Retro68/gcc/libstdc++-v3/include/ext/ropeimpl.h
2017-10-07 02:16:47 +02:00

1704 lines
47 KiB
C++

// SGI's rope class implementation -*- C++ -*-
// Copyright (C) 2001-2017 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/*
* Copyright (c) 1997
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
/** @file ropeimpl.h
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{ext/rope}
*/
#include <cstdio>
#include <ostream>
#include <bits/functexcept.h>
#include <ext/algorithm> // For copy_n and lexicographical_compare_3way
#include <ext/memory> // For uninitialized_copy_n
#include <ext/numeric> // For power
namespace __gnu_cxx _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
using std::size_t;
using std::printf;
using std::basic_ostream;
using std::__throw_length_error;
using std::_Destroy;
using std::__uninitialized_fill_n_a;
// Set buf_start, buf_end, and buf_ptr appropriately, filling tmp_buf
// if necessary. Assumes _M_path_end[leaf_index] and leaf_pos are correct.
// Results in a valid buf_ptr if the iterator can be legitimately
// dereferenced.
template <class _CharT, class _Alloc>
void
_Rope_iterator_base<_CharT, _Alloc>::
_S_setbuf(_Rope_iterator_base<_CharT, _Alloc>& __x)
{
const _RopeRep* __leaf = __x._M_path_end[__x._M_leaf_index];
size_t __leaf_pos = __x._M_leaf_pos;
size_t __pos = __x._M_current_pos;
switch(__leaf->_M_tag)
{
case __detail::_S_leaf:
__x._M_buf_start = ((_Rope_RopeLeaf<_CharT, _Alloc>*)__leaf)->_M_data;
__x._M_buf_ptr = __x._M_buf_start + (__pos - __leaf_pos);
__x._M_buf_end = __x._M_buf_start + __leaf->_M_size;
break;
case __detail::_S_function:
case __detail::_S_substringfn:
{
size_t __len = _S_iterator_buf_len;
size_t __buf_start_pos = __leaf_pos;
size_t __leaf_end = __leaf_pos + __leaf->_M_size;
char_producer<_CharT>* __fn = ((_Rope_RopeFunction<_CharT,
_Alloc>*)__leaf)->_M_fn;
if (__buf_start_pos + __len <= __pos)
{
__buf_start_pos = __pos - __len / 4;
if (__buf_start_pos + __len > __leaf_end)
__buf_start_pos = __leaf_end - __len;
}
if (__buf_start_pos + __len > __leaf_end)
__len = __leaf_end - __buf_start_pos;
(*__fn)(__buf_start_pos - __leaf_pos, __len, __x._M_tmp_buf);
__x._M_buf_ptr = __x._M_tmp_buf + (__pos - __buf_start_pos);
__x._M_buf_start = __x._M_tmp_buf;
__x._M_buf_end = __x._M_tmp_buf + __len;
}
break;
default:
break;
}
}
// Set path and buffer inside a rope iterator. We assume that
// pos and root are already set.
template <class _CharT, class _Alloc>
void
_Rope_iterator_base<_CharT, _Alloc>::
_S_setcache(_Rope_iterator_base<_CharT, _Alloc>& __x)
{
const _RopeRep* __path[int(__detail::_S_max_rope_depth) + 1];
const _RopeRep* __curr_rope;
int __curr_depth = -1; /* index into path */
size_t __curr_start_pos = 0;
size_t __pos = __x._M_current_pos;
unsigned char __dirns = 0; // Bit vector marking right turns in the path
if (__pos >= __x._M_root->_M_size)
{
__x._M_buf_ptr = 0;
return;
}
__curr_rope = __x._M_root;
if (0 != __curr_rope->_M_c_string)
{
/* Treat the root as a leaf. */
__x._M_buf_start = __curr_rope->_M_c_string;
__x._M_buf_end = __curr_rope->_M_c_string + __curr_rope->_M_size;
__x._M_buf_ptr = __curr_rope->_M_c_string + __pos;
__x._M_path_end[0] = __curr_rope;
__x._M_leaf_index = 0;
__x._M_leaf_pos = 0;
return;
}
for(;;)
{
++__curr_depth;
__path[__curr_depth] = __curr_rope;
switch(__curr_rope->_M_tag)
{
case __detail::_S_leaf:
case __detail::_S_function:
case __detail::_S_substringfn:
__x._M_leaf_pos = __curr_start_pos;
goto done;
case __detail::_S_concat:
{
_Rope_RopeConcatenation<_CharT, _Alloc>* __c =
(_Rope_RopeConcatenation<_CharT, _Alloc>*)__curr_rope;
_RopeRep* __left = __c->_M_left;
size_t __left_len = __left->_M_size;
__dirns <<= 1;
if (__pos >= __curr_start_pos + __left_len)
{
__dirns |= 1;
__curr_rope = __c->_M_right;
__curr_start_pos += __left_len;
}
else
__curr_rope = __left;
}
break;
}
}
done:
// Copy last section of path into _M_path_end.
{
int __i = -1;
int __j = __curr_depth + 1 - int(_S_path_cache_len);
if (__j < 0) __j = 0;
while (__j <= __curr_depth)
__x._M_path_end[++__i] = __path[__j++];
__x._M_leaf_index = __i;
}
__x._M_path_directions = __dirns;
_S_setbuf(__x);
}
// Specialized version of the above. Assumes that
// the path cache is valid for the previous position.
template <class _CharT, class _Alloc>
void
_Rope_iterator_base<_CharT, _Alloc>::
_S_setcache_for_incr(_Rope_iterator_base<_CharT, _Alloc>& __x)
{
int __current_index = __x._M_leaf_index;
const _RopeRep* __current_node = __x._M_path_end[__current_index];
size_t __len = __current_node->_M_size;
size_t __node_start_pos = __x._M_leaf_pos;
unsigned char __dirns = __x._M_path_directions;
_Rope_RopeConcatenation<_CharT, _Alloc>* __c;
if (__x._M_current_pos - __node_start_pos < __len)
{
/* More stuff in this leaf, we just didn't cache it. */
_S_setbuf(__x);
return;
}
// node_start_pos is starting position of last_node.
while (--__current_index >= 0)
{
if (!(__dirns & 1) /* Path turned left */)
break;
__current_node = __x._M_path_end[__current_index];
__c = (_Rope_RopeConcatenation<_CharT, _Alloc>*)__current_node;
// Otherwise we were in the right child. Thus we should pop
// the concatenation node.
__node_start_pos -= __c->_M_left->_M_size;
__dirns >>= 1;
}
if (__current_index < 0)
{
// We underflowed the cache. Punt.
