SUCCESS) {
if (m_status != 0) {
m_status->result = translate_coi_error(res);
return false;
}
report_coi_error(c_buf_map, res);
}
}
else {
data = (char*) m_func_desc + m_func_desc->data_offset;
}
// send variable descriptors
memcpy(data, m_vars, m_vars_total * sizeof(VarDesc));
data += m_vars_total * sizeof(VarDesc);
// init marshaller
m_in.init_buffer(data, m_in_datalen);
// Gather copy data into buffer
for (int i = 0; i < m_vars_total; i++) {
bool src_is_for_mic = (m_vars[i].direction.out ||
m_vars[i].into == NULL);
PtrData* ptr_data = src_is_for_mic ?
m_vars_extra[i].src_data :
m_vars_extra[i].dst_data;
if (m_vars[i].flags.alloc_disp) {
m_in.send_data(&ptr_data->alloc_disp,
sizeof(ptr_data->alloc_disp));
}
if (TYPE_IS_PTR_TO_PTR(m_vars_extra[i].type_src) ||
TYPE_IS_PTR_TO_PTR(m_vars_extra[i].type_dst) ||
(m_vars_extra[i].type_src == c_data_ptr_array &&
m_vars[i].flags.is_pointer)) {
m_in.send_data(&m_vars_extra[i].pointer_offset,
sizeof(m_vars_extra[i].pointer_offset));
}
// send sink address to the target
if (m_vars[i].flags.sink_addr) {
m_in.send_data(&ptr_data->mic_addr,
sizeof(ptr_data->mic_addr));
}
switch (m_vars_extra[i].type_dst) {
case c_data_ptr_array:
break;
case c_data:
case c_void_ptr:
case c_void_ptr_ptr:
case c_cean_var:
if (m_vars[i].direction.in &&
!m_vars[i].flags.is_static_dstn) {
char *ptr = offload_get_src_base(m_vars[i].ptr,
m_vars_extra[i].type_src);
if (m_vars_extra[i].type_dst == c_cean_var) {
// offset and length are derived from the array
// descriptor
int64_t size = m_vars[i].size;
int64_t disp = m_vars[i].disp;
m_in.send_data(reinterpret_cast<char*>(&size),
sizeof(int64_t));
m_in.send_data(reinterpret_cast<char*>(&disp),
sizeof(int64_t));
}
m_in.send_data(ptr + m_vars_extra[i].cpu_disp,
m_vars[i].size);
}
break;
case c_dv:
if (m_vars[i].direction.bits ||
m_vars[i].alloc_if ||
m_vars[i].free_if) {
// send dope vector excluding base
char *ptr = static_cast<char*>(m_vars[i].ptr);
m_in.send_data(ptr + sizeof(uint64_t),
m_vars[i].size - sizeof(uint64_t));
}
break;
case c_data_ptr:
// send to target addresses of obsolete
// stacks to be released
if (m_vars[i].flags.is_stack_buf &&
!m_vars[i].direction.bits &&
m_vars[i].alloc_if &&
m_vars[i].size != 0) {
for (PtrDataList::iterator it =
m_destroy_stack.begin();
it != m_destroy_stack.end(); it++) {
PtrData * ptr_data = *it;
m_in.send_data(&(ptr_data->mic_addr),
sizeof(ptr_data->mic_addr));
}
}
break;
case c_func_ptr:
case c_func_ptr_ptr:
if (m_vars[i].direction.in) {
m_in.send_func_ptr(*((const void**) m_vars[i].ptr));
}
break;
default:
break;
}
}
if (m_status) {
m_status->data_sent += m_in.get_tfr_size();
}
if (m_func_desc->data_offset == 0) {
OffloadTimer timer_unmap(get_timer_data(),
c_offload_host_unmap_in_data_buffer);
COIRESULT res = COI::BufferUnmap(map_inst, 0, 0, 0);
if (res != COI_SUCCESS) {
if (m_status != 0) {
m_status->result = translate_coi_error(res);
return false;
}
report_coi_error(c_buf_unmap, res);
}
}
}
OFFLOAD_TIMER_HOST_SDATA(get_timer_data(), m_in.get_tfr_size());
OFFLOAD_DEBUG_TRACE_1(1,
GET_OFFLOAD_NUMBER(get_timer_data()), c_offload_copyin_data,
"Total copyin data sent to target: [%lld] bytes\n",
m_in.get_tfr_size());
return true;
}
bool OffloadDescriptor::compute(void *info)
{
OffloadTimer timer(get_timer_data(), c_offload_host_start_compute);
if (m_need_runfunction) {
OFFLOAD_DEBUG_TRACE_1(2, GET_OFFLOAD_NUMBER(get_timer_data()),
c_offload_compute, "Compute task on MIC\n");
void* misc = m_func_desc;
int misc_len = m_func_desc_size;
void* ret = 0;
int ret_len = 0;
if (m_func_desc->data_offset != 0) {
misc_len += m_in_datalen;
if (m_out_datalen > 0) {
ret = (char*) m_func_desc + m_func_desc->data_offset;
ret_len = m_out_datalen;
}
}
// dispatch task
COIRESULT res;
COIEVENT event;
res = m_device.compute(m_stream,
m_compute_buffers,
misc, misc_len,
ret, ret_len,
m_num_in_dependencies,
m_p_in_dependencies,
&event);
if (res != COI_SUCCESS) {
if (m_status != 0) {
m_status->result = translate_coi_error(res);
return false;
}
report_coi_error(c_pipeline_run_func, res);
}
if (m_omp_async_last_event_type == c_last_runfunc) {
register_omp_event_call_back(&event, info);
}
m_in_deps_total = m_num_in_dependencies = 1;
m_in_deps[0] = event;
m_p_in_dependencies = m_in_deps;
}
return true;
}
// receive pointer data if source or destination or both of them are
// noncontiguous. There is guarantee that length of destination enough for
// transferred data.
bool OffloadDescriptor::receive_noncontiguous_pointer_data(
int i,
COIBUFFER dst_buf,
COIEVENT *event,
uint64_t &received_data,
uint32_t in_deps_amount,
COIEVENT *in_deps
)
{
NonContigDesc *desc;
int noncont_num;
int64_t offset_src, offset_dst;
int64_t length_src, length_dst;
int64_t length_src_cur, length_dst_cur;
int64_t receive_size;
COIRESULT res;
bool dst_is_empty = true;
bool src_is_empty = true;
char *base = offload_get_src_base(
m_vars[i].into ?
static_cast<char*>(m_vars[i].into) :
static_cast<char*>(m_vars[i].ptr),
m_vars_extra[i].type_dst);
received_data = 0;
// If BufferReadMultiD is defined we can set values of required arguments
// and transfer noncontiguous data via call to the COI routine.
if (__offload_use_coi_noncontiguous_transfer && COI::BufferReadMultiD) {
struct Arr_Desc* arr_desc_dst;
struct Arr_Desc* arr_desc_src;
int64_t size_src, size_dst;
offset_src = (m_vars_extra[i].read_rng_src)?
m_vars_extra[i].read_rng_src->init_offset : m_vars[i].disp;
size_src = m_vars_extra[i].read_rng_src ?
cean_get_transf_size(m_vars_extra[i].read_rng_src) :
m_vars[i].size;
offset_dst = (m_vars_extra[i].read_rng_dst)?
m_vars_extra[i].read_rng_dst->init_offset : m_vars_extra[i].cpu_disp;
size_dst = m_vars_extra[i].read_rng_dst ?
cean_get_transf_size(m_vars_extra[i].read_rng_dst) : m_vars[i].size;
int64_t el_size = (!m_vars[i].into ||
(m_vars_extra[i].read_rng_src &&
m_vars_extra[i].read_rng_dst)) ?
1 :
m_vars_extra[i].read_rng_src ?
m_vars_extra[i].read_rng_src->arr_desc->dim[
m_vars_extra[i].read_rng_src->arr_desc->rank - 1].size :
m_vars_extra[i].read_rng_dst->arr_desc->dim[
m_vars_extra[i].read_rng_dst->arr_desc->rank - 1].size;
arr_desc_src = (m_vars_extra[i].read_rng_src) ?
m_vars_extra[i].read_rng_src->arr_desc :
make_arr_desc(NULL, // don't required for source
offset_src/el_size, size_src/el_size,
el_size);
arr_desc_dst = !m_vars[i].into ? arr_desc_src :
(m_vars_extra[i].read_rng_dst) ?
m_vars_extra[i].read_rng_dst->arr_desc :
make_arr_desc(NULL,
offset_dst/el_size, size_src/el_size, el_size);
arr_desc_dst->base = reinterpret_cast<int64_t>(base);
res = COI::BufferReadMultiD(
m_vars_extra[i].src_data->mic_buf, // SourceBuffer
m_vars[i].offset + m_vars[i].mic_offset -
m_vars_extra[i].src_data->alloc_disp, // Offset
(void*)arr_desc_dst, // descriptor of DestArray
(void*)arr_desc_src, // descriptor of SrcArray
COI_COPY_UNSPECIFIED, // Type
m_num_in_dependencies, // Number of in Dependencies
m_p_in_dependencies, // array of in Dependencies
event); // out Dependency
if (res != COI_SUCCESS) {
if (m_status != 0) {
m_status->result = translate_coi_error(res);
return false;
}
report_coi_error(c_buf_copy, res);
}
return(true);
}
if (m_vars[i].flags.is_non_cont_struct) {
desc = m_vars_extra[i].noncont_desc;
noncont_num = 0;
}
else {
// Set length_src and length_dst
length_src = (m_vars_extra[i].read_rng_src) ?
m_vars_extra[i].read_rng_src->range_size : m_vars[i].size;
length_dst = !m_vars[i].into ? length_src :
(m_vars_extra[i].read_rng_dst) ?
m_vars_extra[i].read_rng_dst->range_size : m_vars[i].size;
receive_size = (length_src < length_dst) ? length_src : length_dst;
}
// if event is defined we must multiplate for all contiguous intervals
// that will be Copied/Read.
