Retro68/gcc/libsanitizer/sanitizer_common/sanitizer_allocator_primary64.h
2017-10-07 02:16:47 +02:00

504 lines
19 KiB
C++

//===-- sanitizer_allocator_primary64.h -------------------------*- C++ -*-===//
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Part of the Sanitizer Allocator.
//
//===----------------------------------------------------------------------===//
#ifndef SANITIZER_ALLOCATOR_H
#error This file must be included inside sanitizer_allocator.h
#endif
template<class SizeClassAllocator> struct SizeClassAllocator64LocalCache;
// SizeClassAllocator64 -- allocator for 64-bit address space.
// The template parameter Params is a class containing the actual parameters.
//
// Space: a portion of address space of kSpaceSize bytes starting at SpaceBeg.
// If kSpaceBeg is ~0 then SpaceBeg is chosen dynamically my mmap.
// Otherwise SpaceBeg=kSpaceBeg (fixed address).
// kSpaceSize is a power of two.
// At the beginning the entire space is mprotect-ed, then small parts of it
// are mapped on demand.
//
// Region: a part of Space dedicated to a single size class.
// There are kNumClasses Regions of equal size.
//
// UserChunk: a piece of memory returned to user.
// MetaChunk: kMetadataSize bytes of metadata associated with a UserChunk.
// FreeArray is an array free-d chunks (stored as 4-byte offsets)
//
// A Region looks like this:
// UserChunk1 ... UserChunkN <gap> MetaChunkN ... MetaChunk1 FreeArray
struct SizeClassAllocator64FlagMasks { // Bit masks.
enum {
kRandomShuffleChunks = 1,
};
};
template <class Params>
class SizeClassAllocator64 {
public:
static const uptr kSpaceBeg = Params::kSpaceBeg;
static const uptr kSpaceSize = Params::kSpaceSize;
static const uptr kMetadataSize = Params::kMetadataSize;
typedef typename Params::SizeClassMap SizeClassMap;
typedef typename Params::MapUnmapCallback MapUnmapCallback;
static const bool kRandomShuffleChunks =
Params::kFlags & SizeClassAllocator64FlagMasks::kRandomShuffleChunks;
typedef SizeClassAllocator64<Params> ThisT;
typedef SizeClassAllocator64LocalCache<ThisT> AllocatorCache;
// When we know the size class (the region base) we can represent a pointer
// as a 4-byte integer (offset from the region start shifted right by 4).
typedef u32 CompactPtrT;
static const uptr kCompactPtrScale = 4;
CompactPtrT PointerToCompactPtr(uptr base, uptr ptr) {
return static_cast<CompactPtrT>((ptr - base) >> kCompactPtrScale);
}
uptr CompactPtrToPointer(uptr base, CompactPtrT ptr32) {
return base + (static_cast<uptr>(ptr32) << kCompactPtrScale);
}
void Init() {
uptr TotalSpaceSize = kSpaceSize + AdditionalSize();
if (kUsingConstantSpaceBeg) {
CHECK_EQ(kSpaceBeg, reinterpret_cast<uptr>(
MmapFixedNoAccess(kSpaceBeg, TotalSpaceSize)));
} else {
NonConstSpaceBeg =
reinterpret_cast<uptr>(MmapNoAccess(TotalSpaceSize));
CHECK_NE(NonConstSpaceBeg, ~(uptr)0);
}
MapWithCallback(SpaceEnd(), AdditionalSize());
}
void MapWithCallback(uptr beg, uptr size) {
CHECK_EQ(beg, reinterpret_cast<uptr>(MmapFixedOrDie(beg, size)));
MapUnmapCallback().OnMap(beg, size);
}
void UnmapWithCallback(uptr beg, uptr size) {
MapUnmapCallback().OnUnmap(beg, size);
UnmapOrDie(reinterpret_cast<void *>(beg), size);
}
static bool CanAllocate(uptr size, uptr alignment) {
return size <= SizeClassMap::kMaxSize &&