_S_setcache(__x);
return;
}
__current_node = __x._M_path_end[__current_index];
__c = (_Rope_RopeConcatenation<_CharT, _Alloc>*)__current_node;
// current_node is a concatenation node. We are positioned on the first
// character in its right child.
// node_start_pos is starting position of current_node.
__node_start_pos += __c->_M_left->_M_size;
__current_node = __c->_M_right;
__x._M_path_end[++__current_index] = __current_node;
__dirns |= 1;
while (__detail::_S_concat == __current_node->_M_tag)
{
++__current_index;
if (int(_S_path_cache_len) == __current_index)
{
int __i;
for (__i = 0; __i < int(_S_path_cache_len) - 1; __i++)
__x._M_path_end[__i] = __x._M_path_end[__i+1];
--__current_index;
}
__current_node =
((_Rope_RopeConcatenation<_CharT, _Alloc>*)__current_node)->_M_left;
__x._M_path_end[__current_index] = __current_node;
__dirns <<= 1;
// node_start_pos is unchanged.
}
__x._M_leaf_index = __current_index;
__x._M_leaf_pos = __node_start_pos;
__x._M_path_directions = __dirns;
_S_setbuf(__x);
}
template <class _CharT, class _Alloc>
void
_Rope_iterator_base<_CharT, _Alloc>::
_M_incr(size_t __n)
{
_M_current_pos += __n;
if (0 != _M_buf_ptr)
{
size_t __chars_left = _M_buf_end - _M_buf_ptr;
if (__chars_left > __n)
_M_buf_ptr += __n;
else if (__chars_left == __n)
{
_M_buf_ptr += __n;
_S_setcache_for_incr(*this);
}
else
_M_buf_ptr = 0;
}
}
template <class _CharT, class _Alloc>
void
_Rope_iterator_base<_CharT, _Alloc>::
_M_decr(size_t __n)
{
if (0 != _M_buf_ptr)
{
size_t __chars_left = _M_buf_ptr - _M_buf_start;
if (__chars_left >= __n)
_M_buf_ptr -= __n;
else
_M_buf_ptr = 0;
}
_M_current_pos -= __n;
}
template <class _CharT, class _Alloc>
void
_Rope_iterator<_CharT, _Alloc>::
_M_check()
{
if (_M_root_rope->_M_tree_ptr != this->_M_root)
{
// _Rope was modified. Get things fixed up.
_RopeRep::_S_unref(this->_M_root);
this->_M_root = _M_root_rope->_M_tree_ptr;
_RopeRep::_S_ref(this->_M_root);
this->_M_buf_ptr = 0;
}
}
template <class _CharT, class _Alloc>
inline
_Rope_const_iterator<_CharT, _Alloc>::
_Rope_const_iterator(const _Rope_iterator<_CharT, _Alloc>& __x)
: _Rope_iterator_base<_CharT, _Alloc>(__x)
{ }
template <class _CharT, class _Alloc>
inline
_Rope_iterator<_CharT, _Alloc>::
_Rope_iterator(rope<_CharT, _Alloc>& __r, size_t __pos)
: _Rope_iterator_base<_CharT,_Alloc>(__r._M_tree_ptr, __pos),
_M_root_rope(&__r)
{ _RopeRep::_S_ref(this->_M_root); }
template <class _CharT, class _Alloc>
inline size_t
rope<_CharT, _Alloc>::
_S_char_ptr_len(const _CharT* __s)
{
const _CharT* __p = __s;
while (!_S_is0(*__p))
++__p;
return (__p - __s);
}
#ifndef __GC
template <class _CharT, class _Alloc>
inline void
_Rope_RopeRep<_CharT, _Alloc>::
_M_free_c_string()
{
_CharT* __cstr = _M_c_string;
if (0 != __cstr)
{
size_t __size = this->_M_size + 1;
_Destroy(__cstr, __cstr + __size, _M_get_allocator());
this->_Data_deallocate(__cstr, __size);
}
}
template <class _CharT, class _Alloc>
inline void
_Rope_RopeRep<_CharT, _Alloc>::
_S_free_string(_CharT* __s, size_t __n, allocator_type& __a)
{
if (!_S_is_basic_char_type((_CharT*)0))
_Destroy(__s, __s + __n, __a);
// This has to be a static member, so this gets a bit messy
__a.deallocate(__s,
_Rope_RopeLeaf<_CharT, _Alloc>::_S_rounded_up_size(__n));
}
// There are several reasons for not doing this with virtual destructors
// and a class specific delete operator:
// - A class specific delete operator can't easily get access to
// allocator instances if we need them.
// - Any virtual function would need a 4 or byte vtable pointer;
// this only requires a one byte tag per object.
template <class _CharT, class _Alloc>
void
_Rope_RopeRep<_CharT, _Alloc>::
_M_free_tree()
{
switch(_M_tag)
{
case __detail::_S_leaf:
{
_Rope_RopeLeaf<_CharT, _Alloc>* __l
= (_Rope_RopeLeaf<_CharT, _Alloc>*)this;
__l->_Rope_RopeLeaf<_CharT, _Alloc>::~_Rope_RopeLeaf();
this->_L_deallocate(__l, 1);
break;
}
case __detail::_S_concat:
{
_Rope_RopeConcatenation<_CharT,_Alloc>* __c
= (_Rope_RopeConcatenation<_CharT, _Alloc>*)this;
__c->_Rope_RopeConcatenation<_CharT, _Alloc>::
~_Rope_RopeConcatenation();
this->_C_deallocate(__c, 1);
break;
}
case __detail::_S_function:
{
_Rope_RopeFunction<_CharT, _Alloc>* __f
= (_Rope_RopeFunction<_CharT, _Alloc>*)this;
__f->_Rope_RopeFunction<_CharT, _Alloc>::~_Rope_RopeFunction();
this->_F_deallocate(__f, 1);
break;
}
case __detail::_S_substringfn:
{
_Rope_RopeSubstring<_CharT, _Alloc>* __ss =
(_Rope_RopeSubstring<_CharT, _Alloc>*)this;
__ss->_Rope_RopeSubstring<_CharT, _Alloc>::
~_Rope_RopeSubstring();
this->_S_deallocate(__ss, 1);
break;
}
}
}
#else
template <class _CharT, class _Alloc>
inline void
_Rope_RopeRep<_CharT, _Alloc>::
_S_free_string(const _CharT*, size_t, allocator_type)
{ }
#endif
// Concatenate a C string onto a leaf rope by copying the rope data.