// Take in account that we already have 1 event.
if (event) {
uint32_t range_num = m_vars[i].flags.is_non_cont_struct ?
desc->interval_cnt :
(length_src / receive_size) *
((m_vars_extra[i].read_rng_src) ?
m_vars_extra[i].read_rng_src->range_max_number : 1) ;
m_out_deps_allocated += range_num;
m_out_deps =
(COIEVENT*)realloc(m_out_deps, sizeof(COIEVENT) * m_out_deps_allocated);
m_out_deps_total--;
}
// consequently get contiguous ranges,
// define corresponded destination offset and receive data
do {
if (m_vars[i].flags.is_non_cont_struct) {
// ranges are over
if (noncont_num >= desc->interval_cnt) {
break;
}
offset_src = offset_dst = desc->interval[noncont_num].lower;
receive_size = desc->interval[noncont_num].size;
noncont_num++;
}
else { // get source offset
if (src_is_empty) {
if (m_vars_extra[i].read_rng_src) {
if (!get_next_range(m_vars_extra[i].read_rng_src,
&offset_src)) {
// source ranges are over - nothing to send
break;
}
}
else if (received_data == 0) {
offset_src = m_vars[i].disp;
}
else {
break;
}
length_src_cur = length_src;
}
else {
// if source is contiguous or its contiguous range is greater
// than destination one
offset_src += receive_size;
}
length_src_cur -= receive_size;
src_is_empty = length_src_cur == 0;
// get destination offset
if (dst_is_empty) {
if (m_vars[i].into) {
if (m_vars_extra[i].read_rng_dst) {
if (!get_next_range(m_vars_extra[i].read_rng_dst,
&offset_dst)) {
// destination ranges are over
LIBOFFLOAD_ERROR(c_destination_is_over);
return false;
}
}
// destination is contiguous.
else {
offset_dst = m_vars_extra[i].cpu_disp;
}
length_dst_cur = length_dst;
}
// same as source
else {
offset_dst = offset_src;
length_dst_cur = length_src;
}
}
else {
// if destination is contiguous or its contiguous range is greater
// than source one
offset_dst += receive_size;
}
length_dst_cur -= receive_size;
dst_is_empty = length_dst_cur == 0;
}
if (event) {
event = &m_out_deps[m_out_deps_total++];
}
if (dst_buf != 0) {
res = COI::BufferCopy(
dst_buf,
m_vars_extra[i].src_data->mic_buf,
m_vars_extra[i].cpu_offset + offset_dst,
m_vars[i].offset + offset_src +
m_vars[i].mic_offset,
receive_size,
COI_COPY_UNSPECIFIED,
m_num_in_dependencies,
m_p_in_dependencies,
event);
if (res != COI_SUCCESS) {
if (m_status != 0) {
m_status->result = translate_coi_error(res);
return false;
}
report_coi_error(c_buf_copy, res);
}
}
else {
res = COI::BufferRead(
m_vars_extra[i].src_data->mic_buf,
m_vars[i].offset + offset_src +
m_vars[i].mic_offset,
base + offset_dst,
receive_size,
COI_COPY_UNSPECIFIED,
m_num_in_dependencies,
m_p_in_dependencies,
event);
if (res != COI_SUCCESS) {
if (m_status != 0) {
m_status->result = translate_coi_error(res);
return false;
}
report_coi_error(c_buf_read, res);
}
}
received_data += receive_size;
}
while (true);
return true;
}
bool OffloadDescriptor::receive_pointer_data(bool is_async,
bool first_run, void *info)
{
OffloadTimer timer(get_timer_data(), c_offload_host_start_buffers_reads);
bool should_use_async_buffer_read = m_initial_need_runfunction;
uint64_t ptr_received = 0;
COIRESULT res;
// For offload_transfer and offload with empty body without signal:
// - if there is only one buffer copy - get data synchronously
// - if there are multiple buffer copy and
// __offload_parallel_copy is false - get data synchronously
// - if there are multiple buffer copy
// and __offload_parallel_copy is true - get data asynchronously
// It concerns only data with size greater than __offload_use_async_buffer_read.
// Data of size less than __offload_use_async_buffer_read are received synchronously.
// Synchronous transfer results in better performance in COI.
// __offload_parallel_copy is false by default but can be changed
// via environment variable OFFLOAD_PARALLEL_COPY
if (!m_initial_need_runfunction && __offload_parallel_copy) {
int big_size_count = 0;
for (int i = 0; i < m_vars_total; i++) {
if (m_vars[i].direction.out &&
m_vars[i].size >= __offload_use_async_buffer_read) {
// preallocated OUT only at second run
if (first_run == m_vars[i].flags.preallocated) {
continue;
}
switch (m_vars_extra[i].type_src) {
case c_data:
case c_void_ptr:
case c_void_ptr_ptr:
case c_cean_var:
if (m_vars[i].flags.is_static) {
big_size_count++;
}
break;
case c_string_ptr:
case c_data_ptr:
case c_string_ptr_ptr:
case c_data_ptr_ptr:
case c_cean_var_ptr:
case c_cean_var_ptr_ptr:
case c_dv_data:
case c_dv_ptr_data:
case c_dv_data_slice:
case c_dv_ptr_data_slice:
case c_dv_ptr:
big_size_count++;
break;
default:
break;
}
}
}
if (big_size_count > 1) {
should_use_async_buffer_read = true;
}
}
uint32_t in_deps_amount = m_in_deps_total;
COIEVENT *in_deps = m_in_deps_total > 0 ? m_in_deps : 0;
for (int i = 0; i < m_vars_total; i++) {
uint64_t received_data = m_vars[i].size;
// Nothing to receive if use_device_ptr
if (m_vars[i].flags.use_device_ptr )
continue;
if (m_vars_extra[i].omp_last_event_type == c_last_read &&
m_out_deps_total > 0) {
m_num_in_dependencies = m_out_deps_total;
m_p_in_dependencies = m_out_deps;
}
// At first run don't receive by preallocated target pointer as the
//pointer value will be ready later after call to scatter_copyout_data
if (first_run && m_vars[i].alloc_if && m_vars[i].flags.preallocated) {
m_preallocated_alloc = true;
// need one more call to OffloadDescriptor::receive_pointer_data
if (m_vars[i].direction.out) {
m_out_with_preallocated = true;
}
continue;
}
switch (m_vars_extra[i].type_src) {
case c_data_ptr_array:
break;
case c_data:
case c_void_ptr:
case c_void_ptr_ptr:
case c_cean_var:
if (m_vars[i].direction.out &&
m_vars[i].flags.is_static) {
COIEVENT *event =
(m_stream != no_stream ||
is_async ||
m_in_deps_total > 0 ||
(should_use_async_buffer_read &&
m_vars[i].size >= __offload_use_async_buffer_read)) ?
&m_out_deps[m_out_deps_total++] : 0;
PtrData *ptr_data = NULL;
COIBUFFER dst_buf = NULL; // buffer at host
char *base;
if (VAR_TYPE_IS_PTR(m_vars_extra[i].type_dst)) {
ptr_data = m_vars[i].into ?
m_vars_extra[i].dst_data :
m_vars_extra[i].src_data;
}
else if (VAR_TYPE_IS_SCALAR(m_vars_extra[i].type_dst)) {
if (m_vars[i].flags.is_static_dstn) {
ptr_data = m_vars[i].into ?
m_vars_extra[i].dst_data :
m_vars_extra[i].src_data;
}
}
dst_buf = ptr_data ? ptr_data->cpu_buf : NULL;
if (dst_buf == NULL) {
base = offload_get_src_base(
m_vars[i].into ?
static_cast<char*>(m_vars[i].into) :
static_cast<char*>(m_vars[i].ptr),
m_vars_extra[i].type_dst);
}
if (m_vars[i].flags.is_non_cont_struct ||
m_vars[i].flags.is_noncont_src ||
m_vars[i].flags.is_noncont_dst) {
receive_noncontiguous_pointer_data(
i, dst_buf, event, received_data,
m_num_in_dependencies, m_p_in_dependencies);
}
else if (dst_buf != 0) {
res = COI::BufferCopy(
dst_buf,
m_vars_extra[i].src_data->mic_buf,
m_vars_extra[i].cpu_offset +
m_vars_extra[i].cpu_disp,
m_vars[i].offset + m_vars[i].disp,
m_vars[i].size,
COI_COPY_UNSPECIFIED,
m_num_in_dependencies,
m_p_in_dependencies,
event);
if (res != COI_SUCCESS) {
if (m_status != 0) {
m_status->result = translate_coi_error(res);
return false;
}
report_coi_error(c_buf_copy, res);
}
}
else {
res = COI::BufferRead(
m_vars_extra[i].src_data->mic_buf,
m_vars[i].offset + m_vars[i].disp,
base + m_vars_extra[i].cpu_offset +
m_vars_extra[i].cpu_disp,
m_vars[i].size,
COI_COPY_UNSPECIFIED,
m_num_in_dependencies,
m_p_in_dependencies,
event);
if (res != COI_SUCCESS) {
if (m_status != 0) {
m_status->result = translate_coi_error(res);
return false;
}
report_coi_error(c_buf_read, res);
}
}
ptr_received += received_data;
}
break;
case c_string_ptr:
case c_data_ptr:
case c_string_ptr_ptr:
case c_data_ptr_ptr:
case c_cean_var_ptr:
case c_cean_var_ptr_ptr:
case c_dv_data:
case c_dv_ptr_data:
case c_dv_data_slice:
case c_dv_ptr_data_slice:
case c_dv_ptr: {
COIBUFFER dst_buf = NULL; // buffer on host
if (m_vars[i].direction.out && m_vars[i].size > 0) {
COIEVENT *event =
(m_stream != no_stream ||
is_async ||
m_in_deps_total > 0 ||
(should_use_async_buffer_read &&
m_vars[i].size >= __offload_use_async_buffer_read)) ?
&m_out_deps[m_out_deps_total++] : 0;
uint64_t dst_offset = 0;
char *base = static_cast<char*>(m_vars[i].ptr);
if (VAR_TYPE_IS_PTR(m_vars_extra[i].type_dst)) {
PtrData *ptr_data = m_vars[i].into ?
m_vars_extra[i].dst_data :
m_vars_extra[i].src_data;
dst_buf = ptr_data ? ptr_data->cpu_buf : NULL;
if (dst_buf == NULL) {
base = m_vars[i].into ?
*static_cast<char**>(m_vars[i].into) :
*static_cast<char**>(m_vars[i].ptr);
}
dst_offset = m_vars_extra[i].cpu_offset +
m_vars_extra[i].cpu_disp;
}
else if (VAR_TYPE_IS_SCALAR(m_vars_extra[i].type_dst)) {
if (m_vars[i].flags.is_static_dstn) {
dst_buf = m_vars[i].into ?
m_vars_extra[i].dst_data->cpu_buf :
m_vars_extra[i].src_data->cpu_buf;
}
if (dst_buf == NULL) {
base = offload_get_src_base(
m_vars[i].into ?
static_cast<char*>(m_vars[i].into) :
static_cast<char*>(m_vars[i].ptr),
m_vars_extra[i].type_dst);
}
dst_offset = m_vars_extra[i].cpu_offset +
m_vars_extra[i].cpu_disp;
}
else if (VAR_TYPE_IS_DV_DATA(m_vars_extra[i].type_dst) ||
VAR_TYPE_IS_DV_DATA_SLICE(m_vars_extra[i].type_dst)) {
PtrData *ptr_data = m_vars[i].into != 0 ?
m_vars_extra[i].dst_data :
m_vars_extra[i].src_data;
dst_buf = ptr_data != 0 ? ptr_data->cpu_buf : 0;
if (dst_buf == NULL) {
base = offload_get_src_base(
m_vars[i].into ?