alignment <= SizeClassMap::kMaxSize;
}
NOINLINE void ReturnToAllocator(AllocatorStats *stat, uptr class_id,
const CompactPtrT *chunks, uptr n_chunks) {
RegionInfo *region = GetRegionInfo(class_id);
uptr region_beg = GetRegionBeginBySizeClass(class_id);
CompactPtrT *free_array = GetFreeArray(region_beg);
BlockingMutexLock l(&region->mutex);
uptr old_num_chunks = region->num_freed_chunks;
uptr new_num_freed_chunks = old_num_chunks + n_chunks;
EnsureFreeArraySpace(region, region_beg, new_num_freed_chunks);
for (uptr i = 0; i < n_chunks; i++)
free_array[old_num_chunks + i] = chunks[i];
region->num_freed_chunks = new_num_freed_chunks;
region->n_freed += n_chunks;
}
NOINLINE void GetFromAllocator(AllocatorStats *stat, uptr class_id,
CompactPtrT *chunks, uptr n_chunks) {
RegionInfo *region = GetRegionInfo(class_id);
uptr region_beg = GetRegionBeginBySizeClass(class_id);
CompactPtrT *free_array = GetFreeArray(region_beg);
BlockingMutexLock l(&region->mutex);
if (UNLIKELY(region->num_freed_chunks < n_chunks)) {
PopulateFreeArray(stat, class_id, region,
n_chunks - region->num_freed_chunks);
CHECK_GE(region->num_freed_chunks, n_chunks);
}
region->num_freed_chunks -= n_chunks;
uptr base_idx = region->num_freed_chunks;
for (uptr i = 0; i < n_chunks; i++)
chunks[i] = free_array[base_idx + i];
region->n_allocated += n_chunks;
}
bool PointerIsMine(const void *p) {
uptr P = reinterpret_cast<uptr>(p);
if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0)
return P / kSpaceSize == kSpaceBeg / kSpaceSize;
return P >= SpaceBeg() && P < SpaceEnd();
}
uptr GetRegionBegin(const void *p) {
if (kUsingConstantSpaceBeg)
return reinterpret_cast<uptr>(p) & ~(kRegionSize - 1);
uptr space_beg = SpaceBeg();
return ((reinterpret_cast<uptr>(p) - space_beg) & ~(kRegionSize - 1)) +
space_beg;
}
uptr GetRegionBeginBySizeClass(uptr class_id) {
return SpaceBeg() + kRegionSize * class_id;
}
uptr GetSizeClass(const void *p) {
if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0)
return ((reinterpret_cast<uptr>(p)) / kRegionSize) % kNumClassesRounded;
return ((reinterpret_cast<uptr>(p) - SpaceBeg()) / kRegionSize) %
kNumClassesRounded;
}
void *GetBlockBegin(const void *p) {
uptr class_id = GetSizeClass(p);
uptr size = ClassIdToSize(class_id);
if (!size) return nullptr;
uptr chunk_idx = GetChunkIdx((uptr)p, size);
uptr reg_beg = GetRegionBegin(p);
uptr beg = chunk_idx * size;
uptr next_beg = beg + size;
if (class_id >= kNumClasses) return nullptr;
RegionInfo *region = GetRegionInfo(class_id);
if (region->mapped_user >= next_beg)
return reinterpret_cast<void*>(reg_beg + beg);
return nullptr;
}
uptr GetActuallyAllocatedSize(void *p) {
CHECK(PointerIsMine(p));
return ClassIdToSize(GetSizeClass(p));
}
uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }
void *GetMetaData(const void *p) {
uptr class_id = GetSizeClass(p);
uptr size = ClassIdToSize(class_id);
uptr chunk_idx = GetChunkIdx(reinterpret_cast<uptr>(p), size);
uptr region_beg = GetRegionBeginBySizeClass(class_id);
return reinterpret_cast<void *>(GetMetadataEnd(region_beg) -
(1 + chunk_idx) * kMetadataSize);
}
uptr TotalMemoryUsed() {
uptr res = 0;
for (uptr i = 0; i < kNumClasses; i++)
res += GetRegionInfo(i)->allocated_user;
return res;
}
// Test-only.
void TestOnlyUnmap() {
UnmapWithCallback(SpaceBeg(), kSpaceSize + AdditionalSize());
}
static void FillMemoryProfile(uptr start, uptr rss, bool file, uptr *stats,
uptr stats_size) {
for (uptr class_id = 0; class_id < stats_size; class_id++)
if (stats[class_id] == start)
stats[class_id] = rss;
}
void PrintStats(uptr class_id, uptr rss) {
RegionInfo *region = GetRegionInfo(class_id);
if (region->mapped_user == 0) return;
uptr in_use = region->n_allocated - region->n_freed;
uptr avail_chunks = region->allocated_user / ClassIdToSize(class_id);
Printf(
" %02zd (%zd): mapped: %zdK allocs: %zd frees: %zd inuse: %zd "
"num_freed_chunks %zd"
" avail: %zd rss: %zdK releases: %zd\n",
class_id, ClassIdToSize(class_id), region->mapped_user >> 10,
region->n_allocated, region->n_freed, in_use,
region->num_freed_chunks, avail_chunks, rss >> 10,
region->rtoi.num_releases);
}
void PrintStats() {
uptr total_mapped = 0;
uptr n_allocated = 0;
uptr n_freed = 0;
for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
RegionInfo *region = GetRegionInfo(class_id);
total_mapped += region->mapped_user;
n_allocated += region->n_allocated;
n_freed += region->n_freed;
}
Printf("Stats: SizeClassAllocator64: %zdM mapped in %zd allocations; "
"remains %zd\n",
total_mapped >> 20, n_allocated, n_allocated - n_freed);
uptr rss_stats[kNumClasses];
for (uptr class_id = 0; class_id < kNumClasses; class_id++)
rss_stats[class_id] = SpaceBeg() + kRegionSize * class_id;
GetMemoryProfile(FillMemoryProfile, rss_stats, kNumClasses);
for (uptr class_id = 1; class_id < kNumClasses; class_id++)
PrintStats(class_id, rss_stats[class_id]);
}
// ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
// introspection API.
void ForceLock() {
for (uptr i = 0; i < kNumClasses; i++) {
GetRegionInfo(i)->mutex.Lock();
}
}
void ForceUnlock() {
for (int i = (int)kNumClasses - 1; i >= 0; i--) {
GetRegionInfo(i)->mutex.Unlock();
}
}
// Iterate over all existing chunks.
// The allocator must be locked when calling this function.
void ForEachChunk(ForEachChunkCallback callback, void *arg) {
for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
RegionInfo *region = GetRegionInfo(class_id);
uptr chunk_size = ClassIdToSize(class_id);
uptr region_beg = SpaceBeg() + class_id * kRegionSize;
for (uptr chunk = region_beg;
chunk < region_beg + region->allocated_user;
chunk += chunk_size) {
// Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk));
callback(chunk, arg);
}
}
}
static uptr ClassIdToSize(uptr class_id) {
return SizeClassMap::Size(class_id);
}
static uptr AdditionalSize() {
return RoundUpTo(sizeof(RegionInfo) * kNumClassesRounded,
GetPageSizeCached());
}
void ReleaseToOS() {
for (uptr class_id = 1; class_id < kNumClasses; class_id++)
ReleaseToOS(class_id);
}
typedef SizeClassMap SizeClassMapT;
static const uptr kNumClasses = SizeClassMap::kNumClasses;
static const uptr kNumClassesRounded = SizeClassMap::kNumClassesRounded;
private:
static const uptr kRegionSize = kSpaceSize / kNumClassesRounded;
// FreeArray is the array of free-d chunks (stored as 4-byte offsets).
// In the worst case it may reguire kRegionSize/SizeClassMap::kMinSize
// elements, but in reality this will not happen. For simplicity we
// dedicate 1/8 of the region's virtual space to FreeArray.
static const uptr kFreeArraySize = kRegionSize / 8;
static const bool kUsingConstantSpaceBeg = kSpaceBeg != ~(uptr)0;
uptr NonConstSpaceBeg;
uptr SpaceBeg() const {
return kUsingConstantSpaceBeg ? kSpaceBeg : NonConstSpaceBeg;
}
uptr SpaceEnd() const { return SpaceBeg() + kSpaceSize; }
// kRegionSize must be >= 2^32.
COMPILER_CHECK((kRegionSize) >= (1ULL << (SANITIZER_WORDSIZE / 2)));
// kRegionSize must be <= 2^36, see CompactPtrT.
COMPILER_CHECK((kRegionSize) <= (1ULL << (SANITIZER_WORDSIZE / 2 + 4)));
// Call mmap for user memory with at least this size.
static const uptr kUserMapSize = 1 << 16;
// Call mmap for metadata memory with at least this size.
static const uptr kMetaMapSize = 1 << 16;
// Call mmap for free array memory with at least this size.
static const uptr kFreeArrayMapSize = 1 << 16;
// Granularity of ReleaseToOs (aka madvise).
static const uptr kReleaseToOsGranularity = 1 << 12;
struct ReleaseToOsInfo {
uptr n_freed_at_last_release;
uptr num_releases;
};
struct RegionInfo {
BlockingMutex mutex;
uptr num_freed_chunks; // Number of elements in the freearray.
uptr mapped_free_array; // Bytes mapped for freearray.
uptr allocated_user; // Bytes allocated for user memory.
uptr allocated_meta; // Bytes allocated for metadata.
uptr mapped_user; // Bytes mapped for user memory.
uptr mapped_meta; // Bytes mapped for metadata.
u32 rand_state; // Seed for random shuffle, used if kRandomShuffleChunks.
uptr n_allocated, n_freed; // Just stats.
ReleaseToOsInfo rtoi;
};
COMPILER_CHECK(sizeof(RegionInfo) >= kCacheLineSize);
u32 Rand(u32 *state) { // ANSI C linear congruential PRNG.
return (*state = *state * 1103515245 + 12345) >> 16;
}
u32 RandN(u32 *state, u32 n) { return Rand(state) % n; } // [0, n)
void RandomShuffle(u32 *a, u32 n, u32 *rand_state) {
if (n <= 1) return;
for (u32 i = n - 1; i > 0; i--)
Swap(a[i], a[RandN(rand_state, i + 1)]);
}
RegionInfo *GetRegionInfo(uptr class_id) {
CHECK_LT(class_id, kNumClasses);
RegionInfo *regions =
reinterpret_cast<RegionInfo *>(SpaceBeg() + kSpaceSize);
return &regions[class_id];
}
uptr GetMetadataEnd(uptr region_beg) {
return region_beg + kRegionSize - kFreeArraySize;
}
uptr GetChunkIdx(uptr chunk, uptr size) {
if (!kUsingConstantSpaceBeg)
chunk -= SpaceBeg();
uptr offset = chunk % kRegionSize;
// Here we divide by a non-constant. This is costly.
// size always fits into 32-bits. If the offset fits too, use 32-bit div.
if (offset >> (SANITIZER_WORDSIZE / 2))
return offset / size;
return (u32)offset / (u32)size;
}
CompactPtrT *GetFreeArray(uptr region_beg) {
return reinterpret_cast<CompactPtrT *>(region_beg + kRegionSize -
kFreeArraySize);
}
void EnsureFreeArraySpace(RegionInfo *region, uptr region_beg,
uptr num_freed_chunks) {
uptr needed_space = num_freed_chunks * sizeof(CompactPtrT);
if (region->mapped_free_array < needed_space) {
CHECK_LE(needed_space, kFreeArraySize);
uptr new_mapped_free_array = RoundUpTo(needed_space, kFreeArrayMapSize);
uptr current_map_end = reinterpret_cast<uptr>(GetFreeArray(region_beg)) +
region->mapped_free_array;
uptr new_map_size = new_mapped_free_array - region->mapped_free_array;
MapWithCallback(current_map_end, new_map_size);
region->mapped_free_array = new_mapped_free_array;
}
}
NOINLINE void PopulateFreeArray(AllocatorStats *stat, uptr class_id,
RegionInfo *region, uptr requested_count) {
// region->mutex is held.
uptr size = ClassIdToSize(class_id);
uptr beg_idx = region->allocated_user;
uptr end_idx = beg_idx + requested_count * size;
uptr region_beg = GetRegionBeginBySizeClass(class_id);
if (end_idx > region->mapped_user) {
if (!kUsingConstantSpaceBeg && region->mapped_user == 0)
region->rand_state = static_cast<u32>(region_beg >> 12); // From ASLR.
// Do the mmap for the user memory.
uptr map_size = kUserMapSize;
while (end_idx > region->mapped_user + map_size)
map_size += kUserMapSize;
CHECK_GE(region->mapped_user + map_size, end_idx);
MapWithCallback(region_beg + region->mapped_user, map_size);
stat->Add(AllocatorStatMapped, map_size);
region->mapped_user += map_size;
}
CompactPtrT *free_array = GetFreeArray(region_beg);
uptr total_count = (region->mapped_user - beg_idx) / size;
uptr num_freed_chunks = region->num_freed_chunks;
EnsureFreeArraySpace(region, region_beg, num_freed_chunks + total_count);
for (uptr i = 0; i < total_count; i++) {
uptr chunk = beg_idx + i * size;
free_array[num_freed_chunks + total_count - 1 - i] =
PointerToCompactPtr(0, chunk);
}
if (kRandomShuffleChunks)
RandomShuffle(&free_array[num_freed_chunks], total_count,
&region->rand_state);
region->num_freed_chunks += total_count;
region->allocated_user += total_count * size;
CHECK_LE(region->allocated_user, region->mapped_user);
region->allocated_meta += total_count * kMetadataSize;
if (region->allocated_meta > region->mapped_meta) {
uptr map_size = kMetaMapSize;
while (region->allocated_meta > region->mapped_meta + map_size)
map_size += kMetaMapSize;
// Do the mmap for the metadata.
CHECK_GE(region->mapped_meta + map_size, region->allocated_meta);
MapWithCallback(GetMetadataEnd(region_beg) -
region->mapped_meta - map_size, map_size);
region->mapped_meta += map_size;
}
CHECK_LE(region->allocated_meta, region->mapped_meta);
if (region->mapped_user + region->mapped_meta >
kRegionSize - kFreeArraySize) {
Printf("%s: Out of memory. Dying. ", SanitizerToolName);
Printf("The process has exhausted %zuMB for size class %zu.\n",
kRegionSize / 1024 / 1024, size);
Die();
}
}
bool MaybeReleaseChunkRange(uptr region_beg, uptr chunk_size,
CompactPtrT first, CompactPtrT last) {
uptr beg_ptr = CompactPtrToPointer(region_beg, first);
uptr end_ptr = CompactPtrToPointer(region_beg, last) + chunk_size;
CHECK_GE(end_ptr - beg_ptr, kReleaseToOsGranularity);
beg_ptr = RoundUpTo(beg_ptr, kReleaseToOsGranularity);
end_ptr = RoundDownTo(end_ptr, kReleaseToOsGranularity);
if (end_ptr == beg_ptr) return false;
ReleaseMemoryToOS(beg_ptr, end_ptr - beg_ptr);
return true;
}
// Releases some RAM back to OS.
// Algorithm:
// * Lock the region.
// * Sort the chunks.
// * Find ranges fully covered by free-d chunks
// * Release them to OS with madvise.
//
// TODO(kcc): make sure we don't do it too frequently.
void ReleaseToOS(uptr class_id) {
RegionInfo *region = GetRegionInfo(class_id);
uptr region_beg = GetRegionBeginBySizeClass(class_id);
CompactPtrT *free_array = GetFreeArray(region_beg);
uptr chunk_size = ClassIdToSize(class_id);
uptr scaled_chunk_size = chunk_size >> kCompactPtrScale;
const uptr kScaledGranularity = kReleaseToOsGranularity >> kCompactPtrScale;
BlockingMutexLock l(&region->mutex);
uptr n = region->num_freed_chunks;
if (n * chunk_size < kReleaseToOsGranularity)
return; // No chance to release anything.
if ((region->rtoi.n_freed_at_last_release - region->n_freed) * chunk_size <
kReleaseToOsGranularity)
return; // Nothing new to release.
SortArray(free_array, n);
uptr beg = free_array[0];
uptr prev = free_array[0];
for (uptr i = 1; i < n; i++) {
uptr chunk = free_array[i];
CHECK_GT(chunk, prev);
if (chunk - prev != scaled_chunk_size) {
CHECK_GT(chunk - prev, scaled_chunk_size);
if (prev + scaled_chunk_size - beg >= kScaledGranularity) {
MaybeReleaseChunkRange(region_beg, chunk_size, beg, prev);
region->rtoi.n_freed_at_last_release = region->n_freed;
region->rtoi.num_releases++;
}
beg = chunk;
}
prev = chunk;
}
}
};