// Used for short ropes.
template <class _CharT, class _Alloc>
typename rope<_CharT, _Alloc>::_RopeLeaf*
rope<_CharT, _Alloc>::
_S_leaf_concat_char_iter(_RopeLeaf* __r, const _CharT* __iter, size_t __len)
{
size_t __old_len = __r->_M_size;
_CharT* __new_data = (_CharT*)
rope::_Data_allocate(_S_rounded_up_size(__old_len + __len));
_RopeLeaf* __result;
uninitialized_copy_n(__r->_M_data, __old_len, __new_data);
uninitialized_copy_n(__iter, __len, __new_data + __old_len);
_S_cond_store_eos(__new_data[__old_len + __len]);
__try
{
__result = _S_new_RopeLeaf(__new_data, __old_len + __len,
__r->_M_get_allocator());
}
__catch(...)
{
_RopeRep::__STL_FREE_STRING(__new_data, __old_len + __len,
__r->_M_get_allocator());
__throw_exception_again;
}
return __result;
}
#ifndef __GC
// As above, but it's OK to clobber original if refcount is 1
template <class _CharT, class _Alloc>
typename rope<_CharT,_Alloc>::_RopeLeaf*
rope<_CharT, _Alloc>::
_S_destr_leaf_concat_char_iter(_RopeLeaf* __r, const _CharT* __iter,
size_t __len)
{
if (__r->_M_ref_count > 1)
return _S_leaf_concat_char_iter(__r, __iter, __len);
size_t __old_len = __r->_M_size;
if (_S_allocated_capacity(__old_len) >= __old_len + __len)
{
// The space has been partially initialized for the standard
// character types. But that doesn't matter for those types.
uninitialized_copy_n(__iter, __len, __r->_M_data + __old_len);
if (_S_is_basic_char_type((_CharT*)0))
_S_cond_store_eos(__r->_M_data[__old_len + __len]);
else if (__r->_M_c_string != __r->_M_data && 0 != __r->_M_c_string)
{
__r->_M_free_c_string();
__r->_M_c_string = 0;
}
__r->_M_size = __old_len + __len;
__r->_M_ref_count = 2;
return __r;
}
else
{
_RopeLeaf* __result = _S_leaf_concat_char_iter(__r, __iter, __len);
return __result;
}
}
#endif
// Assumes left and right are not 0.
// Does not increment (nor decrement on exception) child reference counts.
// Result has ref count 1.
template <class _CharT, class _Alloc>
typename rope<_CharT, _Alloc>::_RopeRep*
rope<_CharT, _Alloc>::
_S_tree_concat(_RopeRep* __left, _RopeRep* __right)
{
_RopeConcatenation* __result = _S_new_RopeConcatenation(__left, __right,
__left->
_M_get_allocator());
size_t __depth = __result->_M_depth;
if (__depth > 20
&& (__result->_M_size < 1000
|| __depth > size_t(__detail::_S_max_rope_depth)))
{
_RopeRep* __balanced;
__try
{
__balanced = _S_balance(__result);
__result->_M_unref_nonnil();
}
__catch(...)
{
rope::_C_deallocate(__result,1);
__throw_exception_again;
}
// In case of exception, we need to deallocate
// otherwise dangling result node. But caller
// still owns its children. Thus unref is
// inappropriate.
return __balanced;
}
else
return __result;
}
template <class _CharT, class _Alloc>
typename rope<_CharT, _Alloc>::_RopeRep*
rope<_CharT, _Alloc>::
_S_concat_char_iter(_RopeRep* __r, const _CharT*__s, size_t __slen)
{
_RopeRep* __result;
if (0 == __slen)
{
_S_ref(__r);
return __r;
}
if (0 == __r)
return __STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, __slen,
__r->_M_get_allocator());
if (__r->_M_tag == __detail::_S_leaf
&& __r->_M_size + __slen <= size_t(_S_copy_max))
{
__result = _S_leaf_concat_char_iter((_RopeLeaf*)__r, __s, __slen);
return __result;
}
if (__detail::_S_concat == __r->_M_tag
&& __detail::_S_leaf == ((_RopeConcatenation*) __r)->_M_right->_M_tag)
{
_RopeLeaf* __right =
(_RopeLeaf* )(((_RopeConcatenation* )__r)->_M_right);
if (__right->_M_size + __slen <= size_t(_S_copy_max))
{
_RopeRep* __left = ((_RopeConcatenation*)__r)->_M_left;
_RopeRep* __nright =
_S_leaf_concat_char_iter((_RopeLeaf*)__right, __s, __slen);
__left->_M_ref_nonnil();
__try
{ __result = _S_tree_concat(__left, __nright); }
__catch(...)
{
_S_unref(__left);
_S_unref(__nright);
__throw_exception_again;
}
return __result;
}
}
_RopeRep* __nright =
__STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, __slen, __r->_M_get_allocator());
__try
{
__r->_M_ref_nonnil();
__result = _S_tree_concat(__r, __nright);
}
__catch(...)
{
_S_unref(__r);
_S_unref(__nright);
__throw_exception_again;
}
return __result;
}
#ifndef __GC
template <class _CharT, class _Alloc>
typename rope<_CharT,_Alloc>::_RopeRep*
rope<_CharT,_Alloc>::
_S_destr_concat_char_iter(_RopeRep* __r, const _CharT* __s, size_t __slen)
{
_RopeRep* __result;
if (0 == __r)
return __STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, __slen,
__r->_M_get_allocator());
size_t __count = __r->_M_ref_count;
size_t __orig_size = __r->_M_size;
if (__count > 1)
return _S_concat_char_iter(__r, __s, __slen);
if (0 == __slen)
{
__r->_M_ref_count = 2; // One more than before
return __r;
}
if (__orig_size + __slen <= size_t(_S_copy_max)
&& __detail::_S_leaf == __r->_M_tag)
{
__result = _S_destr_leaf_concat_char_iter((_RopeLeaf*)__r, __s,
__slen);
return __result;
}
if (__detail::_S_concat == __r->_M_tag)
{
_RopeLeaf* __right = (_RopeLeaf*)(((_RopeConcatenation*)
__r)->_M_right);
if (__detail::_S_leaf == __right->_M_tag
&& __right->_M_size + __slen <= size_t(_S_copy_max))
{
_RopeRep* __new_right =
_S_destr_leaf_concat_char_iter(__right, __s, __slen);
if (__right == __new_right)