static_cast<char*>(m_vars[i].into) :
static_cast<char*>(m_vars[i].ptr),
m_vars_extra[i].type_dst);
}
dst_offset = m_vars_extra[i].cpu_offset +
m_vars_extra[i].cpu_disp;
}
if (m_vars[i].flags.is_non_cont_struct ||
m_vars[i].flags.is_noncont_src ||
m_vars[i].flags.is_noncont_dst) {
receive_noncontiguous_pointer_data(
i, dst_buf, event, received_data,
m_num_in_dependencies, m_p_in_dependencies);
}
else if (dst_buf != 0) {
res = COI::BufferCopy(
dst_buf,
m_vars_extra[i].src_data->mic_buf,
dst_offset,
m_vars[i].offset + m_vars[i].disp +
m_vars[i].mic_offset,
m_vars[i].size,
COI_COPY_UNSPECIFIED,
m_num_in_dependencies,
m_p_in_dependencies,
event);
if (res != COI_SUCCESS) {
if (m_status != 0) {
m_status->result = translate_coi_error(res);
return false;
}
report_coi_error(c_buf_copy, res);
}
}
else {
res = COI::BufferRead(
m_vars_extra[i].src_data->mic_buf,
m_vars[i].offset + m_vars[i].disp +
m_vars[i].mic_offset,
base + dst_offset,
m_vars[i].size,
COI_COPY_UNSPECIFIED,
m_num_in_dependencies,
m_p_in_dependencies,
event);
if (res != COI_SUCCESS) {
if (m_status != 0) {
m_status->result = translate_coi_error(res);
return false;
}
report_coi_error(c_buf_read, res);
}
}
ptr_received += received_data;
}
break;
}
default:
break;
}
if (m_vars_extra[i].omp_last_event_type == c_last_read) {
register_omp_event_call_back(&m_out_deps[m_out_deps_total - 1], info);
}
// destroy buffers for obsolete stacks
if (m_destroy_stack.size() != 0) {
for (PtrDataList::iterator it = m_destroy_stack.begin();
it != m_destroy_stack.end(); it++) {
PtrData *ptr_data = *it;
m_destroy_buffers.push_back(ptr_data->mic_buf);
OFFLOAD_TRACE(3, "Removing stack buffer with addr %p\n",
ptr_data->mic_addr);
}
m_destroy_stack.clear();
}
if (m_vars[i].free_if) {
// remove association for automatic variables
if (m_is_openmp) {
if (m_vars_extra[i].auto_data) {
AutoData *auto_data = m_vars_extra[i].auto_data;
if (m_vars[i].flags.always_delete) {
auto_data->nullify_reference();
}
else if (auto_data->remove_reference() == 0) {
m_device.remove_auto_data(auto_data->cpu_addr.start());
}
continue;
}
else {
PtrData *ptr_data = m_vars_extra[i].src_data;
if (ptr_data &&
IS_OPENMP_IMPLICIT_OR_LINK(ptr_data->var_alloc_type)) {
if (ptr_data->get_reference() > 0) {
ptr_data->remove_reference();
}
continue;
}
}
}
// destroy buffers
if (m_vars[i].direction.out || m_vars[i].into == NULL) {
if (!VAR_TYPE_IS_PTR(m_vars_extra[i].type_src) &&
!VAR_TYPE_IS_DV_DATA_SLICE(m_vars_extra[i].type_src) &&
!VAR_TYPE_IS_DV_DATA(m_vars_extra[i].type_src)) {
continue;
}
PtrData *ptr_data = m_vars_extra[i].src_data;
if (ptr_data->remove_reference() == 0) {
// destroy buffers
if (ptr_data->cpu_buf != 0) {
m_destroy_buffers.push_back(ptr_data->cpu_buf);
}
if (ptr_data->mic_buf != 0) {
m_destroy_buffers.push_back(ptr_data->mic_buf);
}
OFFLOAD_TRACE(3, "Removing association for addr %p\n",
ptr_data->cpu_addr.start());
// remove association from map
if (m_vars[i].flags.targetptr) {
m_device.remove_targetptr_data(ptr_data->cpu_addr.start());
}
else {
m_device.remove_ptr_data(ptr_data->cpu_addr.start());
}
}
}
else if (VAR_TYPE_IS_PTR(m_vars_extra[i].type_dst) ||
VAR_TYPE_IS_DV_DATA_SLICE(m_vars_extra[i].type_dst) ||
VAR_TYPE_IS_DV_DATA(m_vars_extra[i].type_dst)) {
PtrData *ptr_data = m_vars_extra[i].dst_data;
if (ptr_data->remove_reference() == 0) {
// destroy buffers
if (ptr_data->cpu_buf != 0) {
m_destroy_buffers.push_back(ptr_data->cpu_buf);
}
if (ptr_data->mic_buf != 0) {
m_destroy_buffers.push_back(ptr_data->mic_buf);
}
OFFLOAD_TRACE(3, "Removing association for addr %p\n",
ptr_data->cpu_addr.start());
// remove association from map
if (m_vars[i].flags.targetptr) {
m_device.remove_targetptr_data(ptr_data->cpu_addr.start());
}
else {
m_device.remove_ptr_data(ptr_data->cpu_addr.start());
}
}
}
}
}
if (m_status) {
m_status->data_received += ptr_received;
}
m_num_in_dependencies = m_out_deps_total ? m_out_deps_total :
m_num_in_dependencies;
m_p_in_dependencies = m_out_deps_total ? m_out_deps : m_p_in_dependencies;
OFFLOAD_TIMER_HOST_RDATA(get_timer_data(), ptr_received);
OFFLOAD_DEBUG_TRACE_1(1, GET_OFFLOAD_NUMBER(get_timer_data()),
c_offload_received_pointer_data,
"Total pointer data received from target: [%lld] bytes\n",
ptr_received);
return true;
}
bool OffloadDescriptor::scatter_copyout_data()
{
OffloadTimer timer(get_timer_data(), c_offload_host_scatter_outputs);
if (m_need_runfunction && m_out_datalen > 0) {
// total size that need to be transferred from target to host
COIMAPINSTANCE map_inst;
COIRESULT res;
char *data;
// output data buffer
if (m_func_desc->data_offset == 0) {
OffloadTimer timer_map(get_timer_data(),
c_offload_host_map_out_data_buffer);
COIRESULT res = COI::BufferMap(m_inout_buf, 0, m_out_datalen,
COI_MAP_READ_ONLY, 0, 0, 0,
&map_inst,
reinterpret_cast<void**>(&data));
if (res != COI_SUCCESS) {
if (m_status != 0) {
m_status->result = translate_coi_error(res);
return false;
}
report_coi_error(c_buf_map, res);
}
}
else {
data = (char*) m_func_desc + m_func_desc->data_offset;
}
// get timing data
OFFLOAD_TIMER_TARGET_DATA(get_timer_data(), data);
data += OFFLOAD_TIMER_DATALEN();
// initialize output marshaller
m_out.init_buffer(data, m_out_datalen);
for (int i = 0; i < m_vars_total; i++) {
bool src_is_for_mic = (m_vars[i].direction.out ||
m_vars[i].into == NULL);
if (m_vars_extra[i].type_src != c_data_ptr_array &&
m_vars[i].flags.preallocated && m_vars[i].alloc_if) {
PtrData *ptr_data;
void *ptr_value;
void ** cpu_ptr = src_is_for_mic ?
reinterpret_cast<void**>(m_vars[i].ptr) :
reinterpret_cast<void**>(m_vars[i].into);
void* alloc_base = NULL;
int64_t alloc_disp = 0;
int64_t alloc_size;
if (m_vars_extra[i].alloc != NULL) {
// array descriptor
const Arr_Desc *ap =
static_cast<const Arr_Desc*>(m_vars_extra[i].alloc);
__arr_data_offset_and_length(ap, alloc_disp, alloc_size);
alloc_base = reinterpret_cast<void*>(ap->base);
}
// get pointer to target memory
m_out.receive_data(&ptr_value, sizeof(void*));
// add new entry
if (!alloc_ptr_data(
ptr_data,
ptr_value,
(alloc_base != NULL) ?
alloc_disp : m_vars[i].disp,
(alloc_base != NULL) ?
alloc_size : m_vars[i].size,
alloc_disp,
0,
m_vars[i].flags.targetptr,
m_vars[i].flags.preallocated,
m_vars[i].flags.pin)) {
return false;
}
ptr_data->add_reference();
*cpu_ptr = ptr_value;
if (src_is_for_mic) {
m_vars_extra[i].src_data = ptr_data;
}
else {
m_vars_extra[i].dst_data = ptr_data;
}
m_vars[i].offset = (char*) ptr_value -
(char*) ptr_data->cpu_addr.start();
}
switch (m_vars_extra[i].type_src) {
case c_data_ptr_array:
break;
case c_data:
case c_void_ptr:
case c_void_ptr_ptr:
case c_cean_var:
if (m_vars[i].direction.out &&
!m_vars[i].flags.is_static) {
if (m_vars[i].into) {
char *ptr = offload_get_src_base(
static_cast<char*>(m_vars[i].into),
m_vars_extra[i].type_dst);
m_out.receive_data(ptr + m_vars_extra[i].cpu_disp,
m_vars[i].size);
}
else {
m_out.receive_data(
static_cast<char*>(m_vars[i].ptr) +
m_vars_extra[i].cpu_disp,
m_vars[i].size);
}
}
break;
case c_func_ptr:
case c_func_ptr_ptr:
if (m_vars[i].direction.out) {
m_out.receive_func_ptr((const void**) m_vars[i].ptr);
}
break;
default:
break;
}
}
if (m_status) {
m_status->data_received += m_out.get_tfr_size();
}
if (m_func_desc->data_offset == 0) {
OffloadTimer timer_unmap(get_timer_data(),
c_offload_host_unmap_out_data_buffer);
COIRESULT res = COI::BufferUnmap(map_inst, 0, 0, 0);
if (res != COI_SUCCESS) {
if (m_status != 0) {
m_status->result = translate_coi_error(res);
return false;
}
report_coi_error(c_buf_unmap, res);
}
}
}
OFFLOAD_TIMER_HOST_RDATA(get_timer_data(), m_out.get_tfr_size());
OFFLOAD_TRACE(1, "Total copyout data received from target: [%lld] bytes\n",
m_out.get_tfr_size());
return true;
}
static void get_arr_desc_numbers(
const Arr_Desc *ap,
int64_t el_size,
int64_t &offset,
int64_t &size,
int &el_number,
CeanReadRanges* &ptr_ranges
)
{
if (is_arr_desc_contiguous(ap)) {
ptr_ranges = NULL;
__arr_data_offset_and_length(ap, offset, size);
el_number = size / el_size;
}
else {
ptr_ranges = init_read_ranges_arr_desc(ap);
el_number = (ptr_ranges->range_size / el_size) *
ptr_ranges->range_max_number;
size = ptr_ranges->range_size;
}
}
bool OffloadDescriptor::gen_var_descs_for_pointer_array(int i)
{
int pointers_number;
int tmp_val;
int new_index = m_vars_total;
const Arr_Desc *ap;
const VarDesc3 *vd3 = static_cast<const VarDesc3*>(m_vars[i].ptr);
int flags = vd3->array_fields;
bool src_is_for_mic = (m_vars[i].direction.out ||
m_vars[i].into == NULL);
ReadArrElements<void *> ptr;
ReadArrElements<void *> into;
ReadArrElements<int64_t> ext_start;
ReadArrElements<int64_t> ext_elements;
ReadArrElements<int64_t> align;
ReadArrElements<int64_t> alloc_if;
ReadArrElements<int64_t> free_if;
ReadArrElements<int64_t> into_start;
ReadArrElements<int64_t> into_elem;
ReadArrElements<int64_t> alloc_start;
ReadArrElements<int64_t> alloc_elem;
ap = static_cast<const Arr_Desc*>(vd3->ptr_array);
// "pointers_number" for total number of transferred pointers.
