mirror of
https://github.com/autc04/Retro68.git
synced 2024-11-24 07:31:32 +00:00
186 lines
4.3 KiB
C
186 lines
4.3 KiB
C
|
|
/* @(#)z_sineh.c 1.0 98/08/13 */
|
|
/******************************************************************
|
|
* The following routines are coded directly from the algorithms
|
|
* and coefficients given in "Software Manual for the Elementary
|
|
* Functions" by William J. Cody, Jr. and William Waite, Prentice
|
|
* Hall, 1980.
|
|
******************************************************************/
|
|
|
|
/*
|
|
FUNCTION
|
|
<<sinh>>, <<sinhf>>, <<cosh>>, <<coshf>>, <<sineh>>---hyperbolic sine or cosine
|
|
|
|
INDEX
|
|
sinh
|
|
INDEX
|
|
sinhf
|
|
INDEX
|
|
cosh
|
|
INDEX
|
|
coshf
|
|
|
|
ANSI_SYNOPSIS
|
|
#include <math.h>
|
|
double sinh(double <[x]>);
|
|
float sinhf(float <[x]>);
|
|
double cosh(double <[x]>);
|
|
float coshf(float <[x]>);
|
|
TRAD_SYNOPSIS
|
|
#include <math.h>
|
|
double sinh(<[x]>)
|
|
double <[x]>;
|
|
|
|
float sinhf(<[x]>)
|
|
float <[x]>;
|
|
|
|
double cosh(<[x]>)
|
|
double <[x]>;
|
|
|
|
float coshf(<[x]>)
|
|
float <[x]>;
|
|
|
|
DESCRIPTION
|
|
<<sinh>> and <<cosh>> compute the hyperbolic sine or cosine
|
|
of the argument <[x]>.
|
|
Angles are specified in radians. <<sinh>>(<[x]>) is defined as
|
|
@ifnottex
|
|
. (exp(<[x]>) - exp(-<[x]>))/2
|
|
@end ifnottex
|
|
@tex
|
|
$${e^x - e^{-x}}\over 2$$
|
|
@end tex
|
|
<<cosh>> is defined as
|
|
@ifnottex
|
|
. (exp(<[x]>) - exp(-<[x]>))/2
|
|
@end ifnottex
|
|
@tex
|
|
$${e^x + e^{-x}}\over 2$$
|
|
@end tex
|
|
|
|
<<sinhf>> and <<coshf>> are identical, save that they take
|
|
and returns <<float>> values.
|
|
|
|
RETURNS
|
|
The hyperbolic sine or cosine of <[x]> is returned.
|
|
|
|
When the correct result is too large to be representable (an
|
|
overflow), the functions return <<HUGE_VAL>> with the
|
|
appropriate sign, and sets the global value <<errno>> to
|
|
<<ERANGE>>.
|
|
|
|
PORTABILITY
|
|
<<sinh>> is ANSI C.
|
|
<<sinhf>> is an extension.
|
|
<<cosh>> is ANSI C.
|
|
<<coshf>> is an extension.
|
|
|
|
*/
|
|
|
|
/******************************************************************
|
|
* Hyperbolic Sine
|
|
*
|
|
* Input:
|
|
* x - floating point value
|
|
*
|
|
* Output:
|
|
* hyperbolic sine of x
|
|
*
|
|
* Description:
|
|
* This routine calculates hyperbolic sines.
|
|
*
|
|
*****************************************************************/
|
|
|
|
#include <float.h>
|
|
#include "fdlibm.h"
|
|
#include "zmath.h"
|
|
|
|
static const double q[] = { -0.21108770058106271242e+7,
|
|
0.36162723109421836460e+5,
|
|
-0.27773523119650701667e+3 };
|
|
static const double p[] = { -0.35181283430177117881e+6,
|
|
-0.11563521196851768270e+5,
|
|
-0.16375798202630751372e+3,
|
|
-0.78966127417357099479 };
|
|
static const double LNV = 0.6931610107421875000;
|
|
static const double INV_V2 = 0.24999308500451499336;
|
|
static const double V_OVER2_MINUS1 = 0.13830277879601902638e-4;
|
|
|
|
double
|
|
_DEFUN (sineh, (double, int),
|
|
double x _AND
|
|
int cosineh)
|
|
{
|
|
double y, f, P, Q, R, res, z, w;
|
|
int sgn = 1;
|
|
double WBAR = 18.55;
|
|
|
|
/* Check for special values. */
|
|
switch (numtest (x))
|
|
{
|
|
case NAN:
|
|
errno = EDOM;
|
|
return (x);
|
|
case INF:
|
|
errno = ERANGE;
|
|
return (ispos (x) ? z_infinity.d : -z_infinity.d);
|
|
}
|
|
|
|
y = fabs (x);
|
|
|
|
if (!cosineh && x < 0.0)
|
|
sgn = -1;
|
|
|
|
if ((y > 1.0 && !cosineh) || cosineh)
|
|
{
|
|
if (y > BIGX)
|
|
{
|
|
w = y - LNV;
|
|
|
|
/* Check for w > maximum here. */
|
|
if (w > BIGX)
|
|
{
|
|
errno = ERANGE;
|
|
return (x);
|
|
}
|
|
|
|
z = exp (w);
|
|
|
|
if (w > WBAR)
|
|
res = z * (V_OVER2_MINUS1 + 1.0);
|
|
}
|
|
|
|
else
|
|
{
|
|
z = exp (y);
|
|
if (cosineh)
|
|
res = (z + 1 / z) / 2.0;
|
|
else
|
|
res = (z - 1 / z) / 2.0;
|
|
}
|
|
|
|
if (sgn < 0)
|
|
res = -res;
|
|
}
|
|
else
|
|
{
|
|
/* Check for y being too small. */
|
|
if (y < z_rooteps)
|
|
{
|
|
res = x;
|
|
}
|
|
/* Calculate the Taylor series. */
|
|
else
|
|
{
|
|
f = x * x;
|
|
Q = ((f + q[2]) * f + q[1]) * f + q[0];
|
|
P = ((p[3] * f + p[2]) * f + p[1]) * f + p[0];
|
|
R = f * (P / Q);
|
|
|
|
res = x + x * R;
|
|
}
|
|
}
|
|
|
|
return (res);
|
|
}
|