__new_right->_M_ref_count = 1;
else
__right->_M_unref_nonnil();
__r->_M_ref_count = 2; // One more than before.
((_RopeConcatenation*)__r)->_M_right = __new_right;
__r->_M_size = __orig_size + __slen;
if (0 != __r->_M_c_string)
{
__r->_M_free_c_string();
__r->_M_c_string = 0;
}
return __r;
}
}
_RopeRep* __right =
__STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, __slen, __r->_M_get_allocator());
__r->_M_ref_nonnil();
__try
{ __result = _S_tree_concat(__r, __right); }
__catch(...)
{
_S_unref(__r);
_S_unref(__right);
__throw_exception_again;
}
return __result;
}
#endif /* !__GC */
template <class _CharT, class _Alloc>
typename rope<_CharT, _Alloc>::_RopeRep*
rope<_CharT, _Alloc>::
_S_concat(_RopeRep* __left, _RopeRep* __right)
{
if (0 == __left)
{
_S_ref(__right);
return __right;
}
if (0 == __right)
{
__left->_M_ref_nonnil();
return __left;
}
if (__detail::_S_leaf == __right->_M_tag)
{
if (__detail::_S_leaf == __left->_M_tag)
{
if (__right->_M_size + __left->_M_size <= size_t(_S_copy_max))
return _S_leaf_concat_char_iter((_RopeLeaf*)__left,
((_RopeLeaf*)__right)->_M_data,
__right->_M_size);
}
else if (__detail::_S_concat == __left->_M_tag
&& __detail::_S_leaf == ((_RopeConcatenation*)
__left)->_M_right->_M_tag)
{
_RopeLeaf* __leftright =
(_RopeLeaf*)(((_RopeConcatenation*)__left)->_M_right);
if (__leftright->_M_size
+ __right->_M_size <= size_t(_S_copy_max))
{
_RopeRep* __leftleft = ((_RopeConcatenation*)__left)->_M_left;
_RopeRep* __rest = _S_leaf_concat_char_iter(__leftright,
((_RopeLeaf*)
__right)->
_M_data,
__right->_M_size);
__leftleft->_M_ref_nonnil();
__try
{ return(_S_tree_concat(__leftleft, __rest)); }
__catch(...)
{
_S_unref(__leftleft);
_S_unref(__rest);
__throw_exception_again;
}
}
}
}
__left->_M_ref_nonnil();
__right->_M_ref_nonnil();
__try
{ return(_S_tree_concat(__left, __right)); }
__catch(...)
{
_S_unref(__left);
_S_unref(__right);
__throw_exception_again;
}
}
template <class _CharT, class _Alloc>
typename rope<_CharT, _Alloc>::_RopeRep*
rope<_CharT, _Alloc>::
_S_substring(_RopeRep* __base, size_t __start, size_t __endp1)
{
if (0 == __base)
return 0;
size_t __len = __base->_M_size;
size_t __adj_endp1;
const size_t __lazy_threshold = 128;
if (__endp1 >= __len)
{
if (0 == __start)
{
__base->_M_ref_nonnil();
return __base;
}
else
__adj_endp1 = __len;
}
else
__adj_endp1 = __endp1;
switch(__base->_M_tag)
{
case __detail::_S_concat:
{
_RopeConcatenation* __c = (_RopeConcatenation*)__base;
_RopeRep* __left = __c->_M_left;
_RopeRep* __right = __c->_M_right;
size_t __left_len = __left->_M_size;
_RopeRep* __result;
if (__adj_endp1 <= __left_len)
return _S_substring(__left, __start, __endp1);
else if (__start >= __left_len)
return _S_substring(__right, __start - __left_len,
__adj_endp1 - __left_len);
_Self_destruct_ptr __left_result(_S_substring(__left,
__start,
__left_len));
_Self_destruct_ptr __right_result(_S_substring(__right, 0,
__endp1
- __left_len));
__result = _S_concat(__left_result, __right_result);
return __result;
}
case __detail::_S_leaf:
{
_RopeLeaf* __l = (_RopeLeaf*)__base;
_RopeLeaf* __result;
size_t __result_len;
if (__start >= __adj_endp1)
return 0;
__result_len = __adj_endp1 - __start;
if (__result_len > __lazy_threshold)
goto lazy;
#ifdef __GC
const _CharT* __section = __l->_M_data + __start;
__result = _S_new_RopeLeaf(__section, __result_len,
__base->_M_get_allocator());
__result->_M_c_string = 0; // Not eos terminated.
#else
// We should sometimes create substring node instead.
__result = __STL_ROPE_FROM_UNOWNED_CHAR_PTR(__l->_M_data + __start,
__result_len,
__base->
_M_get_allocator());
#endif
return __result;
}
case __detail::_S_substringfn:
// Avoid introducing multiple layers of substring nodes.
{
_RopeSubstring* __old = (_RopeSubstring*)__base;
size_t __result_len;
if (__start >= __adj_endp1)
return 0;
__result_len = __adj_endp1 - __start;
if (__result_len > __lazy_threshold)
{
_RopeSubstring* __result =
_S_new_RopeSubstring(__old->_M_base,
__start + __old->_M_start,
__adj_endp1 - __start,
__base->_M_get_allocator());
return __result;
} // *** else fall through: ***
}
case __detail::_S_function:
{
_RopeFunction* __f = (_RopeFunction*)__base;
_CharT* __section;
size_t __result_len;
if (__start >= __adj_endp1)
return 0;
__result_len = __adj_endp1 - __start;
if (__result_len > __lazy_threshold)
goto lazy;
__section = (_CharT*)
rope::_Data_allocate(_S_rounded_up_size(__result_len));
__try
{ (*(__f->_M_fn))(__start, __result_len, __section); }
__catch(...)
{
_RopeRep::__STL_FREE_STRING(__section, __result_len,
__base->_M_get_allocator());
__throw_exception_again;
}
_S_cond_store_eos(__section[__result_len]);
return _S_new_RopeLeaf(__section, __result_len,
__base->_M_get_allocator());
}
}
lazy:
{
// Create substring node.