// For each of them we create new var_desc and put it at the bottom
// of the var_desc's array
get_arr_desc_numbers(ap, sizeof(void *), ptr.offset, ptr.size,
pointers_number, ptr.ranges);
ptr.base = reinterpret_cast<char*>(ap->base);
// 2. prepare memory for new var_descs
m_vars_total += pointers_number;
m_vars = (VarDesc*)realloc(m_vars, m_vars_total * sizeof(VarDesc));
if (m_vars == NULL)
LIBOFFLOAD_ERROR(c_malloc);
m_vars_extra =
(VarExtra*)realloc(m_vars_extra, m_vars_total * sizeof(VarExtra));
if (m_vars_extra == NULL)
LIBOFFLOAD_ERROR(c_malloc);
m_in_deps =
(COIEVENT*)realloc(m_in_deps, sizeof(COIEVENT) * (m_vars_total + 1));
if (m_in_deps == NULL)
LIBOFFLOAD_ERROR(c_malloc);
m_out_deps =
(COIEVENT*)realloc(m_out_deps, sizeof(COIEVENT) * m_vars_total);
if (m_out_deps == NULL)
LIBOFFLOAD_ERROR(c_malloc);
// 3. Prepare for reading new var_desc's fields
// EXTENT START
if ((flags & (1<<flag_extent_start_is_array)) != 0) {
ap = static_cast<const Arr_Desc*>(vd3->extent_start);
get_arr_desc_numbers(ap, ap->dim[ap->rank - 1].size, ext_start.offset,
ext_start.size, tmp_val, ext_start.ranges);
ext_start.base = reinterpret_cast<char*>(ap->base);
ext_start.el_size = ap->dim[ap->rank - 1].size;
if (tmp_val < pointers_number) {
LIBOFFLOAD_ERROR(c_pointer_array_mismatch, "extent start");
return false;
}
}
else if ((flags & (1<<flag_extent_start_is_scalar)) != 0) {
ext_start.val = (int64_t)vd3->extent_start;
}
else {
ext_start.val = 0;
}
// EXTENT ELEMENTS NUMBER
if ((flags & (1<<flag_extent_elements_is_array)) != 0) {
ap = static_cast<const Arr_Desc*>(vd3->extent_elements);
get_arr_desc_numbers(ap, ap->dim[ap->rank - 1].size,
ext_elements.offset, ext_elements.size,
tmp_val, ext_elements.ranges);
ext_elements.base = reinterpret_cast<char*>(ap->base);
ext_elements.el_size = ap->dim[ap->rank - 1].size;
if (tmp_val < pointers_number) {
LIBOFFLOAD_ERROR(c_pointer_array_mismatch, "extent elements");
return false;
}
}
else if ((flags & (1<<flag_extent_elements_is_scalar)) != 0) {
ext_elements.val = (int64_t)vd3->extent_elements;
}
else {
ext_elements.val = m_vars[i].count;
}
// ALLOC_IF
if ((flags & (1<<flag_alloc_if_is_array)) != 0) {
ap = static_cast<const Arr_Desc*>(vd3->alloc_if_array);
get_arr_desc_numbers(ap, ap->dim[ap->rank - 1].size, alloc_if.offset,
alloc_if.size, tmp_val, alloc_if.ranges);
alloc_if.base = reinterpret_cast<char*>(ap->base);
alloc_if.el_size = ap->dim[ap->rank - 1].size;
if (tmp_val < pointers_number) {
LIBOFFLOAD_ERROR(c_pointer_array_mismatch, "alloc_if");
return false;
}
}
else {
alloc_if.val = m_vars[i].alloc_if;
}
// FREE_IF
if ((flags & (1<<flag_free_if_is_array)) != 0) {
ap = static_cast<const Arr_Desc*>(vd3->free_if_array);
get_arr_desc_numbers(ap, ap->dim[ap->rank - 1].size, free_if.offset,
free_if.size, tmp_val, free_if.ranges);
free_if.base = reinterpret_cast<char*>(ap->base);
free_if.el_size = ap->dim[ap->rank - 1].size;
if (tmp_val < pointers_number) {
LIBOFFLOAD_ERROR(c_pointer_array_mismatch, "free_if");
return false;
}
}
else {
free_if.val = m_vars[i].free_if;
}
// ALIGN
if ((flags & (1<<flag_align_is_array)) != 0) {
ap = static_cast<const Arr_Desc*>(vd3->align_array);
get_arr_desc_numbers(ap, ap->dim[ap->rank - 1].size, align.offset,
align.size, tmp_val, align.ranges);
align.base = reinterpret_cast<char*>(ap->base);
align.el_size = ap->dim[ap->rank - 1].size;
if (tmp_val < pointers_number) {
LIBOFFLOAD_ERROR(c_pointer_array_mismatch, "align");
return false;
}
}
else {
align.val = m_vars[i].align;
}
// 3.1 INTO
if (m_vars[i].into) {
ap = static_cast<const Arr_Desc*>(m_vars[i].into);
get_arr_desc_numbers(ap, ap->dim[ap->rank - 1].size, into.offset,
into.size, tmp_val, into.ranges);
into.base = reinterpret_cast<char*>(ap->base);
if (tmp_val < pointers_number) {
LIBOFFLOAD_ERROR(c_pointer_array_mismatch, "into");
return false;
}
}
// 3.2 INTO_START
if ((flags & (1<<flag_into_start_is_array)) != 0) {
ap = static_cast<const Arr_Desc*>(vd3->into_start);
get_arr_desc_numbers(ap, ap->dim[ap->rank - 1].size, into_start.offset,
into_start.size, tmp_val, into_start.ranges);
into_start.base = reinterpret_cast<char*>(ap->base);
into_start.el_size = ap->dim[ap->rank - 1].size;
if (tmp_val < pointers_number) {
LIBOFFLOAD_ERROR(c_pointer_array_mismatch, "into_extent start");
return false;
}
}
else if ((flags & (1<<flag_into_start_is_scalar)) != 0) {
into_start.val = (int64_t)vd3->into_start;
}
else {
into_start.val = 0;
}
// 3.3 INTO_ELEMENTS
if ((flags & (1<<flag_into_elements_is_array)) != 0) {
ap = static_cast<const Arr_Desc*>(vd3->into_elements);
get_arr_desc_numbers(ap, ap->dim[ap->rank - 1].size, into_elem.offset,
into_elem.size, tmp_val, into_elem.ranges);
into_elem.base = reinterpret_cast<char*>(ap->base);
into_elem.el_size = ap->dim[ap->rank - 1].size;
if (tmp_val < pointers_number) {
LIBOFFLOAD_ERROR(c_pointer_array_mismatch, "into_extent elements");
return false;
}
}
else if ((flags & (1<<flag_into_elements_is_scalar)) != 0) {
into_elem.val = (int64_t)vd3->into_elements;
}
else {
into_elem.val = m_vars[i].count;
}
// alloc_start
if ((flags & (1<<flag_alloc_start_is_array)) != 0) {
ap = static_cast<const Arr_Desc*>(vd3->alloc_start);
get_arr_desc_numbers(ap, ap->dim[ap->rank - 1].size,
alloc_start.offset, alloc_start.size, tmp_val,
alloc_start.ranges);
alloc_start.base = reinterpret_cast<char*>(ap->base);
alloc_start.el_size = ap->dim[ap->rank - 1].size;
if (tmp_val < pointers_number) {
LIBOFFLOAD_ERROR(c_pointer_array_mismatch, "alloc_extent start");
return false;
}
}
else if ((flags & (1<<flag_alloc_start_is_scalar)) != 0) {
alloc_start.val = (int64_t)vd3->alloc_start;
}
else {
alloc_start.val = 0;
}
// alloc_elem
if ((flags & (1<<flag_alloc_elements_is_array)) != 0) {
ap = static_cast<const Arr_Desc*>(vd3->alloc_elements);
get_arr_desc_numbers(ap, ap->dim[ap->rank - 1].size, alloc_elem.offset,
alloc_elem.size, tmp_val, alloc_elem.ranges);
alloc_elem.base = reinterpret_cast<char*>(ap->base);
alloc_elem.el_size = ap->dim[ap->rank - 1].size;
if (tmp_val < pointers_number) {
LIBOFFLOAD_ERROR(c_pointer_array_mismatch,
"alloc_extent elements");
return false;
}
}
else if ((flags & (1<<flag_alloc_elements_is_scalar)) != 0) {
alloc_elem.val = (int64_t)vd3->alloc_elements;
}
else {
alloc_elem.val = 0;
}
for (int k = 0; k < pointers_number; k++) {
int type = flags & 0x3f;
int type_src, type_dst;
// Get new values
// type_src, type_dst
type_src = type_dst = (type == c_data_ptr_array) ?
c_data_ptr : (type == c_func_ptr_array) ?
c_func_ptr : (type == c_void_ptr_array) ?
c_void_ptr : (type == c_string_ptr_array) ?
c_string_ptr : 0;
// Get ptr val
if (!ptr.read_next(true)) {
break;
}
else {
ptr.val = (void*)(ptr.base + ptr.offset);
}
// !!! If we got error at phase of reading - it's an internal
// !!! error, as we must detect mismatch before
// Get into val
if (m_vars[i].into) {
if (!into.read_next(true)) {
LIBOFFLOAD_ERROR(c_pointer_array_mismatch, "into");
LIBOFFLOAD_ABORT;
}
else {
into.val = (void*)(into.base + into.offset);
}
}
// Get other components of the clause
if (!ext_start.read_next(flags & (1<<flag_extent_start_is_array))) {
LIBOFFLOAD_ERROR(c_pointer_array_mismatch, "extent start");
LIBOFFLOAD_ABORT;
}
if (!ext_elements.read_next(
flags & (1<<flag_extent_elements_is_array))) {
LIBOFFLOAD_ERROR(c_pointer_array_mismatch, "extent elements");
LIBOFFLOAD_ABORT;
}
if (!alloc_if.read_next(flags & (1<<flag_alloc_if_is_array))) {
LIBOFFLOAD_ERROR(c_pointer_array_mismatch, "alloc_if");
LIBOFFLOAD_ABORT;
}
if (!free_if.read_next(flags & (1<<flag_free_if_is_array))) {
LIBOFFLOAD_ERROR(c_pointer_array_mismatch, "free_if");
LIBOFFLOAD_ABORT;
}
if (!align.read_next(flags & (1<<flag_align_is_array))) {
LIBOFFLOAD_ERROR(c_pointer_array_mismatch, "align");
LIBOFFLOAD_ABORT;
}
if (!into_start.read_next(flags & (1<<flag_into_start_is_array))) {
LIBOFFLOAD_ERROR(c_pointer_array_mismatch, "into_extent start");
LIBOFFLOAD_ABORT;
}
if (!into_elem.read_next(flags & (1<<flag_into_elements_is_array))) {
LIBOFFLOAD_ERROR(c_pointer_array_mismatch, "into_extent elements");
LIBOFFLOAD_ABORT;
}
if (!alloc_start.read_next(flags & (1<<flag_alloc_start_is_array))) {
LIBOFFLOAD_ERROR(c_pointer_array_mismatch, "alloc_extent start");
LIBOFFLOAD_ABORT;
}
if (!alloc_elem.read_next(
flags & (1<<flag_alloc_elements_is_array))) {
LIBOFFLOAD_ERROR(c_pointer_array_mismatch, "alloc_extent elements");
LIBOFFLOAD_ABORT;
}
m_vars[new_index + k].direction.bits = m_vars[i].direction.bits;
m_vars[new_index + k].alloc_if = alloc_if.val;
m_vars[new_index + k].free_if = free_if.val;
m_vars[new_index + k].align = align.val;
m_vars[new_index + k].mic_offset = 0;
m_vars[new_index + k].flags.bits = m_vars[i].flags.bits;
m_vars[new_index + k].flags.is_pointer = 0;
m_vars[new_index + k].offset = 0;
m_vars[new_index + k].size = m_vars[i].size;
m_vars[new_index + k].flags.targetptr = m_vars[i].flags.targetptr;
m_vars[new_index + k].flags.preallocated =
m_vars[i].flags.preallocated;
if (ext_start.val == 0) {
m_vars[new_index + k].count = ext_elements.val;
m_vars[new_index + k].ptr = ptr.val;
if (type_src == c_string_ptr) {
m_vars[new_index + k].size = 0;
}
}
else {
m_vars[new_index + k].count = 0;
m_vars[new_index + k].ptr =
static_cast<void*>(make_arr_desc(
ptr.val,
ext_start.val,
ext_elements.val,
m_vars[i].size));
type_src = type_src == c_data_ptr ? c_cean_var_ptr :
c_string_ptr ? c_cean_var_ptr :
type_src;
if (!m_vars[i].into) {
type_dst = type_src;
}
}
if (m_vars[i].into && into_elem.val != 0) {
m_vars[new_index + k].into =
static_cast<void*>(make_arr_desc(
into.val,
into_start.val,
into_elem.val,
m_vars[i].size));
type_dst = (type == c_data_ptr_array) ? c_cean_var_ptr :
(type == c_string_ptr_array) ? c_cean_var_ptr :
type_src;
}
else {
m_vars[new_index + k].into = NULL;
}
if (alloc_elem.val != 0) {
m_vars[new_index + k].alloc =
static_cast<void*>(make_arr_desc(
ptr.val,
alloc_start.val,
alloc_elem.val,
m_vars[i].size));
}
else {
m_vars[new_index + k].alloc = NULL;
}
m_vars[new_index + k].type.src =
m_vars_extra[new_index + k].type_src = type_src;
m_vars[new_index + k].type.dst =
m_vars_extra[new_index + k].type_dst = type_dst;
m_vars_extra[new_index + k].alloc = m_vars[new_index + k].alloc;
m_vars_extra[new_index + k].is_arr_ptr_el = 1;
m_vars_extra[new_index + k].ptr_arr_offset =
src_is_for_mic ? ptr.offset : into.offset;
}
// count and alloc fields are useless at target. They can be reused
// for pointer arrays.