return _S_new_RopeSubstring(__base, __start, __adj_endp1 - __start,
__base->_M_get_allocator());
}
}
template<class _CharT>
class _Rope_flatten_char_consumer
: public _Rope_char_consumer<_CharT>
{
private:
_CharT* _M_buf_ptr;
public:
_Rope_flatten_char_consumer(_CharT* __buffer)
{ _M_buf_ptr = __buffer; };
~_Rope_flatten_char_consumer() {}
bool
operator()(const _CharT* __leaf, size_t __n)
{
uninitialized_copy_n(__leaf, __n, _M_buf_ptr);
_M_buf_ptr += __n;
return true;
}
};
template<class _CharT>
class _Rope_find_char_char_consumer
: public _Rope_char_consumer<_CharT>
{
private:
_CharT _M_pattern;
public:
size_t _M_count; // Number of nonmatching characters
_Rope_find_char_char_consumer(_CharT __p)
: _M_pattern(__p), _M_count(0) {}
~_Rope_find_char_char_consumer() {}
bool
operator()(const _CharT* __leaf, size_t __n)
{
size_t __i;
for (__i = 0; __i < __n; __i++)
{
if (__leaf[__i] == _M_pattern)
{
_M_count += __i;
return false;
}
}
_M_count += __n; return true;
}
};
template<class _CharT, class _Traits>
// Here _CharT is both the stream and rope character type.
class _Rope_insert_char_consumer
: public _Rope_char_consumer<_CharT>
{
private:
typedef basic_ostream<_CharT,_Traits> _Insert_ostream;
_Insert_ostream& _M_o;
public:
_Rope_insert_char_consumer(_Insert_ostream& __writer)
: _M_o(__writer) {};
~_Rope_insert_char_consumer() { };
// Caller is presumed to own the ostream
bool operator() (const _CharT* __leaf, size_t __n);
// Returns true to continue traversal.
};
template<class _CharT, class _Traits>
bool
_Rope_insert_char_consumer<_CharT, _Traits>::
operator()(const _CharT* __leaf, size_t __n)
{
size_t __i;
// We assume that formatting is set up correctly for each element.
for (__i = 0; __i < __n; __i++)
_M_o.put(__leaf[__i]);
return true;
}
template <class _CharT, class _Alloc>
bool
rope<_CharT, _Alloc>::
_S_apply_to_pieces(_Rope_char_consumer<_CharT>& __c,
const _RopeRep* __r, size_t __begin, size_t __end)
{
if (0 == __r)
return true;
switch(__r->_M_tag)
{
case __detail::_S_concat:
{
_RopeConcatenation* __conc = (_RopeConcatenation*)__r;
_RopeRep* __left = __conc->_M_left;
size_t __left_len = __left->_M_size;
if (__begin < __left_len)
{
size_t __left_end = std::min(__left_len, __end);
if (!_S_apply_to_pieces(__c, __left, __begin, __left_end))
return false;
}
if (__end > __left_len)
{
_RopeRep* __right = __conc->_M_right;
size_t __right_start = std::max(__left_len, __begin);
if (!_S_apply_to_pieces(__c, __right,
__right_start - __left_len,
__end - __left_len))
return false;
}
}
return true;
case __detail::_S_leaf:
{
_RopeLeaf* __l = (_RopeLeaf*)__r;
return __c(__l->_M_data + __begin, __end - __begin);
}
case __detail::_S_function:
case __detail::_S_substringfn:
{
_RopeFunction* __f = (_RopeFunction*)__r;
size_t __len = __end - __begin;
bool __result;
_CharT* __buffer =
(_CharT*)_Alloc().allocate(__len * sizeof(_CharT));
__try
{
(*(__f->_M_fn))(__begin, __len, __buffer);
__result = __c(__buffer, __len);
_Alloc().deallocate(__buffer, __len * sizeof(_CharT));
}
__catch(...)
{
_Alloc().deallocate(__buffer, __len * sizeof(_CharT));
__throw_exception_again;
}
return __result;
}
default:
return false;
}
}
template<class _CharT, class _Traits>
inline void
_Rope_fill(basic_ostream<_CharT, _Traits>& __o, size_t __n)
{
char __f = __o.fill();
size_t __i;
for (__i = 0; __i < __n; __i++)
__o.put(__f);
}
template <class _CharT>
inline bool
_Rope_is_simple(_CharT*)
{ return false; }
inline bool
_Rope_is_simple(char*)
{ return true; }
inline bool
_Rope_is_simple(wchar_t*)
{ return true; }
template<class _CharT, class _Traits, class _Alloc>
basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __o,
const rope<_CharT, _Alloc>& __r)
{
size_t __w = __o.width();
bool __left = bool(__o.flags() & std::ios::left);
size_t __pad_len;
size_t __rope_len = __r.size();
_Rope_insert_char_consumer<_CharT, _Traits> __c(__o);
bool __is_simple = _Rope_is_simple((_CharT*)0);
if (__rope_len < __w)
__pad_len = __w - __rope_len;
else
__pad_len = 0;
if (!__is_simple)
__o.width(__w / __rope_len);
__try
{
if (__is_simple && !__left && __pad_len > 0)
_Rope_fill(__o, __pad_len);
__r.apply_to_pieces(0, __r.size(), __c);
if (__is_simple && __left && __pad_len > 0)
_Rope_fill(__o, __pad_len);
if (!__is_simple)
__o.width(__w);
}
__catch(...)
{
if (!__is_simple)
__o.width(__w);
__throw_exception_again;
}
return __o;
}
template <class _CharT, class _Alloc>
_CharT*
rope<_CharT, _Alloc>::
_S_flatten(_RopeRep* __r, size_t __start, size_t __len,
_CharT* __buffer)
{
_Rope_flatten_char_consumer<_CharT> __c(__buffer);
_S_apply_to_pieces(__c, __r, __start, __start + __len);
return(__buffer + __len);
}
template <class _CharT, class _Alloc>
size_t
rope<_CharT, _Alloc>::
find(_CharT __pattern, size_t __start) const
{
_Rope_find_char_char_consumer<_CharT> __c(__pattern);
_S_apply_to_pieces(__c, this->_M_tree_ptr, __start, size());
size_type __result_pos = __start + __c._M_count;
#ifndef __STL_OLD_ROPE_SEMANTICS
if (__result_pos == size())
__result_pos = npos;
#endif
return __result_pos;
}
template <class _CharT, class _Alloc>
_CharT*
rope<_CharT, _Alloc>::
_S_flatten(_RopeRep* __r, _CharT* __buffer)
{
if (0 == __r)
return __buffer;
switch(__r->_M_tag)
{
case __detail::_S_concat:
{
_RopeConcatenation* __c = (_RopeConcatenation*)__r;
_RopeRep* __left = __c->_M_left;
_RopeRep* __right = __c->_M_right;
_CharT* __rest = _S_flatten(__left, __buffer);
return _S_flatten(__right, __rest);
}
case __detail::_S_leaf:
{
_RopeLeaf* __l = (_RopeLeaf*)__r;
return copy_n(__l->_M_data, __l->_M_size, __buffer).second;
}
case __detail::_S_function:
case __detail::_S_substringfn:
// We don't yet do anything with substring nodes.
// This needs to be fixed before ropefiles will work well.
{
_RopeFunction* __f = (_RopeFunction*)__r;
(*(__f->_M_fn))(0, __f->_M_size, __buffer);
return __buffer + __f->_M_size;
}
default:
return 0;
}
}
// This needs work for _CharT != char
template <class _CharT, class _Alloc>
void
rope<_CharT, _Alloc>::
_S_dump(_RopeRep* __r, int __indent)
{
for (int __i = 0; __i < __indent; __i++)
putchar(' ');
if (0 == __r)
{
printf("NULL\n");
return;
}
if (__detail::_S_concat == __r->_M_tag)
{
_RopeConcatenation* __c = (_RopeConcatenation*)__r;
_RopeRep* __left = __c->_M_left;
_RopeRep* __right = __c->_M_right;
#ifdef __GC
printf("Concatenation %p (depth = %d, len = %ld, %s balanced)\n",
__r, __r->_M_depth, __r->_M_size,
__r->_M_is_balanced? "" : "not");
#else
printf("Concatenation %p (rc = %ld, depth = %d, "
"len = %ld, %s balanced)\n",
__r, __r->_M_ref_count, __r->_M_depth, __r->_M_size,
__r->_M_is_balanced? "" : "not");
#endif
_S_dump(__left, __indent + 2);
_S_dump(__right, __indent + 2);
return;
}
else
{
char* __kind;
switch (__r->_M_tag)
{
case __detail::_S_leaf:
__kind = "Leaf";
break;
case __detail::_S_function:
__kind = "Function";
break;
case __detail::_S_substringfn:
__kind = "Function representing substring";
break;
default:
__kind = "(corrupted kind field!)";
}
#ifdef __GC
printf("%s %p (depth = %d, len = %ld) ",
__kind, __r, __r->_M_depth, __r->_M_size);
#else
printf("%s %p (rc = %ld, depth = %d, len = %ld) ",
__kind, __r, __r->_M_ref_count, __r->_M_depth, __r->_M_size);
#endif
if (_S_is_one_byte_char_type((_CharT*)0))
{
const int __max_len = 40;
_Self_destruct_ptr __prefix(_S_substring(__r, 0, __max_len));
_CharT __buffer[__max_len + 1];
bool __too_big = __r->_M_size > __prefix->_M_size;
_S_flatten(__prefix, __buffer);
__buffer[__prefix->_M_size] = _S_eos((_CharT*)0);
printf("%s%s\n", (char*)__buffer,
__too_big? "...\n" : "\n");
}
else
printf("\n");
}
}
template <class _CharT, class _Alloc>
const unsigned long
rope<_CharT, _Alloc>::
_S_min_len[int(__detail::_S_max_rope_depth) + 1] = {
/* 0 */1, /* 1 */2, /* 2 */3, /* 3 */5, /* 4 */8, /* 5 */13, /* 6 */21,
/* 7 */34, /* 8 */55, /* 9 */89, /* 10 */144, /* 11 */233, /* 12 */377,
/* 13 */610, /* 14 */987, /* 15 */1597, /* 16 */2584, /* 17 */4181,
/* 18 */6765, /* 19 */10946, /* 20 */17711, /* 21 */28657, /* 22 */46368,
/* 23 */75025, /* 24 */121393, /* 25 */196418, /* 26 */317811,
/* 27 */514229, /* 28 */832040, /* 29 */1346269, /* 30 */2178309,
/* 31 */3524578, /* 32 */5702887, /* 33 */9227465, /* 34 */14930352,
/* 35 */24157817, /* 36 */39088169, /* 37 */63245986, /* 38 */102334155,
/* 39 */165580141, /* 40 */267914296, /* 41 */433494437,
/* 42 */701408733, /* 43 */1134903170, /* 44 */1836311903,
/* 45 */2971215073u };
// These are Fibonacci numbers < 2**32.
template <class _CharT, class _Alloc>
typename rope<_CharT, _Alloc>::_RopeRep*
rope<_CharT, _Alloc>::
_S_balance(_RopeRep* __r)
{
_RopeRep* __forest[int(__detail::_S_max_rope_depth) + 1];
_RopeRep* __result = 0;
int __i;
// Invariant:
// The concatenation of forest in descending order is equal to __r.
// __forest[__i]._M_size >= _S_min_len[__i]
// __forest[__i]._M_depth = __i
// References from forest are included in refcount.
for (__i = 0; __i <= int(__detail::_S_max_rope_depth); ++__i)
__forest[__i] = 0;
__try
{
_S_add_to_forest(__r, __forest);
for (__i = 0; __i <= int(__detail::_S_max_rope_depth); ++__i)
if (0 != __forest[__i])
{
#ifndef __GC
_Self_destruct_ptr __old(__result);
#endif
__result = _S_concat(__forest[__i], __result);
__forest[__i]->_M_unref_nonnil();
#if !defined(__GC) && __cpp_exceptions
__forest[__i] = 0;
#endif
}
}
__catch(...)
{
for(__i = 0; __i <= int(__detail::_S_max_rope_depth); __i++)
_S_unref(__forest[__i]);
__throw_exception_again;
}
if (__result->_M_depth > int(__detail::_S_max_rope_depth))
__throw_length_error(__N("rope::_S_balance"));
return(__result);
}
template <class _CharT, class _Alloc>
void
rope<_CharT, _Alloc>::
_S_add_to_forest(_RopeRep* __r, _RopeRep** __forest)
{
if (__r->_M_is_balanced)
{
_S_add_leaf_to_forest(__r, __forest);
return;
}
{
_RopeConcatenation* __c = (_RopeConcatenation*)__r;
_S_add_to_forest(__c->_M_left, __forest);
_S_add_to_forest(__c->_M_right, __forest);
}
}
template <class _CharT, class _Alloc>
void
rope<_CharT, _Alloc>::
_S_add_leaf_to_forest(_RopeRep* __r, _RopeRep** __forest)
{
_RopeRep* __insertee; // included in refcount
_RopeRep* __too_tiny = 0; // included in refcount
int __i; // forest[0..__i-1] is empty
size_t __s = __r->_M_size;
for (__i = 0; __s >= _S_min_len[__i+1]/* not this bucket */; ++__i)
{
if (0 != __forest[__i])
{
#ifndef __GC
_Self_destruct_ptr __old(__too_tiny);
#endif
__too_tiny = _S_concat_and_set_balanced(__forest[__i],
__too_tiny);
__forest[__i]->_M_unref_nonnil();
__forest[__i] = 0;
}
}
{
#ifndef __GC
_Self_destruct_ptr __old(__too_tiny);
#endif
__insertee = _S_concat_and_set_balanced(__too_tiny, __r);
}
// Too_tiny dead, and no longer included in refcount.