m_vars[i].count = pointers_number;
m_vars[i].ptr_arr_offset = new_index;
return true;
}
// Gets in dependencies of the previous offload via the stream "m_stream".
// Out argument in_deps_amount - address of amount of the dependencies
// Out argument in_deps - address of array of dependencies.
// Description of the dependencies scheme for streams :
// ----------------------------------------------------
// Every offload forms DAG consisted of 3 nodes:
// for in-transfers, runfunction and out-transfers.
// Every node has in-dependencies and out-dependencies
// Out-dependencies of previous node forms in-dependencies of current node.
// In-dependencies of 1-st node (of in-transfers) without streams is equal
// to NULL. For streams in-dependencies of 1-st node is equal to list of out
// dependencies of last node of previous offload via this stream.
// So we can say that DAGs of 2 consequent offloads via the same stream are
// connected by the way described above.
void OffloadDescriptor::get_stream_in_dependencies(
uint32_t &in_deps_amount,
COIEVENT* &in_deps
)
{
if (m_stream != no_stream && m_stream != 0) {
Stream * stream = Stream::find_stream(m_stream, false);
if (!stream) {
LIBOFFLOAD_ERROR(c_offload_no_stream,
m_device.get_logical_index());
LIBOFFLOAD_ABORT;
}
OffloadDescriptor* offload = stream->get_last_offload();
// if it's the first offload in the stream
if (!offload) {
return;
}
// if last offload has out-tranfers
if (offload->m_out_deps_total) {
in_deps_amount = offload->m_out_deps_total;
in_deps = offload->m_out_deps;
}
// last offload only sends pointer data or run function or both of them
// and has no out-transfers
else if (offload->m_in_deps_total) {
in_deps_amount = offload->m_in_deps_total;
in_deps = offload->m_in_deps;
}
}
}
static void __offload_fini_library(void)
{
OFFLOAD_DEBUG_TRACE(2, "Cleanup offload library ...\n");
if (mic_engines_total > 0) {
delete[] mic_engines;
mic_engines_total = 0;
if (mic_proxy_fs_root != 0) {
free(mic_proxy_fs_root);
mic_proxy_fs_root = 0;
}
if (knc_library_path != 0) {
free(knc_library_path);
knc_library_path = 0;
}
if (knl_library_path != 0) {
free(knl_library_path);
knl_library_path = 0;
}
// destroy thread key
thread_key_delete(mic_thread_key);
}
// unload COI library
if (COI::is_available) {
COI::fini();
}
OFFLOAD_DEBUG_TRACE(2, "Cleanup offload library ... done\n");
}
typedef std::pair<int, micLcpuMask*> deviceLcpu;
typedef std::list<deviceLcpu> deviceLcpuList;
static int process_offload_devices(
const char *env_var,
uint32_t num_devices,
deviceLcpuList &device_cpu_list
)
{
// Value is composed of comma separated physical device index
// optionally qualified by logical CPU subset, e.g. 0[60,70-80]
char *buf = strdup(env_var);
if (buf == NULL)
LIBOFFLOAD_ERROR(c_malloc);
char *str = buf;
bool device_set_finished = false;
int num_devices_specified = 0;
do {
char *dev_ptr = str;
int dev_len = strcspn(str, "[,");
micLcpuMask* cpu_mask = 0;
if (str[dev_len] == '[') {
// CPU subset specified
cpu_mask = new micLcpuMask;
cpu_mask->reset();
char *cpu_ptr = str + dev_len + 1;
do {
int64_t cnum;
bool cpu_set_finished = false;
int cpu_len = strcspn(cpu_ptr, ",-]");
if (cpu_ptr[cpu_len] == ',' || cpu_ptr[cpu_len] == ']') {
// A single CPU specified
cpu_set_finished = cpu_ptr[cpu_len] == ']';
cpu_ptr[cpu_len] = '\0';
// Convert cpu string to an int
if (!__offload_parse_int_string(cpu_ptr, cnum)) {
LIBOFFLOAD_ERROR(c_mic_init7);
delete cpu_mask;
free(buf);
return 0;
} else {
OFFLOAD_DEBUG_TRACE(3,
"Single CPU %d selected\n", cnum);
cpu_mask->set(cnum);
}
cpu_ptr = cpu_ptr + cpu_len + 1;
if (cpu_set_finished) {
break;
}
} else if (cpu_ptr[cpu_len] == '-') {
int64_t range_start, range_end;
// A range of CPUs specified
cpu_ptr[cpu_len] = '\0';
// Convert cpu string to an int
if (!__offload_parse_int_string(cpu_ptr, range_start)) {
LIBOFFLOAD_ERROR(c_mic_init8);
delete cpu_mask;
free(buf);
return 0;
} else {
OFFLOAD_DEBUG_TRACE(3,
"Start of CPU range specified as %d\n",
range_start);
cpu_ptr = cpu_ptr + cpu_len + 1;
cpu_len = strcspn(cpu_ptr, ",]");
if (cpu_ptr[cpu_len] == ',' ||
cpu_ptr[cpu_len] == ']') {
cpu_set_finished = cpu_ptr[cpu_len] == ']';
cpu_ptr[cpu_len] = '\0';
// Convert cpu string to an int
if (!__offload_parse_int_string(
cpu_ptr, range_end)) {
LIBOFFLOAD_ERROR(c_mic_init9);
delete cpu_mask;
free(buf);
return 0;
} else {
OFFLOAD_DEBUG_TRACE(3,
"End of CPU range specified as %d\n",
range_end);
if (range_end < range_start) {
LIBOFFLOAD_ERROR(c_mic_init10);
delete cpu_mask;
free(buf);
return 0;
} else {
for (int i=range_start; i<=range_end; i++)
{
OFFLOAD_DEBUG_TRACE(3,
"CPU %d selected as part of range\n",
i);
cpu_mask->set(i);
}
cpu_ptr = cpu_ptr + cpu_len + 1;
if (cpu_set_finished) {
break;
}
}
}
} else {
LIBOFFLOAD_ERROR(c_mic_init10);
delete cpu_mask;
free(buf);
return 0;
}
}
} else {
// Error: expected , or - or ]
LIBOFFLOAD_ERROR(c_mic_init11);
delete cpu_mask;
free(buf);
return 0;
}
} while (true);
// Point to next device specification
str = cpu_ptr;
if (*str == '\0') {
device_set_finished = true;
} else {
// Skip the comma after a device specification
str++;
}
} else if (str[dev_len] == ',') {
// CPU subset not specified
// Point to next device specification
str = str + dev_len + 1;
} else {
// No more device specifications
device_set_finished = true;
}
dev_ptr[dev_len] = '\0';
// Convert device string to an int
int64_t num;
if (!__offload_parse_int_string(dev_ptr, num)) {
LIBOFFLOAD_ERROR(c_mic_init5);
delete cpu_mask;
free(buf);
return 0;
}
if (num < 0 || num >= num_devices) {
LIBOFFLOAD_ERROR(c_mic_init6, num);
delete cpu_mask;
free(buf);
return 0;
}
OFFLOAD_DEBUG_TRACE(3, "Offloadable MIC = %d\n", num);
// Save the specified physical device and cpu mask
device_cpu_list.push_back(make_pair(num, cpu_mask));
num_devices_specified++;
if (device_set_finished) {
break;
}
} while (true);
free(buf);
return num_devices_specified;
}
static void __offload_init_library_once(void)
{
COIRESULT res;
uint32_t num_devices;
deviceLcpuList device_cpu_list;
prefix = report_get_message_str(c_report_host);
// initialize trace
const char *env_var = getenv(htrace_envname);
if (env_var != 0 && *env_var != '\0') {
int64_t new_val;
if (__offload_parse_int_string(env_var, new_val)) {
console_enabled = new_val & 0x0f;
}
}
OFFLOAD_DEBUG_TRACE(2, "---- Start of environment variable processing\n");
env_var = getenv(offload_report_envname);
if (env_var != 0 && *env_var != '\0') {
OFFLOAD_DEBUG_TRACE(2, "---- %s=%s\n",
offload_report_envname, env_var);
int64_t env_val;
if (__offload_parse_int_string(env_var, env_val)) {
if (env_val == OFFLOAD_REPORT_1 ||
env_val == OFFLOAD_REPORT_2 ||
env_val == OFFLOAD_REPORT_3) {
offload_report_level = env_val;
OFFLOAD_DEBUG_TRACE(2, "Offload report level set to %d\n",
offload_report_level);
}
else {
LIBOFFLOAD_ERROR(c_invalid_env_report_value,
offload_report_envname);
}
}
else {
LIBOFFLOAD_ERROR(c_invalid_env_var_int_value,
offload_report_envname);
}
}
else if (!offload_report_level) {
env_var = getenv(timer_envname);
if (env_var != 0 && *env_var != '\0') {
OFFLOAD_DEBUG_TRACE(2, "---- %s=%s\n", timer_envname, env_var);
timer_enabled = atoi(env_var);
OFFLOAD_DEBUG_TRACE(2, "Timer enable flag set to %d\n",
timer_enabled);
}
}
// initialize COI
if (!COI::init()) {
return;
}
// Process OFFLOAD_NODES, specification of physical MICs available
env_var = getenv("OFFLOAD_NODES");
if (env_var != 0 && *env_var != '\0') {
OFFLOAD_DEBUG_TRACE(2, "---- OFFLOAD_NODES=%s\n", env_var);
// Pass env var on to COI
char * new_env_var =
(char*) malloc(sizeof("COI_OFFLOAD_NODES=") +
strlen(env_var) + 1);
if (new_env_var == NULL)
LIBOFFLOAD_ERROR(c_malloc);
sprintf(new_env_var, "COI_OFFLOAD_NODES=%s", env_var);
putenv(new_env_var);
OFFLOAD_DEBUG_TRACE(2, "Setting COI_OFFLOAD_NODES = %s \n", getenv("COI_OFFLOAD_NODES"));
// value is composed of comma separated physical device indexes
char *buf = strdup(env_var);
if (buf == NULL)
LIBOFFLOAD_ERROR(c_malloc);
char *str, *ptr;
int num_mics = 0;
for (str = strtok_r(buf, ",", &ptr); str != 0;
str = strtok_r(0, ",", &ptr)) {
// count this MIC
num_mics++;
}
OFFLOAD_DEBUG_TRACE(2, "Number of offloadable MICs = %d\n", num_mics);
free(buf);
}
else {
OFFLOAD_DEBUG_TRACE(2, "OFFLOAD_NODES is not set\n");
}
// get number of devices installed in the system
res = COI::EngineGetCount(COI_ISA_MIC, &num_devices);
if (res != COI_SUCCESS) {
return;
}
if (num_devices > MIC_ENGINES_MAX) {
num_devices = MIC_ENGINES_MAX;
}
// Determine devices & cpus that can be used for offloading
env_var = getenv("OFFLOAD_DEVICES");
if (env_var != 0 && *env_var != '\0') {
OFFLOAD_DEBUG_TRACE(2, "---- OFFLOAD_DEVICES=%s\n", env_var);
if (strcasecmp(env_var, "none") != 0) {
mic_engines_total =
process_offload_devices(
env_var, num_devices, device_cpu_list);
if (mic_engines_total > 0) {
OFFLOAD_DEBUG_TRACE(2, "Valid value, %d device(s) specified\n",
mic_engines_total);
}
else {
OFFLOAD_DEBUG_TRACE(2, "Invalid value, will not offload\n");
return;
}
}
else {
// No need to continue since no offload devices
return;
}
}
else {
OFFLOAD_DEBUG_TRACE(2, "OFFLOAD_DEVICES is not set\n");
}
if (mic_engines_total == 0) {
// Fallback to using all available devices and all CPUs on each
OFFLOAD_DEBUG_TRACE(2, "Fallback to all devices\n");
device_cpu_list.clear();
mic_engines_total = 0;
for (int i = 0; i < num_devices; i++) {
COIENGINE engine;
res = COI::EngineGetHandle(COI_ISA_MIC, i, &engine);
if (res == COI_SUCCESS) {
device_cpu_list.push_back(make_pair(i, (micLcpuMask*)0));
OFFLOAD_DEBUG_TRACE(2, "Device %d is available\n", i);
mic_engines_total++;
}
}
}
// no need to continue if there are no devices to offload to
if (mic_engines_total <= 0) {
return;
}
// Initialize indexes for available devices
mic_engines = new Engine[mic_engines_total];
std::list<deviceLcpu>::iterator deviceIterator;
int l_idx = 0;
for (deviceIterator = device_cpu_list.begin();
deviceIterator != device_cpu_list.end();
deviceIterator++)
{
deviceLcpu device_mask_pair = *deviceIterator;
int device_num = device_mask_pair.first;
micLcpuMask *device_mask = device_mask_pair.second;
mic_engines[l_idx].set_indexes(l_idx, device_num);
mic_engines[l_idx].set_cpu_mask(device_mask);
OFFLOAD_DEBUG_TRACE(2,
"Logical MIC%d => Physical MIC%d\n", l_idx, device_num);
if (device_mask != NULL) {
std::string cpu_string =
device_mask->to_string<
char,
std::string::traits_type,
std::string::allocator_type>();
OFFLOAD_DEBUG_TRACE(2, " CPUs: %s\n", cpu_string.data());
}
else {
OFFLOAD_DEBUG_TRACE(2, " CPUs: all\n");
}
l_idx++;
}
// Get DMA channel count to pass it to COI
env_var = getenv("OFFLOAD_DMA_CHANNEL_COUNT");
if (env_var != 0 && *env_var != '\0') {
OFFLOAD_DEBUG_TRACE(2, "---- OFFLOAD_DMA_CHANNEL_COUNT=%s\n", env_var);
int64_t new_val;
if (__offload_parse_int_string(env_var, new_val)) {
mic_dma_channel_count = new_val;
OFFLOAD_DEBUG_TRACE(2, "Using %d DMA channels\n",
mic_dma_channel_count);
}
else {
LIBOFFLOAD_ERROR(c_invalid_env_var_value,
"OFFLOAD_DMA_CHANNEL_COUNT");
}
}
else {
OFFLOAD_DEBUG_TRACE(2, "OFFLOAD_DMA_CHANNEL_COUNT is not set\n");
}
// Set COI_HOST_THREAD_AFFINITY if OFFLOAD_HOST_THREAD_AFFINITY is set.
// Use putenv instead of setenv as Windows has no setenv.
// Note: putenv requires its argument can't be freed or modified.
// So no free after call to putenv or elsewhere.
env_var = getenv("OFFLOAD_HOST_THREAD_AFFINITY");
if (env_var != 0 && *env_var != '\0') {
OFFLOAD_DEBUG_TRACE(2, "---- OFFLOAD_HOST_THREAD_AFFINITY=%s\n", env_var);
char * new_env_var =
(char*) malloc(sizeof("COI_HOST_THREAD_AFFINITY=") +
strlen(env_var) + 1);
if (new_env_var == NULL)
LIBOFFLOAD_ERROR(c_malloc);
sprintf(new_env_var, "COI_HOST_THREAD_AFFINITY=%s", env_var);
putenv(new_env_var);
OFFLOAD_DEBUG_TRACE(2, "Setting COI_HOST_THREAD_AFFINITY = %s \n",
getenv("COI_HOST_THREAD_AFFINITY"));
}
else {
OFFLOAD_DEBUG_TRACE(2, "OFFLOAD_HOST_THREAD_AFFINITY is not set\n");
}
// library search path for KNC device binaries
env_var = getenv("MIC_LD_LIBRARY_PATH");
if (env_var != 0) {
OFFLOAD_DEBUG_TRACE(2, "---- MIC_LD_LIBRARY_PATH=%s\n", env_var);
knc_library_path = strdup(env_var);
if (knc_library_path == NULL)
LIBOFFLOAD_ERROR(c_malloc);
OFFLOAD_DEBUG_TRACE(2, "KNC library path set to %s\n", knc_library_path);
}
else {
OFFLOAD_DEBUG_TRACE(2, "MIC_LD_LIBRARY_PATH is not set\n");
}
// library search path for KNL device binaries
env_var = getenv("LD_LIBRARY_PATH");
if (env_var != 0) {
OFFLOAD_DEBUG_TRACE(2, "---- LD_LIBRARY_PATH=%s\n", env_var);
knl_library_path = strdup(env_var);
if (knl_library_path == NULL)
LIBOFFLOAD_ERROR(c_malloc);
OFFLOAD_DEBUG_TRACE(2, "KNL library path set to %s\n", knl_library_path);
}
else {
OFFLOAD_DEBUG_TRACE(2, "LD_LIBRARY_PATH is not set\n");
}
// memory size reserved for COI buffers
env_var = getenv("MIC_BUFFERSIZE");
if (env_var != 0 && *env_var != '\0') {
OFFLOAD_DEBUG_TRACE(2, "---- MIC_BUFFERSIZE=%s\n", env_var);
uint64_t new_size;
if (__offload_parse_size_string(env_var, new_size)) {
mic_buffer_size = new_size;
OFFLOAD_DEBUG_TRACE(2,
"Reserved memory for COI buffers set to %lld bytes\n",
mic_buffer_size);
}
else {
LIBOFFLOAD_ERROR(c_invalid_env_var_value, "MIC_BUFFERSIZE");
}
}
else {
OFFLOAD_DEBUG_TRACE(2, "MIC_BUFFERSIZE is not set\n");
}
// memory size reserved for 4K pages for COI buffers
env_var = getenv("MIC_4K_BUFFER_RESERVE_SIZE");
if (env_var != 0 && *env_var != '\0') {
OFFLOAD_DEBUG_TRACE(2, "---- MIC_4K_BUFFER_RESERVE_SIZE=%s\n", env_var);
uint64_t new_size;
if (__offload_parse_size_string(env_var, new_size)) {
mic_4k_buffer_size = new_size;
OFFLOAD_DEBUG_TRACE(2,
"Reserved memory for 4K COI buffers set to %lld bytes\n",
mic_4k_buffer_size);
}
else {
LIBOFFLOAD_ERROR(c_invalid_env_var_value, "MIC_4K_BUFFER_RESERVE_SIZE");
}
}
else {
OFFLOAD_DEBUG_TRACE(2, "MIC_4K_BUFFER_RESERVE_SIZE is not set\n");
}
// memory size reserved for 2M pages for COI buffers
env_var = getenv("MIC_2M_BUFFER_RESERVE_SIZE");
if (env_var != 0 && *env_var != '\0') {
OFFLOAD_DEBUG_TRACE(2, "---- MIC_2M_BUFFER_RESERVE_SIZE=%s\n", env_var);
uint64_t new_size;
if (__offload_parse_size_string(env_var, new_size)) {
mic_2m_buffer_size = new_size;
OFFLOAD_DEBUG_TRACE(2,
"Reserved memory for 2M COI buffers set to %lld bytes\n",
mic_2m_buffer_size);
}
else {
LIBOFFLOAD_ERROR(c_invalid_env_var_value,
"MIC_2M_BUFFER_RESERVE_SIZE");
}
}
else {
OFFLOAD_DEBUG_TRACE(2, "MIC_2M_BUFFER_RESERVE_SIZE is not set\n");
}
// determine stacksize for the pipeline on the device
env_var = getenv("MIC_STACKSIZE");
if (env_var != 0 && *env_var != '\0') {
OFFLOAD_DEBUG_TRACE(2, "---- MIC_STACKSIZE=%s\n", env_var);
uint64_t new_size;
if (__offload_parse_size_string(env_var, new_size) &&
(new_size >= 16384) && ((new_size & 4095) == 0)) {
mic_stack_size = new_size;
OFFLOAD_DEBUG_TRACE(2, "MIC stack size set to %lld bytes\n",
mic_stack_size);
}
else {
LIBOFFLOAD_ERROR(c_mic_init3);
}
}
else {
OFFLOAD_DEBUG_TRACE(2, "MIC_STACKSIZE is not set\n");
}
// proxy I/O
env_var = getenv("MIC_PROXY_IO");
if (env_var != 0 && *env_var != '\0') {
OFFLOAD_DEBUG_TRACE(2, "---- MIC_PROXY_IO=%s\n", env_var);
int64_t new_val;
if (__offload_parse_int_string(env_var, new_val)) {
mic_proxy_io = new_val;
OFFLOAD_DEBUG_TRACE(2, "MIC proxy i/o set to %s\n",
mic_proxy_io);
}
else {
LIBOFFLOAD_ERROR(c_invalid_env_var_int_value, "MIC_PROXY_IO");
}
}
else {
OFFLOAD_DEBUG_TRACE(2, "MIC_PROXY_IO is not set\n");
}
env_var = getenv("MIC_PROXY_FS_ROOT");
if (env_var != 0 && *env_var != '\0') {
OFFLOAD_DEBUG_TRACE(2, "---- MIC_PROXY_FS_ROOT=%s\n", env_var);
mic_proxy_fs_root = strdup(env_var);
if (mic_proxy_fs_root == NULL)
LIBOFFLOAD_ERROR(c_malloc);
OFFLOAD_DEBUG_TRACE(2, "MIC proxy fs root set to %s\n",
mic_proxy_fs_root);
}
else {
OFFLOAD_DEBUG_TRACE(2, "MIC_PROXY_FS_ROOT is not set\n");
}
// Prepare environment for the target process using the following
// rules
// - If MIC_ENV_PREFIX is set then any environment variable on the
// host which has that prefix are copied to the device without
// the prefix.
// All other host environment variables are ignored.
// - If MIC_ENV_PREFIX is not set or if MIC_ENV_PREFIX="" then host
// environment is duplicated.
env_var = getenv("MIC_ENV_PREFIX");
if (env_var != 0 && *env_var != '\0') {
OFFLOAD_DEBUG_TRACE(2, "---- MIC_ENV_PREFIX=%s\n", env_var);
mic_env_vars.set_prefix(env_var);
int len = strlen(env_var);
for (int i = 0; environ[i] != 0; i++) {
if (strncmp(environ[i], env_var, len) == 0 &&
strncmp(environ[i], "MIC_LD_LIBRARY_PATH", 19) != 0 &&
environ[i][len] != '=') {
mic_env_vars.analyze_env_var(environ[i]);
}
}
}
else {
OFFLOAD_DEBUG_TRACE(2, "MIC_ENV_PREFIX is not set\n");
}
// create key for thread data
if (thread_key_create(&mic_thread_key, Engine::destroy_thread_data)) {
LIBOFFLOAD_ERROR(c_mic_init4, errno);
return;
}
// cpu frequency
cpu_frequency = COI::PerfGetCycleFrequency();
env_var = getenv(mic_use_2mb_buffers_envname);
if (env_var != 0 && *env_var != '\0') {
OFFLOAD_DEBUG_TRACE(2, "---- %s=%s\n",
mic_use_2mb_buffers_envname, env_var);
uint64_t new_size;
if (__offload_parse_size_string(env_var, new_size)) {
__offload_use_2mb_buffers = new_size;
OFFLOAD_DEBUG_TRACE(2,
"Threshold for use of 2M buffers set to %lld\n",
__offload_use_2mb_buffers);
}
else {
LIBOFFLOAD_ERROR(c_invalid_env_var_value,
mic_use_2mb_buffers_envname);
}
}
else {
OFFLOAD_DEBUG_TRACE(2, "%s is not set\n", mic_use_2mb_buffers_envname);
}
env_var = getenv(mic_use_async_buffer_write_envname);
if (env_var != 0 && *env_var != '\0') {
OFFLOAD_DEBUG_TRACE(2, "---- %s=%s\n",
mic_use_async_buffer_write_envname, env_var);
uint64_t new_size;
if (__offload_parse_size_string(env_var, new_size)) {
__offload_use_async_buffer_write = new_size;
OFFLOAD_DEBUG_TRACE(2,
"Threshold for async buffer write set to %lld\n",
__offload_use_async_buffer_write);
}
}
else {
OFFLOAD_DEBUG_TRACE(2, "%s is not set\n",
mic_use_async_buffer_write_envname);
}
env_var = getenv(mic_use_async_buffer_read_envname);
if (env_var != 0 && *env_var != '\0') {
OFFLOAD_DEBUG_TRACE(2, "---- %s=%s\n",
mic_use_async_buffer_read_envname, env_var);
uint64_t new_size;
if (__offload_parse_size_string(env_var, new_size)) {
__offload_use_async_buffer_read = new_size;
OFFLOAD_DEBUG_TRACE(2,
"Threshold for async buffer read set to %lld\n",
__offload_use_async_buffer_read);
}
}
else {
OFFLOAD_DEBUG_TRACE(2, "%s is not set\n",
mic_use_async_buffer_read_envname);
}
// mic initialization type
env_var = getenv(offload_init_envname);
if (env_var != 0 && *env_var != '\0') {
OFFLOAD_DEBUG_TRACE(2, "---- %s=%s\n",
offload_init_envname, env_var);
if (strcmp(env_var, "on_offload") == 0) {
__offload_init_type = c_init_on_offload;
OFFLOAD_DEBUG_TRACE(2,
"A MIC device will be initialized "
"on first offload to that device\n");
}
else if (strcmp(env_var, "on_offload_all") == 0) {
__offload_init_type = c_init_on_offload_all;
OFFLOAD_DEBUG_TRACE(2,
"All MIC devices will be initialized "
"on first offload to any device\n");
}
else if (strcmp(env_var, "on_start") == 0) {
__offload_init_type = c_init_on_start;
OFFLOAD_DEBUG_TRACE(2,
"All MIC devices will be initialized "
"at program start\n");
}
else {
LIBOFFLOAD_ERROR(c_invalid_env_var_value, offload_init_envname);
}
}
else {
OFFLOAD_DEBUG_TRACE(2, "%s is not set\n", offload_init_envname);
}
// active wait
env_var = getenv(offload_active_wait_envname);
if (env_var != 0 && *env_var != '\0') {
OFFLOAD_DEBUG_TRACE(2, "---- %s=%s\n",
offload_active_wait_envname, env_var);
int64_t new_val;
if (__offload_parse_int_string(env_var, new_val)) {
__offload_active_wait = new_val;
OFFLOAD_DEBUG_TRACE(2,
"Flag to poll on event completion is set to %d\n",
__offload_active_wait);
}
else {
LIBOFFLOAD_ERROR(c_invalid_env_var_int_value,
offload_active_wait_envname);
}
}
else {
OFFLOAD_DEBUG_TRACE(2, "%s is not set\n", offload_active_wait_envname);
}
// always wait
env_var = getenv(offload_always_wait_envname);
if (env_var != 0 && *env_var != '\0') {
OFFLOAD_DEBUG_TRACE(2, "---- %s=%s\n",
offload_always_wait_envname, env_var);
int64_t new_val;
if (__offload_parse_int_string(env_var, new_val)) {
__offload_always_wait = new_val;
OFFLOAD_DEBUG_TRACE(2,
"Flag to poll on event completion is set to %d\n",
__offload_active_wait);
}
else {
LIBOFFLOAD_ERROR(c_invalid_env_var_int_value,
offload_always_wait_envname);
}
}
else {
OFFLOAD_DEBUG_TRACE(2, "%s is not set\n", offload_always_wait_envname);
}
// omp device num
env_var = getenv(omp_device_num_envname);
if (env_var != 0 && *env_var != '\0') {
OFFLOAD_DEBUG_TRACE(2, "---- %s=%s\n",
omp_device_num_envname, env_var);
int64_t new_val;
if (__offload_parse_int_string(env_var, new_val) && new_val >= 0) {
__omp_device_num = new_val;
OFFLOAD_DEBUG_TRACE(2, "OpenMP default device number is set to %d\n",
__omp_device_num);
}
else {
LIBOFFLOAD_ERROR(c_omp_invalid_device_num_env,
omp_device_num_envname);
}
}
else {
OFFLOAD_DEBUG_TRACE(2, "%s is not set\n", omp_device_num_envname);
}
// parallel copy of offload_transfer
env_var = getenv(parallel_copy_envname);
if (env_var != 0 && *env_var != '\0') {
OFFLOAD_DEBUG_TRACE(2, "---- %s=%s\n",
parallel_copy_envname, env_var);
int64_t new_val;
if (__offload_parse_int_string(env_var, new_val) && new_val >= 0) {
__offload_parallel_copy = new_val;
OFFLOAD_DEBUG_TRACE(2,
"Flag for using async buffer copy is set to %d\n",
__offload_parallel_copy);
}
else {
LIBOFFLOAD_ERROR(c_invalid_env_var_value,
parallel_copy_envname);
}
}
else {
OFFLOAD_DEBUG_TRACE(2, "%s is not set\n", parallel_copy_envname);
}
// use COI interface for noncontiguous arrays transfer
env_var = getenv(use_coi_noncontiguous_transfer_envname);
if (env_var != 0 && *env_var != '\0') {
OFFLOAD_DEBUG_TRACE(2, "---- %s=%s\n",
use_coi_noncontiguous_transfer_envname, env_var);
uint64_t new_size;
if (__offload_parse_size_string(env_var, new_size)) {
__offload_use_coi_noncontiguous_transfer = new_size;
OFFLOAD_DEBUG_TRACE(2,
"Flag for using new COI noncontiguous API is set to %d\n",
__offload_use_coi_noncontiguous_transfer);
}
else {
LIBOFFLOAD_ERROR(c_invalid_env_var_value,
use_coi_noncontiguous_transfer_envname);
}
}
else {
OFFLOAD_DEBUG_TRACE(2, "%s is not set\n",
use_coi_noncontiguous_transfer_envname);
}
OFFLOAD_DEBUG_TRACE(2, "---- End of environment variable processing\n");
// init ORSL
ORSL::init();
}
extern int __offload_init_library(void)
{
// do one time intialization
static OffloadOnceControl ctrl = OFFLOAD_ONCE_CONTROL_INIT;
__offload_run_once(&ctrl, __offload_init_library_once);
// offload is available if COI is available and the number of devices > 0
bool is_available = COI::is_available && (mic_engines_total > 0);
// register pending libraries if there are any
if (is_available && __target_libs) {
mutex_locker_t locker(__target_libs_lock);
for (TargetImageList::iterator it = __target_libs_list.begin();
it != __target_libs_list.end(); it++) {
// Register library in COI
COI::ProcessRegisterLibraries(1, &it->data, &it->size,
&it->origin, &it->offset);
// add lib to all engines
for (int i = 0; i < mic_engines_total; i++) {
mic_engines[i].add_lib(*it);
}
}
__target_libs = false;
__target_libs_list.clear();
}
return is_available;
}
extern "C" bool __offload_target_image_is_executable(const void *target_image)
{
const struct Image *image = static_cast<const struct Image*>(target_image);
// decode image
const char *name = image->data;
const void *data = image->data + strlen(image->data) + 1;
// determine image type
const Elf64_Ehdr *hdr = static_cast<const Elf64_Ehdr*>(data);
return (hdr->e_type == ET_EXEC);
}
extern "C" bool __offload_register_image(const void *target_image)
{
const struct Image *image = static_cast<const struct Image*>(target_image);
const void *data = image->data + strlen(image->data) + 1;
uint64_t size = image->size;
uint64_t offset = 0;
// decode image
const char *fat_name = image->data;
char *mic_name = (char *) malloc(strlen(image->data) + 1);
char *host_name = (char *) malloc(strlen(image->data));
int i;
if ((mic_name == NULL) || (host_name == NULL))
LIBOFFLOAD_ERROR(c_malloc);
// The origin name is the name of the file on the host
// this is used by Vtune, since it is a fat binary we
// use the host file name of the fat binary.
// Driver prepends the host file name ending with "?"
// to the image->data name so need to extract the string
// name format: <mic_name>?<origin>
// Get <mic_name>
i = 0;
while ((*fat_name != '\0') && (*fat_name != '?')) {
mic_name[i] = *fat_name;
fat_name++;
i++;
}
// Remove the host file name by inserting end of string marker
mic_name[i] = '\0';
// Get <host_name>
if (*fat_name == '?') {
// The string following "?" is the name of the host file name.
fat_name++;
i = 0;
while (*fat_name != '\0') {
host_name[i] = *fat_name;
fat_name++;
i++;
}
host_name[i] = '\0';
}
else {
// Windows current does not have host name
free(host_name);
host_name = 0;
}
// our actions depend on the image type
const Elf64_Ehdr *hdr = static_cast<const Elf64_Ehdr*>(data);
switch (hdr->e_type) {
case ET_EXEC:
__current_image_is_dll = false;
// Each offload application is supposed to have only one target
// image representing target executable.
// No thread synchronization is required here as the initialization
// code is always executed in a single thread.
if (__target_exe != 0) {
LIBOFFLOAD_ERROR(c_multiple_target_exes);
exit(1);
}
__target_exe = new TargetImage(mic_name, data, size, host_name, offset);
// Registration code for execs is always called from the context
// of main and thus we can safely call any function here,
// including LoadLibrary API on windows. This is the place where
// we do the offload library initialization.
if (__offload_init_library()) {
// initialize engine if init_type is on_start
if (__offload_init_type == c_init_on_start) {
for (int i = 0; i < mic_engines_total; i++) {
mic_engines[i].init();
}
}
}
return mic_engines_total > 0;
case ET_DYN:
{
char * fullname = NULL;
__current_image_is_dll = true;
// We add the library to a list of pending libraries
__target_libs_lock.lock();
__target_libs = true;
__target_libs_list.push_back(
TargetImage(mic_name, data, size, fullname, offset));
__target_libs_lock.unlock();
// If __target_exe is set, then main has started running
// If not main, then we can't do anything useful here
// because this registration code is called from DllMain
// context (on windows).
if (__target_exe != 0) {
// There is no need to delay loading the library
if (!__offload_init_library()) {
// Couldn't validate library as a fat offload library
LIBOFFLOAD_ERROR(c_unknown_binary_type);
exit(1);
}
}
return true;
}
default:
// something is definitely wrong, issue an error and exit
LIBOFFLOAD_ERROR(c_unknown_binary_type);
exit(1);
}
}
// When dlopen is used dlclose may happen after the COI process
// is destroyed. In which case images cannot be unloaded and should
// be skipped. So track if coi has been unloaded.
static bool coi_may_have_been_unloaded = false;
extern "C" void __offload_unregister_image(const void *target_image)
{
// Target image is packed as follows:
// 8 bytes - size of the target binary
// null-terminated string - binary name
// <size> bytes - binary contents
const struct Image {
int64_t size;
char data[];
} *image = static_cast<const struct Image*>(target_image);
// decode image
const char *name = image->data;
const void *data = image->data + strlen(image->data) + 1;
// our actions depend on the image type
const Elf64_Ehdr *hdr = static_cast<const Elf64_Ehdr*>(data);
if (hdr->e_type == ET_EXEC) {
// We are executing exec's desctructors.
// It is time to do a library cleanup.
if (timer_enabled) {
Offload_Timer_Print();
}
coi_may_have_been_unloaded = true;
// Do not unload the MYO library if it loaded in dll.
if (!__myo_init_in_so)
{
#ifdef MYO_SUPPORT
__offload_myoFini();
#endif // MYO_SUPPORT
__offload_fini_library();
}
}
else if ((hdr->e_type == ET_DYN) && !coi_may_have_been_unloaded) {
for (int i = 0; i < mic_engines_total; i++) {
mic_engines[i].unload_library(data, name);
}
}
}
extern "C" void __offload_register_task_callback(void (*cb)(void *))
{
task_completion_callback = cb;
}
// Runtime trace interface for user programs
void __offload_console_trace(int level)
{
console_enabled = level;
}
// User-visible offload API
int _Offload_number_of_devices(void)
{
__offload_init_library();
return mic_engines_total;
}
int _Offload_get_device_number(void)
{
return -1;
}
int _Offload_get_physical_device_number(void)
{
return -1;
}
int _Offload_signaled(int index, void *signal)
{
__offload_init_library();
// check index value
if (index < 0) {
LIBOFFLOAD_ERROR(c_offload_signaled1, index);
LIBOFFLOAD_ABORT;
}
index %= mic_engines_total;
// find associated async task
OffloadDescriptor *task =
mic_engines[index].find_signal(signal, false);
if (task == 0) {
LIBOFFLOAD_ERROR(c_offload_signaled2, signal);
LIBOFFLOAD_ABORT;
}
// if signal is removed by wait completing
else if (task == SIGNAL_HAS_COMPLETED) {
return (true);
}
return task->is_signaled();
}
void _Offload_report(int val)
{
if (val == OFFLOAD_REPORT_ON ||
val == OFFLOAD_REPORT_OFF) {
offload_report_enabled = val;
}
}
int _Offload_find_associated_mic_memory(
int target,
const void* cpu_addr,
void** cpu_base_addr,
uint64_t* buf_length,
void** mic_addr,
uint64_t* mic_buf_start_offset,
int* is_static
)
{
__offload_init_library();
// check target value
if (target < 0) {
LIBOFFLOAD_ERROR(c_offload_signaled1, target);
LIBOFFLOAD_ABORT;
}
target %= mic_engines_total;
// find existing association in pointer table
PtrData* ptr_data = mic_engines[target].find_ptr_data(cpu_addr);
if (ptr_data == 0) {
OFFLOAD_TRACE(3, "Association does not exist\n");
return 0;
}
OFFLOAD_TRACE(3, "Found association: base %p, length %lld, is_static %d\n",
ptr_data->cpu_addr.start(), ptr_data->cpu_addr.length(),
ptr_data->is_static);
if (ptr_data->mic_buf != 0 && ptr_data->mic_addr == 0) {
COIRESULT res = COI::BufferGetSinkAddress(ptr_data->mic_buf,
&ptr_data->mic_addr);
if (res != COI_SUCCESS) {
return 0;
}
}
*cpu_base_addr = const_cast<void *>(ptr_data->cpu_addr.start());
*buf_length = ptr_data->cpu_addr.length() - ptr_data->alloc_disp;
*mic_addr = (void *)(ptr_data->mic_addr + ptr_data->mic_offset);
*mic_buf_start_offset = ptr_data->alloc_disp;
*is_static = ptr_data->is_static;
return ptr_data->is_static ? 1 : ptr_data->get_reference();
}
_Offload_stream _Offload_stream_create(
int device, // MIC device number
int number_of_cpus // Cores allocated to the stream
)
{
__offload_init_library();
// check target value
if (device < 0) {
LIBOFFLOAD_ERROR(c_offload_signaled1, device);
LIBOFFLOAD_ABORT;
}
device %= mic_engines_total;
// Create new stream and get its handle
_Offload_stream handle = Stream::add_stream(device, number_of_cpus);
if (handle == 0) {
OFFLOAD_TRACE(3, "Can't create stream\n");
return 0;
}
// create pipeline associated with the new stream
mic_engines[device].get_pipeline(handle);
return(handle);
}
int _Offload_stream_destroy(
int device, // MIC device number
_Offload_stream handle // stream to destroy
)
{
if (Stream::get_streams_count() == 0) {
LIBOFFLOAD_ERROR(c_offload_streams_are_absent);
LIBOFFLOAD_ABORT;
}
// check target value
if (device < 0) {
LIBOFFLOAD_ERROR(c_offload_signaled1, device);
LIBOFFLOAD_ABORT;
}
device %= mic_engines_total;
mic_engines[device].stream_destroy(handle);
return(true);
}
int _Offload_stream_delete(
_Offload_stream handle // stream to destroy
)
{
int device; // MIC device number
Stream * stream;
if (Stream::get_streams_count() == 0) {
LIBOFFLOAD_ERROR(c_offload_streams_are_absent);
LIBOFFLOAD_ABORT;
}
stream = Stream::find_stream(handle, false);
// the stream was not created or was destroyed
if (!stream) {
LIBOFFLOAD_ERROR(c_offload_no_stream, device);
LIBOFFLOAD_ABORT;
}
device = stream->get_device();
mic_engines[device].stream_destroy(handle);
return(true);
}
int _Offload_stream_completed(int device, _Offload_stream handler)
{
if (Stream::get_streams_count() == 0) {
LIBOFFLOAD_ERROR(c_offload_streams_are_absent);
LIBOFFLOAD_ABORT;
}
// check device index value
if (device < -1) {
LIBOFFLOAD_ERROR(c_offload_signaled1, device);
LIBOFFLOAD_ABORT;
}
else if (device > -1) {
device %= mic_engines_total;
}
// get stream
Stream * stream;
if (handler != 0) {
stream = Stream::find_stream(handler, false);
// the stream was not created or was destroyed
if (!stream) {
LIBOFFLOAD_ERROR(c_offload_no_stream, device);
LIBOFFLOAD_ABORT;
}
if (device != stream->get_device()) {
LIBOFFLOAD_ERROR(c_offload_device_doesnt_match_to_stream,
stream->get_device());
LIBOFFLOAD_ABORT;
}
// find associated async task
OffloadDescriptor *task = stream->get_last_offload();
// offload was completed by offload_wait pragma or wait clause
if (task == 0) {
return(true);
}
return task->is_signaled();
}
// zero handler is for all streams at the device
else {
StreamMap stream_map = Stream::all_streams;
for (StreamMap::iterator it = stream_map.begin();
it != stream_map.end(); it++) {
Stream * stream = it->second;
if (device != -1 && device != stream->get_device()) {
continue;
}
// find associated async task
OffloadDescriptor *task = stream->get_last_offload();
// offload was completed by offload_wait pragma or wait clause
if (task == 0) {
continue;
}
// if even one stream is not completed result is false
if (!task->is_signaled()) {
return false;
}
}
// no uncompleted streams
return true;
}
}
int _Offload_stream_is_empty(_Offload_stream handle)
{
int device;
if (Stream::get_streams_count() == 0) {
LIBOFFLOAD_ERROR(c_offload_streams_are_absent);
LIBOFFLOAD_ABORT;
}
if (handle != 0) {
Stream * stream = Stream::find_stream(handle, false);
// the stream was not created or was destroyed
if (!stream) {
LIBOFFLOAD_ERROR(c_offload_no_stream, device);
LIBOFFLOAD_ABORT;
}
device = stream->get_device();
}
else {
device = -1;
}
// Use 0 for device index as _Offload_stream_completed
// ignores this value while defining streams completion
return _Offload_stream_completed(device, handle);
}
int _Offload_device_streams_completed(int device)
{
if (Stream::get_streams_count() == 0) {
LIBOFFLOAD_ERROR(c_offload_streams_are_absent);
LIBOFFLOAD_ABORT;
}
// check index value
if (device < -1) {
LIBOFFLOAD_ERROR(c_offload_signaled1, device);
LIBOFFLOAD_ABORT;
}
else if (device > -1) {
device %= mic_engines_total;
}
StreamMap stream_map = Stream::all_streams;
for (StreamMap::iterator it = stream_map.begin();
it != stream_map.end(); it++)
{
Stream * stream = it->second;
if (device != -1 && device != stream->get_device()) {
continue;
}
// find associated async task
OffloadDescriptor *task = stream->get_last_offload();
// offload was completed by offload_wait pragma or wait clause
if (task == 0) {
continue;
}
// if even one stream is not completed result is false
if (!task->is_signaled()) {
return false;
}
}
// no uncompleted streams
return true;
}
// IDB support
int __dbg_is_attached = 0;
int __dbg_target_id = -1;
pid_t __dbg_target_so_pid = -1;
char __dbg_target_exe_name[MAX_TARGET_NAME] = {0};
const int __dbg_api_major_version = 1;
const int __dbg_api_minor_version = 0;
void __dbg_target_so_loaded()
{
}
void __dbg_target_so_unloaded()
{
}