// Insertee is live and included.
for (;; ++__i)
{
if (0 != __forest[__i])
{
#ifndef __GC
_Self_destruct_ptr __old(__insertee);
#endif
__insertee = _S_concat_and_set_balanced(__forest[__i],
__insertee);
__forest[__i]->_M_unref_nonnil();
__forest[__i] = 0;
}
if (__i == int(__detail::_S_max_rope_depth)
|| __insertee->_M_size < _S_min_len[__i+1])
{
__forest[__i] = __insertee;
// refcount is OK since __insertee is now dead.
return;
}
}
}
template <class _CharT, class _Alloc>
_CharT
rope<_CharT, _Alloc>::
_S_fetch(_RopeRep* __r, size_type __i)
{
__GC_CONST _CharT* __cstr = __r->_M_c_string;
if (0 != __cstr)
return __cstr[__i];
for(;;)
{
switch(__r->_M_tag)
{
case __detail::_S_concat:
{
_RopeConcatenation* __c = (_RopeConcatenation*)__r;
_RopeRep* __left = __c->_M_left;
size_t __left_len = __left->_M_size;
if (__i >= __left_len)
{
__i -= __left_len;
__r = __c->_M_right;
}
else
__r = __left;
}
break;
case __detail::_S_leaf:
{
_RopeLeaf* __l = (_RopeLeaf*)__r;
return __l->_M_data[__i];
}
case __detail::_S_function:
case __detail::_S_substringfn:
{
_RopeFunction* __f = (_RopeFunction*)__r;
_CharT __result;
(*(__f->_M_fn))(__i, 1, &__result);
return __result;
}
}
}
}
#ifndef __GC
// Return a uniquely referenced character slot for the given
// position, or 0 if that's not possible.
template <class _CharT, class _Alloc>
_CharT*
rope<_CharT, _Alloc>::
_S_fetch_ptr(_RopeRep* __r, size_type __i)
{
_RopeRep* __clrstack[__detail::_S_max_rope_depth];
size_t __csptr = 0;
for(;;)
{
if (__r->_M_ref_count > 1)
return 0;
switch(__r->_M_tag)
{
case __detail::_S_concat:
{
_RopeConcatenation* __c = (_RopeConcatenation*)__r;
_RopeRep* __left = __c->_M_left;
size_t __left_len = __left->_M_size;
if (__c->_M_c_string != 0)
__clrstack[__csptr++] = __c;
if (__i >= __left_len)
{
__i -= __left_len;
__r = __c->_M_right;
}
else
__r = __left;
}
break;
case __detail::_S_leaf:
{
_RopeLeaf* __l = (_RopeLeaf*)__r;
if (__l->_M_c_string != __l->_M_data && __l->_M_c_string != 0)
__clrstack[__csptr++] = __l;
while (__csptr > 0)
{
-- __csptr;
_RopeRep* __d = __clrstack[__csptr];
__d->_M_free_c_string();
__d->_M_c_string = 0;
}
return __l->_M_data + __i;
}
case __detail::_S_function:
case __detail::_S_substringfn:
return 0;
}
}
}
#endif /* __GC */
// The following could be implemented trivially using
// lexicographical_compare_3way.
// We do a little more work to avoid dealing with rope iterators for
// flat strings.
template <class _CharT, class _Alloc>
int
rope<_CharT, _Alloc>::
_S_compare (const _RopeRep* __left, const _RopeRep* __right)
{
size_t __left_len;
size_t __right_len;
if (0 == __right)
return 0 != __left;
if (0 == __left)
return -1;
__left_len = __left->_M_size;
__right_len = __right->_M_size;
if (__detail::_S_leaf == __left->_M_tag)
{
_RopeLeaf* __l = (_RopeLeaf*) __left;
if (__detail::_S_leaf == __right->_M_tag)
{
_RopeLeaf* __r = (_RopeLeaf*) __right;
return lexicographical_compare_3way(__l->_M_data,
__l->_M_data + __left_len,
__r->_M_data, __r->_M_data
+ __right_len);
}
else
{
const_iterator __rstart(__right, 0);
const_iterator __rend(__right, __right_len);
return lexicographical_compare_3way(__l->_M_data, __l->_M_data
+ __left_len,
__rstart, __rend);
}
}
else
{
const_iterator __lstart(__left, 0);
const_iterator __lend(__left, __left_len);
if (__detail::_S_leaf == __right->_M_tag)
{
_RopeLeaf* __r = (_RopeLeaf*) __right;
return lexicographical_compare_3way(__lstart, __lend,
__r->_M_data, __r->_M_data
+ __right_len);
}
else
{
const_iterator __rstart(__right, 0);
const_iterator __rend(__right, __right_len);
return lexicographical_compare_3way(__lstart, __lend,
__rstart, __rend);
}
}
}
// Assignment to reference proxies.
template <class _CharT, class _Alloc>
_Rope_char_ref_proxy<_CharT, _Alloc>&
_Rope_char_ref_proxy<_CharT, _Alloc>::
operator=(_CharT __c)
{
_RopeRep* __old = _M_root->_M_tree_ptr;
#ifndef __GC
// First check for the case in which everything is uniquely
// referenced. In that case we can do this destructively.
_CharT* __ptr = _My_rope::_S_fetch_ptr(__old, _M_pos);
if (0 != __ptr)
{
*__ptr = __c;
return *this;
}
#endif
_Self_destruct_ptr __left(_My_rope::_S_substring(__old, 0, _M_pos));
_Self_destruct_ptr __right(_My_rope::_S_substring(__old, _M_pos + 1,
__old->_M_size));
_Self_destruct_ptr __result_left(_My_rope::
_S_destr_concat_char_iter(__left,
&__c, 1));
_RopeRep* __result = _My_rope::_S_concat(__result_left, __right);
#ifndef __GC
_RopeRep::_S_unref(__old);
#endif
_M_root->_M_tree_ptr = __result;
return *this;
}
template <class _CharT, class _Alloc>
inline _Rope_char_ref_proxy<_CharT, _Alloc>::
operator _CharT() const
{
if (_M_current_valid)
return _M_current;
else
return _My_rope::_S_fetch(_M_root->_M_tree_ptr, _M_pos);
}
template <class _CharT, class _Alloc>
_Rope_char_ptr_proxy<_CharT, _Alloc>
_Rope_char_ref_proxy<_CharT, _Alloc>::
operator&() const
{ return _Rope_char_ptr_proxy<_CharT, _Alloc>(*this); }
template <class _CharT, class _Alloc>
rope<_CharT, _Alloc>::
rope(size_t __n, _CharT __c, const allocator_type& __a)
: _Base(__a)
{
rope<_CharT,_Alloc> __result;
const size_t __exponentiate_threshold = 32;
size_t __exponent;
size_t __rest;
_CharT* __rest_buffer;
_RopeRep* __remainder;
rope<_CharT, _Alloc> __remainder_rope;
if (0 == __n)
return;
__exponent = __n / __exponentiate_threshold;
__rest = __n % __exponentiate_threshold;
if (0 == __rest)
__remainder = 0;
else
{
__rest_buffer = this->_Data_allocate(_S_rounded_up_size(__rest));
__uninitialized_fill_n_a(__rest_buffer, __rest, __c,
_M_get_allocator());
_S_cond_store_eos(__rest_buffer[__rest]);
__try
{ __remainder = _S_new_RopeLeaf(__rest_buffer, __rest,
_M_get_allocator()); }
__catch(...)
{
_RopeRep::__STL_FREE_STRING(__rest_buffer, __rest,
_M_get_allocator());
__throw_exception_again;
}
}
__remainder_rope._M_tree_ptr = __remainder;
if (__exponent != 0)
{
_CharT* __base_buffer =
this->_Data_allocate(_S_rounded_up_size(__exponentiate_threshold));
_RopeLeaf* __base_leaf;
rope __base_rope;
__uninitialized_fill_n_a(__base_buffer, __exponentiate_threshold, __c,
_M_get_allocator());
_S_cond_store_eos(__base_buffer[__exponentiate_threshold]);
__try
{
__base_leaf = _S_new_RopeLeaf(__base_buffer,
__exponentiate_threshold,
_M_get_allocator());
}
__catch(...)
{
_RopeRep::__STL_FREE_STRING(__base_buffer,
__exponentiate_threshold,
_M_get_allocator());
__throw_exception_again;
}
__base_rope._M_tree_ptr = __base_leaf;
if (1 == __exponent)
__result = __base_rope;
else
__result = power(__base_rope, __exponent,
_Rope_Concat_fn<_CharT, _Alloc>());
if (0 != __remainder)
__result += __remainder_rope;
}
else
__result = __remainder_rope;
this->_M_tree_ptr = __result._M_tree_ptr;
this->_M_tree_ptr->_M_ref_nonnil();
}
template<class _CharT, class _Alloc>
_CharT
rope<_CharT, _Alloc>::_S_empty_c_str[1];
template<class _CharT, class _Alloc>
const _CharT*
rope<_CharT, _Alloc>::
c_str() const
{
if (0 == this->_M_tree_ptr)
{
_S_empty_c_str[0] = _S_eos((_CharT*)0); // Possibly redundant,
// but probably fast.
return _S_empty_c_str;
}
__gthread_mutex_lock (&this->_M_tree_ptr->_M_c_string_lock);
__GC_CONST _CharT* __result = this->_M_tree_ptr->_M_c_string;
if (0 == __result)
{
size_t __s = size();
__result = this->_Data_allocate(__s + 1);
_S_flatten(this->_M_tree_ptr, __result);
__result[__s] = _S_eos((_CharT*)0);
this->_M_tree_ptr->_M_c_string = __result;
}
__gthread_mutex_unlock (&this->_M_tree_ptr->_M_c_string_lock);
return(__result);
}
template<class _CharT, class _Alloc>
const _CharT* rope<_CharT, _Alloc>::
replace_with_c_str()
{
if (0 == this->_M_tree_ptr)
{
_S_empty_c_str[0] = _S_eos((_CharT*)0);
return _S_empty_c_str;
}
__GC_CONST _CharT* __old_c_string = this->_M_tree_ptr->_M_c_string;
if (__detail::_S_leaf == this->_M_tree_ptr->_M_tag
&& 0 != __old_c_string)
return(__old_c_string);
size_t __s = size();
_CharT* __result = this->_Data_allocate(_S_rounded_up_size(__s));
_S_flatten(this->_M_tree_ptr, __result);
__result[__s] = _S_eos((_CharT*)0);
this->_M_tree_ptr->_M_unref_nonnil();
this->_M_tree_ptr = _S_new_RopeLeaf(__result, __s,
this->_M_get_allocator());
return(__result);
}
// Algorithm specializations. More should be added.
template<class _Rope_iterator> // was templated on CharT and Alloc
void // VC++ workaround
_Rope_rotate(_Rope_iterator __first,
_Rope_iterator __middle,
_Rope_iterator __last)
{
typedef typename _Rope_iterator::value_type _CharT;
typedef typename _Rope_iterator::_allocator_type _Alloc;
rope<_CharT, _Alloc>& __r(__first.container());
rope<_CharT, _Alloc> __prefix = __r.substr(0, __first.index());
rope<_CharT, _Alloc> __suffix =
__r.substr(__last.index(), __r.size() - __last.index());
rope<_CharT, _Alloc> __part1 =
__r.substr(__middle.index(), __last.index() - __middle.index());
rope<_CharT, _Alloc> __part2 =
__r.substr(__first.index(), __middle.index() - __first.index());
__r = __prefix;
__r += __part1;
__r += __part2;
__r += __suffix;
}
#if !defined(__GNUC__)
// Appears to confuse g++
inline void
rotate(_Rope_iterator<char, __STL_DEFAULT_ALLOCATOR(char)> __first,
_Rope_iterator<char, __STL_DEFAULT_ALLOCATOR(char)> __middle,
_Rope_iterator<char, __STL_DEFAULT_ALLOCATOR(char)> __last)
{ _Rope_rotate(__first, __middle, __last); }
#endif
# if 0
// Probably not useful for several reasons:
// - for SGIs 7.1 compiler and probably some others,
// this forces lots of rope<wchar_t, ...> instantiations, creating a
// code bloat and compile time problem. (Fixed in 7.2.)
// - wchar_t is 4 bytes wide on most UNIX platforms, making it
// unattractive for unicode strings. Unsigned short may be a better
// character type.
inline void
rotate(_Rope_iterator<wchar_t, __STL_DEFAULT_ALLOCATOR(char)> __first,
_Rope_iterator<wchar_t, __STL_DEFAULT_ALLOCATOR(char)> __middle,
_Rope_iterator<wchar_t, __STL_DEFAULT_ALLOCATOR(char)> __last)
{ _Rope_rotate(__first, __middle, __last); }
# endif
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace