mirror of
https://github.com/autc04/Retro68.git
synced 2024-11-30 19:53:46 +00:00
1995 lines
57 KiB
C
1995 lines
57 KiB
C
/* CTF dict creation.
|
|
Copyright (C) 2019-2022 Free Software Foundation, Inc.
|
|
|
|
This file is part of libctf.
|
|
|
|
libctf is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
This program is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
See the GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; see the file COPYING. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include <ctf-impl.h>
|
|
#include <sys/param.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
|
|
#ifndef EOVERFLOW
|
|
#define EOVERFLOW ERANGE
|
|
#endif
|
|
|
|
#ifndef roundup
|
|
#define roundup(x, y) ((((x) + ((y) - 1)) / (y)) * (y))
|
|
#endif
|
|
|
|
/* The initial size of a dynamic type's vlen in members. Arbitrary: the bigger
|
|
this is, the less allocation needs to be done for small structure
|
|
initialization, and the more memory is wasted for small structures during CTF
|
|
construction. No effect on generated CTF or ctf_open()ed CTF. */
|
|
#define INITIAL_VLEN 16
|
|
|
|
/* Make sure the ptrtab has enough space for at least one more type.
|
|
|
|
We start with 4KiB of ptrtab, enough for a thousand types, then grow it 25%
|
|
at a time. */
|
|
|
|
static int
|
|
ctf_grow_ptrtab (ctf_dict_t *fp)
|
|
{
|
|
size_t new_ptrtab_len = fp->ctf_ptrtab_len;
|
|
|
|
/* We allocate one more ptrtab entry than we need, for the initial zero,
|
|
plus one because the caller will probably allocate a new type. */
|
|
|
|
if (fp->ctf_ptrtab == NULL)
|
|
new_ptrtab_len = 1024;
|
|
else if ((fp->ctf_typemax + 2) > fp->ctf_ptrtab_len)
|
|
new_ptrtab_len = fp->ctf_ptrtab_len * 1.25;
|
|
|
|
if (new_ptrtab_len != fp->ctf_ptrtab_len)
|
|
{
|
|
uint32_t *new_ptrtab;
|
|
|
|
if ((new_ptrtab = realloc (fp->ctf_ptrtab,
|
|
new_ptrtab_len * sizeof (uint32_t))) == NULL)
|
|
return (ctf_set_errno (fp, ENOMEM));
|
|
|
|
fp->ctf_ptrtab = new_ptrtab;
|
|
memset (fp->ctf_ptrtab + fp->ctf_ptrtab_len, 0,
|
|
(new_ptrtab_len - fp->ctf_ptrtab_len) * sizeof (uint32_t));
|
|
fp->ctf_ptrtab_len = new_ptrtab_len;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Make sure a vlen has enough space: expand it otherwise. Unlike the ptrtab,
|
|
which grows quite slowly, the vlen grows in big jumps because it is quite
|
|
expensive to expand: the caller has to scan the old vlen for string refs
|
|
first and remove them, then re-add them afterwards. The initial size is
|
|
more or less arbitrary. */
|
|
static int
|
|
ctf_grow_vlen (ctf_dict_t *fp, ctf_dtdef_t *dtd, size_t vlen)
|
|
{
|
|
unsigned char *old = dtd->dtd_vlen;
|
|
|
|
if (dtd->dtd_vlen_alloc > vlen)
|
|
return 0;
|
|
|
|
if ((dtd->dtd_vlen = realloc (dtd->dtd_vlen,
|
|
dtd->dtd_vlen_alloc * 2)) == NULL)
|
|
{
|
|
dtd->dtd_vlen = old;
|
|
return (ctf_set_errno (fp, ENOMEM));
|
|
}
|
|
memset (dtd->dtd_vlen + dtd->dtd_vlen_alloc, 0, dtd->dtd_vlen_alloc);
|
|
dtd->dtd_vlen_alloc *= 2;
|
|
return 0;
|
|
}
|
|
|
|
/* To create an empty CTF dict, we just declare a zeroed header and call
|
|
ctf_bufopen() on it. If ctf_bufopen succeeds, we mark the new dict r/w and
|
|
initialize the dynamic members. We start assigning type IDs at 1 because
|
|
type ID 0 is used as a sentinel and a not-found indicator. */
|
|
|
|
ctf_dict_t *
|
|
ctf_create (int *errp)
|
|
{
|
|
static const ctf_header_t hdr = { .cth_preamble = { CTF_MAGIC, CTF_VERSION, 0 } };
|
|
|
|
ctf_dynhash_t *dthash;
|
|
ctf_dynhash_t *dvhash;
|
|
ctf_dynhash_t *structs = NULL, *unions = NULL, *enums = NULL, *names = NULL;
|
|
ctf_dynhash_t *objthash = NULL, *funchash = NULL;
|
|
ctf_sect_t cts;
|
|
ctf_dict_t *fp;
|
|
|
|
libctf_init_debug();
|
|
dthash = ctf_dynhash_create (ctf_hash_integer, ctf_hash_eq_integer,
|
|
NULL, NULL);
|
|
if (dthash == NULL)
|
|
{
|
|
ctf_set_open_errno (errp, EAGAIN);
|
|
goto err;
|
|
}
|
|
|
|
dvhash = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
|
|
NULL, NULL);
|
|
if (dvhash == NULL)
|
|
{
|
|
ctf_set_open_errno (errp, EAGAIN);
|
|
goto err_dt;
|
|
}
|
|
|
|
structs = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
|
|
NULL, NULL);
|
|
unions = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
|
|
NULL, NULL);
|
|
enums = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
|
|
NULL, NULL);
|
|
names = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
|
|
NULL, NULL);
|
|
objthash = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
|
|
free, NULL);
|
|
funchash = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
|
|
free, NULL);
|
|
if (!structs || !unions || !enums || !names)
|
|
{
|
|
ctf_set_open_errno (errp, EAGAIN);
|
|
goto err_dv;
|
|
}
|
|
|
|
cts.cts_name = _CTF_SECTION;
|
|
cts.cts_data = &hdr;
|
|
cts.cts_size = sizeof (hdr);
|
|
cts.cts_entsize = 1;
|
|
|
|
if ((fp = ctf_bufopen_internal (&cts, NULL, NULL, NULL, 1, errp)) == NULL)
|
|
goto err_dv;
|
|
|
|
fp->ctf_structs.ctn_writable = structs;
|
|
fp->ctf_unions.ctn_writable = unions;
|
|
fp->ctf_enums.ctn_writable = enums;
|
|
fp->ctf_names.ctn_writable = names;
|
|
fp->ctf_objthash = objthash;
|
|
fp->ctf_funchash = funchash;
|
|
fp->ctf_dthash = dthash;
|
|
fp->ctf_dvhash = dvhash;
|
|
fp->ctf_dtoldid = 0;
|
|
fp->ctf_snapshots = 1;
|
|
fp->ctf_snapshot_lu = 0;
|
|
fp->ctf_flags |= LCTF_DIRTY;
|
|
|
|
ctf_set_ctl_hashes (fp);
|
|
ctf_setmodel (fp, CTF_MODEL_NATIVE);
|
|
if (ctf_grow_ptrtab (fp) < 0)
|
|
{
|
|
ctf_set_open_errno (errp, ctf_errno (fp));
|
|
ctf_dict_close (fp);
|
|
return NULL;
|
|
}
|
|
|
|
return fp;
|
|
|
|
err_dv:
|
|
ctf_dynhash_destroy (structs);
|
|
ctf_dynhash_destroy (unions);
|
|
ctf_dynhash_destroy (enums);
|
|
ctf_dynhash_destroy (names);
|
|
ctf_dynhash_destroy (objthash);
|
|
ctf_dynhash_destroy (funchash);
|
|
ctf_dynhash_destroy (dvhash);
|
|
err_dt:
|
|
ctf_dynhash_destroy (dthash);
|
|
err:
|
|
return NULL;
|
|
}
|
|
|
|
/* Compatibility: just update the threshold for ctf_discard. */
|
|
int
|
|
ctf_update (ctf_dict_t *fp)
|
|
{
|
|
if (!(fp->ctf_flags & LCTF_RDWR))
|
|
return (ctf_set_errno (fp, ECTF_RDONLY));
|
|
|
|
fp->ctf_dtoldid = fp->ctf_typemax;
|
|
return 0;
|
|
}
|
|
|
|
ctf_names_t *
|
|
ctf_name_table (ctf_dict_t *fp, int kind)
|
|
{
|
|
switch (kind)
|
|
{
|
|
case CTF_K_STRUCT:
|
|
return &fp->ctf_structs;
|
|
case CTF_K_UNION:
|
|
return &fp->ctf_unions;
|
|
case CTF_K_ENUM:
|
|
return &fp->ctf_enums;
|
|
default:
|
|
return &fp->ctf_names;
|
|
}
|
|
}
|
|
|
|
int
|
|
ctf_dtd_insert (ctf_dict_t *fp, ctf_dtdef_t *dtd, int flag, int kind)
|
|
{
|
|
const char *name;
|
|
if (ctf_dynhash_insert (fp->ctf_dthash, (void *) (uintptr_t) dtd->dtd_type,
|
|
dtd) < 0)
|
|
{
|
|
ctf_set_errno (fp, ENOMEM);
|
|
return -1;
|
|
}
|
|
|
|
if (flag == CTF_ADD_ROOT && dtd->dtd_data.ctt_name
|
|
&& (name = ctf_strraw (fp, dtd->dtd_data.ctt_name)) != NULL)
|
|
{
|
|
if (ctf_dynhash_insert (ctf_name_table (fp, kind)->ctn_writable,
|
|
(char *) name, (void *) (uintptr_t)
|
|
dtd->dtd_type) < 0)
|
|
{
|
|
ctf_dynhash_remove (fp->ctf_dthash, (void *) (uintptr_t)
|
|
dtd->dtd_type);
|
|
ctf_set_errno (fp, ENOMEM);
|
|
return -1;
|
|
}
|
|
}
|
|
ctf_list_append (&fp->ctf_dtdefs, dtd);
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
ctf_dtd_delete (ctf_dict_t *fp, ctf_dtdef_t *dtd)
|
|
{
|
|
int kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info);
|
|
size_t vlen = LCTF_INFO_VLEN (fp, dtd->dtd_data.ctt_info);
|
|
int name_kind = kind;
|
|
const char *name;
|
|
|
|
ctf_dynhash_remove (fp->ctf_dthash, (void *) (uintptr_t) dtd->dtd_type);
|
|
|
|
switch (kind)
|
|
{
|
|
case CTF_K_STRUCT:
|
|
case CTF_K_UNION:
|
|
{
|
|
ctf_lmember_t *memb = (ctf_lmember_t *) dtd->dtd_vlen;
|
|
size_t i;
|
|
|
|
for (i = 0; i < vlen; i++)
|
|
ctf_str_remove_ref (fp, ctf_strraw (fp, memb[i].ctlm_name),
|
|
&memb[i].ctlm_name);
|
|
}
|
|
break;
|
|
case CTF_K_ENUM:
|
|
{
|
|
ctf_enum_t *en = (ctf_enum_t *) dtd->dtd_vlen;
|
|
size_t i;
|
|
|
|
for (i = 0; i < vlen; i++)
|
|
ctf_str_remove_ref (fp, ctf_strraw (fp, en[i].cte_name),
|
|
&en[i].cte_name);
|
|
}
|
|
break;
|
|
case CTF_K_FORWARD:
|
|
name_kind = dtd->dtd_data.ctt_type;
|
|
break;
|
|
}
|
|
free (dtd->dtd_vlen);
|
|
dtd->dtd_vlen_alloc = 0;
|
|
|
|
if (dtd->dtd_data.ctt_name
|
|
&& (name = ctf_strraw (fp, dtd->dtd_data.ctt_name)) != NULL
|
|
&& LCTF_INFO_ISROOT (fp, dtd->dtd_data.ctt_info))
|
|
{
|
|
ctf_dynhash_remove (ctf_name_table (fp, name_kind)->ctn_writable,
|
|
name);
|
|
ctf_str_remove_ref (fp, name, &dtd->dtd_data.ctt_name);
|
|
}
|
|
|
|
ctf_list_delete (&fp->ctf_dtdefs, dtd);
|
|
free (dtd);
|
|
}
|
|
|
|
ctf_dtdef_t *
|
|
ctf_dtd_lookup (const ctf_dict_t *fp, ctf_id_t type)
|
|
{
|
|
return (ctf_dtdef_t *)
|
|
ctf_dynhash_lookup (fp->ctf_dthash, (void *) (uintptr_t) type);
|
|
}
|
|
|
|
ctf_dtdef_t *
|
|
ctf_dynamic_type (const ctf_dict_t *fp, ctf_id_t id)
|
|
{
|
|
ctf_id_t idx;
|
|
|
|
if (!(fp->ctf_flags & LCTF_RDWR))
|
|
return NULL;
|
|
|
|
if ((fp->ctf_flags & LCTF_CHILD) && LCTF_TYPE_ISPARENT (fp, id))
|
|
fp = fp->ctf_parent;
|
|
|
|
idx = LCTF_TYPE_TO_INDEX(fp, id);
|
|
|
|
if ((unsigned long) idx <= fp->ctf_typemax)
|
|
return ctf_dtd_lookup (fp, id);
|
|
return NULL;
|
|
}
|
|
|
|
int
|
|
ctf_dvd_insert (ctf_dict_t *fp, ctf_dvdef_t *dvd)
|
|
{
|
|
if (ctf_dynhash_insert (fp->ctf_dvhash, dvd->dvd_name, dvd) < 0)
|
|
{
|
|
ctf_set_errno (fp, ENOMEM);
|
|
return -1;
|
|
}
|
|
ctf_list_append (&fp->ctf_dvdefs, dvd);
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
ctf_dvd_delete (ctf_dict_t *fp, ctf_dvdef_t *dvd)
|
|
{
|
|
ctf_dynhash_remove (fp->ctf_dvhash, dvd->dvd_name);
|
|
free (dvd->dvd_name);
|
|
|
|
ctf_list_delete (&fp->ctf_dvdefs, dvd);
|
|
free (dvd);
|
|
}
|
|
|
|
ctf_dvdef_t *
|
|
ctf_dvd_lookup (const ctf_dict_t *fp, const char *name)
|
|
{
|
|
return (ctf_dvdef_t *) ctf_dynhash_lookup (fp->ctf_dvhash, name);
|
|
}
|
|
|
|
/* Discard all of the dynamic type definitions and variable definitions that
|
|
have been added to the dict since the last call to ctf_update(). We locate
|
|
such types by scanning the dtd list and deleting elements that have type IDs
|
|
greater than ctf_dtoldid, which is set by ctf_update(), above, and by
|
|
scanning the variable list and deleting elements that have update IDs equal
|
|
to the current value of the last-update snapshot count (indicating that they
|
|
were added after the most recent call to ctf_update()). */
|
|
int
|
|
ctf_discard (ctf_dict_t *fp)
|
|
{
|
|
ctf_snapshot_id_t last_update =
|
|
{ fp->ctf_dtoldid,
|
|
fp->ctf_snapshot_lu + 1 };
|
|
|
|
/* Update required? */
|
|
if (!(fp->ctf_flags & LCTF_DIRTY))
|
|
return 0;
|
|
|
|
return (ctf_rollback (fp, last_update));
|
|
}
|
|
|
|
ctf_snapshot_id_t
|
|
ctf_snapshot (ctf_dict_t *fp)
|
|
{
|
|
ctf_snapshot_id_t snapid;
|
|
snapid.dtd_id = fp->ctf_typemax;
|
|
snapid.snapshot_id = fp->ctf_snapshots++;
|
|
return snapid;
|
|
}
|
|
|
|
/* Like ctf_discard(), only discards everything after a particular ID. */
|
|
int
|
|
ctf_rollback (ctf_dict_t *fp, ctf_snapshot_id_t id)
|
|
{
|
|
ctf_dtdef_t *dtd, *ntd;
|
|
ctf_dvdef_t *dvd, *nvd;
|
|
|
|
if (!(fp->ctf_flags & LCTF_RDWR))
|
|
return (ctf_set_errno (fp, ECTF_RDONLY));
|
|
|
|
if (fp->ctf_snapshot_lu >= id.snapshot_id)
|
|
return (ctf_set_errno (fp, ECTF_OVERROLLBACK));
|
|
|
|
for (dtd = ctf_list_next (&fp->ctf_dtdefs); dtd != NULL; dtd = ntd)
|
|
{
|
|
int kind;
|
|
const char *name;
|
|
|
|
ntd = ctf_list_next (dtd);
|
|
|
|
if (LCTF_TYPE_TO_INDEX (fp, dtd->dtd_type) <= id.dtd_id)
|
|
continue;
|
|
|
|
kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info);
|
|
if (kind == CTF_K_FORWARD)
|
|
kind = dtd->dtd_data.ctt_type;
|
|
|
|
if (dtd->dtd_data.ctt_name
|
|
&& (name = ctf_strraw (fp, dtd->dtd_data.ctt_name)) != NULL
|
|
&& LCTF_INFO_ISROOT (fp, dtd->dtd_data.ctt_info))
|
|
{
|
|
ctf_dynhash_remove (ctf_name_table (fp, kind)->ctn_writable,
|
|
name);
|
|
ctf_str_remove_ref (fp, name, &dtd->dtd_data.ctt_name);
|
|
}
|
|
|
|
ctf_dynhash_remove (fp->ctf_dthash, (void *) (uintptr_t) dtd->dtd_type);
|
|
ctf_dtd_delete (fp, dtd);
|
|
}
|
|
|
|
for (dvd = ctf_list_next (&fp->ctf_dvdefs); dvd != NULL; dvd = nvd)
|
|
{
|
|
nvd = ctf_list_next (dvd);
|
|
|
|
if (dvd->dvd_snapshots <= id.snapshot_id)
|
|
continue;
|
|
|
|
ctf_dvd_delete (fp, dvd);
|
|
}
|
|
|
|
fp->ctf_typemax = id.dtd_id;
|
|
fp->ctf_snapshots = id.snapshot_id;
|
|
|
|
if (fp->ctf_snapshots == fp->ctf_snapshot_lu)
|
|
fp->ctf_flags &= ~LCTF_DIRTY;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Note: vlen is the amount of space *allocated* for the vlen. It may well not
|
|
be the amount of space used (yet): the space used is declared in per-kind
|
|
fashion in the dtd_data's info word. */
|
|
static ctf_id_t
|
|
ctf_add_generic (ctf_dict_t *fp, uint32_t flag, const char *name, int kind,
|
|
size_t vlen, ctf_dtdef_t **rp)
|
|
{
|
|
ctf_dtdef_t *dtd;
|
|
ctf_id_t type;
|
|
|
|
if (flag != CTF_ADD_NONROOT && flag != CTF_ADD_ROOT)
|
|
return (ctf_set_errno (fp, EINVAL));
|
|
|
|
if (!(fp->ctf_flags & LCTF_RDWR))
|
|
return (ctf_set_errno (fp, ECTF_RDONLY));
|
|
|
|
if (LCTF_INDEX_TO_TYPE (fp, fp->ctf_typemax, 1) >= CTF_MAX_TYPE)
|
|
return (ctf_set_errno (fp, ECTF_FULL));
|
|
|
|
if (LCTF_INDEX_TO_TYPE (fp, fp->ctf_typemax, 1) == (CTF_MAX_PTYPE - 1))
|
|
return (ctf_set_errno (fp, ECTF_FULL));
|
|
|
|
/* Make sure ptrtab always grows to be big enough for all types. */
|
|
if (ctf_grow_ptrtab (fp) < 0)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
if ((dtd = calloc (1, sizeof (ctf_dtdef_t))) == NULL)
|
|
return (ctf_set_errno (fp, EAGAIN));
|
|
|
|
dtd->dtd_vlen_alloc = vlen;
|
|
if (vlen > 0)
|
|
{
|
|
if ((dtd->dtd_vlen = calloc (1, vlen)) == NULL)
|
|
goto oom;
|
|
}
|
|
else
|
|
dtd->dtd_vlen = NULL;
|
|
|
|
type = ++fp->ctf_typemax;
|
|
type = LCTF_INDEX_TO_TYPE (fp, type, (fp->ctf_flags & LCTF_CHILD));
|
|
|
|
dtd->dtd_data.ctt_name = ctf_str_add_pending (fp, name,
|
|
&dtd->dtd_data.ctt_name);
|
|
dtd->dtd_type = type;
|
|
|
|
if (dtd->dtd_data.ctt_name == 0 && name != NULL && name[0] != '\0')
|
|
goto oom;
|
|
|
|
if (ctf_dtd_insert (fp, dtd, flag, kind) < 0)
|
|
goto err; /* errno is set for us. */
|
|
|
|
fp->ctf_flags |= LCTF_DIRTY;
|
|
|
|
*rp = dtd;
|
|
return type;
|
|
|
|
oom:
|
|
ctf_set_errno (fp, EAGAIN);
|
|
err:
|
|
free (dtd->dtd_vlen);
|
|
free (dtd);
|
|
return CTF_ERR;
|
|
}
|
|
|
|
/* When encoding integer sizes, we want to convert a byte count in the range
|
|
1-8 to the closest power of 2 (e.g. 3->4, 5->8, etc). The clp2() function
|
|
is a clever implementation from "Hacker's Delight" by Henry Warren, Jr. */
|
|
static size_t
|
|
clp2 (size_t x)
|
|
{
|
|
x--;
|
|
|
|
x |= (x >> 1);
|
|
x |= (x >> 2);
|
|
x |= (x >> 4);
|
|
x |= (x >> 8);
|
|
x |= (x >> 16);
|
|
|
|
return (x + 1);
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_encoded (ctf_dict_t *fp, uint32_t flag,
|
|
const char *name, const ctf_encoding_t *ep, uint32_t kind)
|
|
{
|
|
ctf_dtdef_t *dtd;
|
|
ctf_id_t type;
|
|
uint32_t encoding;
|
|
|
|
if (ep == NULL)
|
|
return (ctf_set_errno (fp, EINVAL));
|
|
|
|
if (name == NULL || name[0] == '\0')
|
|
return (ctf_set_errno (fp, ECTF_NONAME));
|
|
|
|
if (!ctf_assert (fp, kind == CTF_K_INTEGER || kind == CTF_K_FLOAT))
|
|
return -1; /* errno is set for us. */
|
|
|
|
if ((type = ctf_add_generic (fp, flag, name, kind, sizeof (uint32_t),
|
|
&dtd)) == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
dtd->dtd_data.ctt_info = CTF_TYPE_INFO (kind, flag, 0);
|
|
dtd->dtd_data.ctt_size = clp2 (P2ROUNDUP (ep->cte_bits, CHAR_BIT)
|
|
/ CHAR_BIT);
|
|
switch (kind)
|
|
{
|
|
case CTF_K_INTEGER:
|
|
encoding = CTF_INT_DATA (ep->cte_format, ep->cte_offset, ep->cte_bits);
|
|
break;
|
|
case CTF_K_FLOAT:
|
|
encoding = CTF_FP_DATA (ep->cte_format, ep->cte_offset, ep->cte_bits);
|
|
break;
|
|
}
|
|
memcpy (dtd->dtd_vlen, &encoding, sizeof (encoding));
|
|
|
|
return type;
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_reftype (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref, uint32_t kind)
|
|
{
|
|
ctf_dtdef_t *dtd;
|
|
ctf_id_t type;
|
|
ctf_dict_t *tmp = fp;
|
|
int child = fp->ctf_flags & LCTF_CHILD;
|
|
|
|
if (ref == CTF_ERR || ref > CTF_MAX_TYPE)
|
|
return (ctf_set_errno (fp, EINVAL));
|
|
|
|
if (ref != 0 && ctf_lookup_by_id (&tmp, ref) == NULL)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
if ((type = ctf_add_generic (fp, flag, NULL, kind, 0, &dtd)) == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
dtd->dtd_data.ctt_info = CTF_TYPE_INFO (kind, flag, 0);
|
|
dtd->dtd_data.ctt_type = (uint32_t) ref;
|
|
|
|
if (kind != CTF_K_POINTER)
|
|
return type;
|
|
|
|
/* If we are adding a pointer, update the ptrtab, pointing at this type from
|
|
the type it points to. Note that ctf_typemax is at this point one higher
|
|
than we want to check against, because it's just been incremented for the
|
|
addition of this type. The pptrtab is lazily-updated as needed, so is not
|
|
touched here. */
|
|
|
|
uint32_t type_idx = LCTF_TYPE_TO_INDEX (fp, type);
|
|
uint32_t ref_idx = LCTF_TYPE_TO_INDEX (fp, ref);
|
|
|
|
if (LCTF_TYPE_ISCHILD (fp, ref) == child
|
|
&& ref_idx < fp->ctf_typemax)
|
|
fp->ctf_ptrtab[ref_idx] = type_idx;
|
|
|
|
return type;
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_slice (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref,
|
|
const ctf_encoding_t *ep)
|
|
{
|
|
ctf_dtdef_t *dtd;
|
|
ctf_slice_t slice;
|
|
ctf_id_t resolved_ref = ref;
|
|
ctf_id_t type;
|
|
int kind;
|
|
const ctf_type_t *tp;
|
|
ctf_dict_t *tmp = fp;
|
|
|
|
if (ep == NULL)
|
|
return (ctf_set_errno (fp, EINVAL));
|
|
|
|
if ((ep->cte_bits > 255) || (ep->cte_offset > 255))
|
|
return (ctf_set_errno (fp, ECTF_SLICEOVERFLOW));
|
|
|
|
if (ref == CTF_ERR || ref > CTF_MAX_TYPE)
|
|
return (ctf_set_errno (fp, EINVAL));
|
|
|
|
if (ref != 0 && ((tp = ctf_lookup_by_id (&tmp, ref)) == NULL))
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
/* Make sure we ultimately point to an integral type. We also allow slices to
|
|
point to the unimplemented type, for now, because the compiler can emit
|
|
such slices, though they're not very much use. */
|
|
|
|
resolved_ref = ctf_type_resolve_unsliced (tmp, ref);
|
|
kind = ctf_type_kind_unsliced (tmp, resolved_ref);
|
|
|
|
if ((kind != CTF_K_INTEGER) && (kind != CTF_K_FLOAT) &&
|
|
(kind != CTF_K_ENUM)
|
|
&& (ref != 0))
|
|
return (ctf_set_errno (fp, ECTF_NOTINTFP));
|
|
|
|
if ((type = ctf_add_generic (fp, flag, NULL, CTF_K_SLICE,
|
|
sizeof (ctf_slice_t), &dtd)) == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
memset (&slice, 0, sizeof (ctf_slice_t));
|
|
|
|
dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_SLICE, flag, 0);
|
|
dtd->dtd_data.ctt_size = clp2 (P2ROUNDUP (ep->cte_bits, CHAR_BIT)
|
|
/ CHAR_BIT);
|
|
slice.cts_type = (uint32_t) ref;
|
|
slice.cts_bits = ep->cte_bits;
|
|
slice.cts_offset = ep->cte_offset;
|
|
memcpy (dtd->dtd_vlen, &slice, sizeof (ctf_slice_t));
|
|
|
|
return type;
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_integer (ctf_dict_t *fp, uint32_t flag,
|
|
const char *name, const ctf_encoding_t *ep)
|
|
{
|
|
return (ctf_add_encoded (fp, flag, name, ep, CTF_K_INTEGER));
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_float (ctf_dict_t *fp, uint32_t flag,
|
|
const char *name, const ctf_encoding_t *ep)
|
|
{
|
|
return (ctf_add_encoded (fp, flag, name, ep, CTF_K_FLOAT));
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_pointer (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref)
|
|
{
|
|
return (ctf_add_reftype (fp, flag, ref, CTF_K_POINTER));
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_array (ctf_dict_t *fp, uint32_t flag, const ctf_arinfo_t *arp)
|
|
{
|
|
ctf_dtdef_t *dtd;
|
|
ctf_array_t cta;
|
|
ctf_id_t type;
|
|
ctf_dict_t *tmp = fp;
|
|
|
|
if (arp == NULL)
|
|
return (ctf_set_errno (fp, EINVAL));
|
|
|
|
if (arp->ctr_contents != 0
|
|
&& ctf_lookup_by_id (&tmp, arp->ctr_contents) == NULL)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
tmp = fp;
|
|
if (ctf_lookup_by_id (&tmp, arp->ctr_index) == NULL)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
if (ctf_type_kind (fp, arp->ctr_index) == CTF_K_FORWARD)
|
|
{
|
|
ctf_err_warn (fp, 1, ECTF_INCOMPLETE,
|
|
_("ctf_add_array: index type %lx is incomplete"),
|
|
arp->ctr_contents);
|
|
return (ctf_set_errno (fp, ECTF_INCOMPLETE));
|
|
}
|
|
|
|
if ((type = ctf_add_generic (fp, flag, NULL, CTF_K_ARRAY,
|
|
sizeof (ctf_array_t), &dtd)) == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
memset (&cta, 0, sizeof (ctf_array_t));
|
|
|
|
dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_ARRAY, flag, 0);
|
|
dtd->dtd_data.ctt_size = 0;
|
|
cta.cta_contents = (uint32_t) arp->ctr_contents;
|
|
cta.cta_index = (uint32_t) arp->ctr_index;
|
|
cta.cta_nelems = arp->ctr_nelems;
|
|
memcpy (dtd->dtd_vlen, &cta, sizeof (ctf_array_t));
|
|
|
|
return type;
|
|
}
|
|
|
|
int
|
|
ctf_set_array (ctf_dict_t *fp, ctf_id_t type, const ctf_arinfo_t *arp)
|
|
{
|
|
ctf_dtdef_t *dtd = ctf_dtd_lookup (fp, type);
|
|
ctf_array_t *vlen;
|
|
|
|
if (!(fp->ctf_flags & LCTF_RDWR))
|
|
return (ctf_set_errno (fp, ECTF_RDONLY));
|
|
|
|
if (dtd == NULL
|
|
|| LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info) != CTF_K_ARRAY)
|
|
return (ctf_set_errno (fp, ECTF_BADID));
|
|
|
|
vlen = (ctf_array_t *) dtd->dtd_vlen;
|
|
fp->ctf_flags |= LCTF_DIRTY;
|
|
vlen->cta_contents = (uint32_t) arp->ctr_contents;
|
|
vlen->cta_index = (uint32_t) arp->ctr_index;
|
|
vlen->cta_nelems = arp->ctr_nelems;
|
|
|
|
return 0;
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_function (ctf_dict_t *fp, uint32_t flag,
|
|
const ctf_funcinfo_t *ctc, const ctf_id_t *argv)
|
|
{
|
|
ctf_dtdef_t *dtd;
|
|
ctf_id_t type;
|
|
uint32_t vlen;
|
|
uint32_t *vdat;
|
|
ctf_dict_t *tmp = fp;
|
|
size_t initial_vlen;
|
|
size_t i;
|
|
|
|
if (!(fp->ctf_flags & LCTF_RDWR))
|
|
return (ctf_set_errno (fp, ECTF_RDONLY));
|
|
|
|
if (ctc == NULL || (ctc->ctc_flags & ~CTF_FUNC_VARARG) != 0
|
|
|| (ctc->ctc_argc != 0 && argv == NULL))
|
|
return (ctf_set_errno (fp, EINVAL));
|
|
|
|
vlen = ctc->ctc_argc;
|
|
if (ctc->ctc_flags & CTF_FUNC_VARARG)
|
|
vlen++; /* Add trailing zero to indicate varargs (see below). */
|
|
|
|
if (ctc->ctc_return != 0
|
|
&& ctf_lookup_by_id (&tmp, ctc->ctc_return) == NULL)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
if (vlen > CTF_MAX_VLEN)
|
|
return (ctf_set_errno (fp, EOVERFLOW));
|
|
|
|
/* One word extra allocated for padding for 4-byte alignment if need be.
|
|
Not reflected in vlen: we don't want to copy anything into it, and
|
|
it's in addition to (e.g.) the trailing 0 indicating varargs. */
|
|
|
|
initial_vlen = (sizeof (uint32_t) * (vlen + (vlen & 1)));
|
|
if ((type = ctf_add_generic (fp, flag, NULL, CTF_K_FUNCTION,
|
|
initial_vlen, &dtd)) == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
vdat = (uint32_t *) dtd->dtd_vlen;
|
|
|
|
for (i = 0; i < ctc->ctc_argc; i++)
|
|
{
|
|
tmp = fp;
|
|
if (argv[i] != 0 && ctf_lookup_by_id (&tmp, argv[i]) == NULL)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
vdat[i] = (uint32_t) argv[i];
|
|
}
|
|
|
|
dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_FUNCTION, flag, vlen);
|
|
dtd->dtd_data.ctt_type = (uint32_t) ctc->ctc_return;
|
|
|
|
if (ctc->ctc_flags & CTF_FUNC_VARARG)
|
|
vdat[vlen - 1] = 0; /* Add trailing zero to indicate varargs. */
|
|
|
|
return type;
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_struct_sized (ctf_dict_t *fp, uint32_t flag, const char *name,
|
|
size_t size)
|
|
{
|
|
ctf_dtdef_t *dtd;
|
|
ctf_id_t type = 0;
|
|
size_t initial_vlen = sizeof (ctf_lmember_t) * INITIAL_VLEN;
|
|
|
|
/* Promote root-visible forwards to structs. */
|
|
if (name != NULL)
|
|
type = ctf_lookup_by_rawname (fp, CTF_K_STRUCT, name);
|
|
|
|
if (type != 0 && ctf_type_kind (fp, type) == CTF_K_FORWARD)
|
|
dtd = ctf_dtd_lookup (fp, type);
|
|
else if ((type = ctf_add_generic (fp, flag, name, CTF_K_STRUCT,
|
|
initial_vlen, &dtd)) == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
/* Forwards won't have any vlen yet. */
|
|
if (dtd->dtd_vlen_alloc == 0)
|
|
{
|
|
if ((dtd->dtd_vlen = calloc (1, initial_vlen)) == NULL)
|
|
return (ctf_set_errno (fp, ENOMEM));
|
|
dtd->dtd_vlen_alloc = initial_vlen;
|
|
}
|
|
|
|
dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_STRUCT, flag, 0);
|
|
dtd->dtd_data.ctt_size = CTF_LSIZE_SENT;
|
|
dtd->dtd_data.ctt_lsizehi = CTF_SIZE_TO_LSIZE_HI (size);
|
|
dtd->dtd_data.ctt_lsizelo = CTF_SIZE_TO_LSIZE_LO (size);
|
|
|
|
return type;
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_struct (ctf_dict_t *fp, uint32_t flag, const char *name)
|
|
{
|
|
return (ctf_add_struct_sized (fp, flag, name, 0));
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_union_sized (ctf_dict_t *fp, uint32_t flag, const char *name,
|
|
size_t size)
|
|
{
|
|
ctf_dtdef_t *dtd;
|
|
ctf_id_t type = 0;
|
|
size_t initial_vlen = sizeof (ctf_lmember_t) * INITIAL_VLEN;
|
|
|
|
/* Promote root-visible forwards to unions. */
|
|
if (name != NULL)
|
|
type = ctf_lookup_by_rawname (fp, CTF_K_UNION, name);
|
|
|
|
if (type != 0 && ctf_type_kind (fp, type) == CTF_K_FORWARD)
|
|
dtd = ctf_dtd_lookup (fp, type);
|
|
else if ((type = ctf_add_generic (fp, flag, name, CTF_K_UNION,
|
|
initial_vlen, &dtd)) == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us */
|
|
|
|
/* Forwards won't have any vlen yet. */
|
|
if (dtd->dtd_vlen_alloc == 0)
|
|
{
|
|
if ((dtd->dtd_vlen = calloc (1, initial_vlen)) == NULL)
|
|
return (ctf_set_errno (fp, ENOMEM));
|
|
dtd->dtd_vlen_alloc = initial_vlen;
|
|
}
|
|
|
|
dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_UNION, flag, 0);
|
|
dtd->dtd_data.ctt_size = CTF_LSIZE_SENT;
|
|
dtd->dtd_data.ctt_lsizehi = CTF_SIZE_TO_LSIZE_HI (size);
|
|
dtd->dtd_data.ctt_lsizelo = CTF_SIZE_TO_LSIZE_LO (size);
|
|
|
|
return type;
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_union (ctf_dict_t *fp, uint32_t flag, const char *name)
|
|
{
|
|
return (ctf_add_union_sized (fp, flag, name, 0));
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_enum (ctf_dict_t *fp, uint32_t flag, const char *name)
|
|
{
|
|
ctf_dtdef_t *dtd;
|
|
ctf_id_t type = 0;
|
|
size_t initial_vlen = sizeof (ctf_enum_t) * INITIAL_VLEN;
|
|
|
|
/* Promote root-visible forwards to enums. */
|
|
if (name != NULL)
|
|
type = ctf_lookup_by_rawname (fp, CTF_K_ENUM, name);
|
|
|
|
if (type != 0 && ctf_type_kind (fp, type) == CTF_K_FORWARD)
|
|
dtd = ctf_dtd_lookup (fp, type);
|
|
else if ((type = ctf_add_generic (fp, flag, name, CTF_K_ENUM,
|
|
initial_vlen, &dtd)) == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
/* Forwards won't have any vlen yet. */
|
|
if (dtd->dtd_vlen_alloc == 0)
|
|
{
|
|
if ((dtd->dtd_vlen = calloc (1, initial_vlen)) == NULL)
|
|
return (ctf_set_errno (fp, ENOMEM));
|
|
dtd->dtd_vlen_alloc = initial_vlen;
|
|
}
|
|
|
|
dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_ENUM, flag, 0);
|
|
dtd->dtd_data.ctt_size = fp->ctf_dmodel->ctd_int;
|
|
|
|
return type;
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_enum_encoded (ctf_dict_t *fp, uint32_t flag, const char *name,
|
|
const ctf_encoding_t *ep)
|
|
{
|
|
ctf_id_t type = 0;
|
|
|
|
/* First, create the enum if need be, using most of the same machinery as
|
|
ctf_add_enum(), to ensure that we do not allow things past that are not
|
|
enums or forwards to them. (This includes other slices: you cannot slice a
|
|
slice, which would be a useless thing to do anyway.) */
|
|
|
|
if (name != NULL)
|
|
type = ctf_lookup_by_rawname (fp, CTF_K_ENUM, name);
|
|
|
|
if (type != 0)
|
|
{
|
|
if ((ctf_type_kind (fp, type) != CTF_K_FORWARD) &&
|
|
(ctf_type_kind_unsliced (fp, type) != CTF_K_ENUM))
|
|
return (ctf_set_errno (fp, ECTF_NOTINTFP));
|
|
}
|
|
else if ((type = ctf_add_enum (fp, flag, name)) == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
/* Now attach a suitable slice to it. */
|
|
|
|
return ctf_add_slice (fp, flag, type, ep);
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_forward (ctf_dict_t *fp, uint32_t flag, const char *name,
|
|
uint32_t kind)
|
|
{
|
|
ctf_dtdef_t *dtd;
|
|
ctf_id_t type = 0;
|
|
|
|
if (!ctf_forwardable_kind (kind))
|
|
return (ctf_set_errno (fp, ECTF_NOTSUE));
|
|
|
|
if (name == NULL || name[0] == '\0')
|
|
return (ctf_set_errno (fp, ECTF_NONAME));
|
|
|
|
/* If the type is already defined or exists as a forward tag, just
|
|
return the ctf_id_t of the existing definition. */
|
|
|
|
type = ctf_lookup_by_rawname (fp, kind, name);
|
|
|
|
if (type)
|
|
return type;
|
|
|
|
if ((type = ctf_add_generic (fp, flag, name, kind, 0, &dtd)) == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_FORWARD, flag, 0);
|
|
dtd->dtd_data.ctt_type = kind;
|
|
|
|
return type;
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_unknown (ctf_dict_t *fp, uint32_t flag, const char *name)
|
|
{
|
|
ctf_dtdef_t *dtd;
|
|
ctf_id_t type = 0;
|
|
|
|
/* If a type is already defined with this name, error (if not CTF_K_UNKNOWN)
|
|
or just return it. */
|
|
|
|
if (name != NULL && name[0] != '\0' && flag == CTF_ADD_ROOT
|
|
&& (type = ctf_lookup_by_rawname (fp, CTF_K_UNKNOWN, name)))
|
|
{
|
|
if (ctf_type_kind (fp, type) == CTF_K_UNKNOWN)
|
|
return type;
|
|
else
|
|
{
|
|
ctf_err_warn (fp, 1, ECTF_CONFLICT,
|
|
_("ctf_add_unknown: cannot add unknown type "
|
|
"named %s: type of this name already defined"),
|
|
name ? name : _("(unnamed type)"));
|
|
return (ctf_set_errno (fp, ECTF_CONFLICT));
|
|
}
|
|
}
|
|
|
|
if ((type = ctf_add_generic (fp, flag, name, CTF_K_UNKNOWN, 0, &dtd)) == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_UNKNOWN, flag, 0);
|
|
dtd->dtd_data.ctt_type = 0;
|
|
|
|
return type;
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_typedef (ctf_dict_t *fp, uint32_t flag, const char *name,
|
|
ctf_id_t ref)
|
|
{
|
|
ctf_dtdef_t *dtd;
|
|
ctf_id_t type;
|
|
ctf_dict_t *tmp = fp;
|
|
|
|
if (ref == CTF_ERR || ref > CTF_MAX_TYPE)
|
|
return (ctf_set_errno (fp, EINVAL));
|
|
|
|
if (name == NULL || name[0] == '\0')
|
|
return (ctf_set_errno (fp, ECTF_NONAME));
|
|
|
|
if (ref != 0 && ctf_lookup_by_id (&tmp, ref) == NULL)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
if ((type = ctf_add_generic (fp, flag, name, CTF_K_TYPEDEF, 0,
|
|
&dtd)) == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_TYPEDEF, flag, 0);
|
|
dtd->dtd_data.ctt_type = (uint32_t) ref;
|
|
|
|
return type;
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_volatile (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref)
|
|
{
|
|
return (ctf_add_reftype (fp, flag, ref, CTF_K_VOLATILE));
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_const (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref)
|
|
{
|
|
return (ctf_add_reftype (fp, flag, ref, CTF_K_CONST));
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_restrict (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref)
|
|
{
|
|
return (ctf_add_reftype (fp, flag, ref, CTF_K_RESTRICT));
|
|
}
|
|
|
|
int
|
|
ctf_add_enumerator (ctf_dict_t *fp, ctf_id_t enid, const char *name,
|
|
int value)
|
|
{
|
|
ctf_dtdef_t *dtd = ctf_dtd_lookup (fp, enid);
|
|
unsigned char *old_vlen;
|
|
ctf_enum_t *en;
|
|
size_t i;
|
|
|
|
uint32_t kind, vlen, root;
|
|
|
|
if (name == NULL)
|
|
return (ctf_set_errno (fp, EINVAL));
|
|
|
|
if (!(fp->ctf_flags & LCTF_RDWR))
|
|
return (ctf_set_errno (fp, ECTF_RDONLY));
|
|
|
|
if (dtd == NULL)
|
|
return (ctf_set_errno (fp, ECTF_BADID));
|
|
|
|
kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info);
|
|
root = LCTF_INFO_ISROOT (fp, dtd->dtd_data.ctt_info);
|
|
vlen = LCTF_INFO_VLEN (fp, dtd->dtd_data.ctt_info);
|
|
|
|
if (kind != CTF_K_ENUM)
|
|
return (ctf_set_errno (fp, ECTF_NOTENUM));
|
|
|
|
if (vlen == CTF_MAX_VLEN)
|
|
return (ctf_set_errno (fp, ECTF_DTFULL));
|
|
|
|
old_vlen = dtd->dtd_vlen;
|
|
if (ctf_grow_vlen (fp, dtd, sizeof (ctf_enum_t) * (vlen + 1)) < 0)
|
|
return -1; /* errno is set for us. */
|
|
en = (ctf_enum_t *) dtd->dtd_vlen;
|
|
|
|
if (dtd->dtd_vlen != old_vlen)
|
|
{
|
|
ptrdiff_t move = (signed char *) dtd->dtd_vlen - (signed char *) old_vlen;
|
|
|
|
/* Remove pending refs in the old vlen region and reapply them. */
|
|
|
|
for (i = 0; i < vlen; i++)
|
|
ctf_str_move_pending (fp, &en[i].cte_name, move);
|
|
}
|
|
|
|
for (i = 0; i < vlen; i++)
|
|
if (strcmp (ctf_strptr (fp, en[i].cte_name), name) == 0)
|
|
return (ctf_set_errno (fp, ECTF_DUPLICATE));
|
|
|
|
en[i].cte_name = ctf_str_add_pending (fp, name, &en[i].cte_name);
|
|
en[i].cte_value = value;
|
|
|
|
if (en[i].cte_name == 0 && name != NULL && name[0] != '\0')
|
|
return -1; /* errno is set for us. */
|
|
|
|
dtd->dtd_data.ctt_info = CTF_TYPE_INFO (kind, root, vlen + 1);
|
|
|
|
fp->ctf_flags |= LCTF_DIRTY;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
ctf_add_member_offset (ctf_dict_t *fp, ctf_id_t souid, const char *name,
|
|
ctf_id_t type, unsigned long bit_offset)
|
|
{
|
|
ctf_dtdef_t *dtd = ctf_dtd_lookup (fp, souid);
|
|
|
|
ssize_t msize, malign, ssize;
|
|
uint32_t kind, vlen, root;
|
|
size_t i;
|
|
int is_incomplete = 0;
|
|
unsigned char *old_vlen;
|
|
ctf_lmember_t *memb;
|
|
|
|
if (!(fp->ctf_flags & LCTF_RDWR))
|
|
return (ctf_set_errno (fp, ECTF_RDONLY));
|
|
|
|
if (dtd == NULL)
|
|
return (ctf_set_errno (fp, ECTF_BADID));
|
|
|
|
if (name != NULL && name[0] == '\0')
|
|
name = NULL;
|
|
|
|
kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info);
|
|
root = LCTF_INFO_ISROOT (fp, dtd->dtd_data.ctt_info);
|
|
vlen = LCTF_INFO_VLEN (fp, dtd->dtd_data.ctt_info);
|
|
|
|
if (kind != CTF_K_STRUCT && kind != CTF_K_UNION)
|
|
return (ctf_set_errno (fp, ECTF_NOTSOU));
|
|
|
|
if (vlen == CTF_MAX_VLEN)
|
|
return (ctf_set_errno (fp, ECTF_DTFULL));
|
|
|
|
old_vlen = dtd->dtd_vlen;
|
|
if (ctf_grow_vlen (fp, dtd, sizeof (ctf_lmember_t) * (vlen + 1)) < 0)
|
|
return -1; /* errno is set for us. */
|
|
memb = (ctf_lmember_t *) dtd->dtd_vlen;
|
|
|
|
if (dtd->dtd_vlen != old_vlen)
|
|
{
|
|
ptrdiff_t move = (signed char *) dtd->dtd_vlen - (signed char *) old_vlen;
|
|
|
|
/* Remove pending refs in the old vlen region and reapply them. */
|
|
|
|
for (i = 0; i < vlen; i++)
|
|
ctf_str_move_pending (fp, &memb[i].ctlm_name, move);
|
|
}
|
|
|
|
if (name != NULL)
|
|
{
|
|
for (i = 0; i < vlen; i++)
|
|
if (strcmp (ctf_strptr (fp, memb[i].ctlm_name), name) == 0)
|
|
return (ctf_set_errno (fp, ECTF_DUPLICATE));
|
|
}
|
|
|
|
if ((msize = ctf_type_size (fp, type)) < 0 ||
|
|
(malign = ctf_type_align (fp, type)) < 0)
|
|
{
|
|
/* The unimplemented type, and any type that resolves to it, has no size
|
|
and no alignment: it can correspond to any number of compiler-inserted
|
|
types. We allow incomplete types through since they are routinely
|
|
added to the ends of structures, and can even be added elsewhere in
|
|
structures by the deduplicator. They are assumed to be zero-size with
|
|
no alignment: this is often wrong, but problems can be avoided in this
|
|
case by explicitly specifying the size of the structure via the _sized
|
|
functions. The deduplicator always does this. */
|
|
|
|
msize = 0;
|
|
malign = 0;
|
|
if (ctf_errno (fp) == ECTF_NONREPRESENTABLE)
|
|
ctf_set_errno (fp, 0);
|
|
else if (ctf_errno (fp) == ECTF_INCOMPLETE)
|
|
is_incomplete = 1;
|
|
else
|
|
return -1; /* errno is set for us. */
|
|
}
|
|
|
|
memb[vlen].ctlm_name = ctf_str_add_pending (fp, name, &memb[vlen].ctlm_name);
|
|
memb[vlen].ctlm_type = type;
|
|
if (memb[vlen].ctlm_name == 0 && name != NULL && name[0] != '\0')
|
|
return -1; /* errno is set for us. */
|
|
|
|
if (kind == CTF_K_STRUCT && vlen != 0)
|
|
{
|
|
if (bit_offset == (unsigned long) - 1)
|
|
{
|
|
/* Natural alignment. */
|
|
|
|
ctf_id_t ltype = ctf_type_resolve (fp, memb[vlen - 1].ctlm_type);
|
|
size_t off = CTF_LMEM_OFFSET(&memb[vlen - 1]);
|
|
|
|
ctf_encoding_t linfo;
|
|
ssize_t lsize;
|
|
|
|
/* Propagate any error from ctf_type_resolve. If the last member was
|
|
of unimplemented type, this may be -ECTF_NONREPRESENTABLE: we
|
|
cannot insert right after such a member without explicit offset
|
|
specification, because its alignment and size is not known. */
|
|
if (ltype == CTF_ERR)
|
|
return -1; /* errno is set for us. */
|
|
|
|
if (is_incomplete)
|
|
{
|
|
ctf_err_warn (fp, 1, ECTF_INCOMPLETE,
|
|
_("ctf_add_member_offset: cannot add member %s of "
|
|
"incomplete type %lx to struct %lx without "
|
|
"specifying explicit offset\n"),
|
|
name ? name : _("(unnamed member)"), type, souid);
|
|
return (ctf_set_errno (fp, ECTF_INCOMPLETE));
|
|
}
|
|
|
|
if (ctf_type_encoding (fp, ltype, &linfo) == 0)
|
|
off += linfo.cte_bits;
|
|
else if ((lsize = ctf_type_size (fp, ltype)) > 0)
|
|
off += lsize * CHAR_BIT;
|
|
else if (lsize == -1 && ctf_errno (fp) == ECTF_INCOMPLETE)
|
|
{
|
|
const char *lname = ctf_strraw (fp, memb[vlen - 1].ctlm_name);
|
|
|
|
ctf_err_warn (fp, 1, ECTF_INCOMPLETE,
|
|
_("ctf_add_member_offset: cannot add member %s of "
|
|
"type %lx to struct %lx without specifying "
|
|
"explicit offset after member %s of type %lx, "
|
|
"which is an incomplete type\n"),
|
|
name ? name : _("(unnamed member)"), type, souid,
|
|
lname ? lname : _("(unnamed member)"), ltype);
|
|
return -1; /* errno is set for us. */
|
|
}
|
|
|
|
/* Round up the offset of the end of the last member to
|
|
the next byte boundary, convert 'off' to bytes, and
|
|
then round it up again to the next multiple of the
|
|
alignment required by the new member. Finally,
|
|
convert back to bits and store the result in
|
|
dmd_offset. Technically we could do more efficient
|
|
packing if the new member is a bit-field, but we're
|
|
the "compiler" and ANSI says we can do as we choose. */
|
|
|
|
off = roundup (off, CHAR_BIT) / CHAR_BIT;
|
|
off = roundup (off, MAX (malign, 1));
|
|
memb[vlen].ctlm_offsethi = CTF_OFFSET_TO_LMEMHI (off * CHAR_BIT);
|
|
memb[vlen].ctlm_offsetlo = CTF_OFFSET_TO_LMEMLO (off * CHAR_BIT);
|
|
ssize = off + msize;
|
|
}
|
|
else
|
|
{
|
|
/* Specified offset in bits. */
|
|
|
|
memb[vlen].ctlm_offsethi = CTF_OFFSET_TO_LMEMHI (bit_offset);
|
|
memb[vlen].ctlm_offsetlo = CTF_OFFSET_TO_LMEMLO (bit_offset);
|
|
ssize = ctf_get_ctt_size (fp, &dtd->dtd_data, NULL, NULL);
|
|
ssize = MAX (ssize, ((signed) bit_offset / CHAR_BIT) + msize);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
memb[vlen].ctlm_offsethi = 0;
|
|
memb[vlen].ctlm_offsetlo = 0;
|
|
ssize = ctf_get_ctt_size (fp, &dtd->dtd_data, NULL, NULL);
|
|
ssize = MAX (ssize, msize);
|
|
}
|
|
|
|
dtd->dtd_data.ctt_size = CTF_LSIZE_SENT;
|
|
dtd->dtd_data.ctt_lsizehi = CTF_SIZE_TO_LSIZE_HI (ssize);
|
|
dtd->dtd_data.ctt_lsizelo = CTF_SIZE_TO_LSIZE_LO (ssize);
|
|
dtd->dtd_data.ctt_info = CTF_TYPE_INFO (kind, root, vlen + 1);
|
|
|
|
fp->ctf_flags |= LCTF_DIRTY;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
ctf_add_member_encoded (ctf_dict_t *fp, ctf_id_t souid, const char *name,
|
|
ctf_id_t type, unsigned long bit_offset,
|
|
const ctf_encoding_t encoding)
|
|
{
|
|
ctf_dtdef_t *dtd = ctf_dtd_lookup (fp, type);
|
|
int kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info);
|
|
int otype = type;
|
|
|
|
if ((kind != CTF_K_INTEGER) && (kind != CTF_K_FLOAT) && (kind != CTF_K_ENUM))
|
|
return (ctf_set_errno (fp, ECTF_NOTINTFP));
|
|
|
|
if ((type = ctf_add_slice (fp, CTF_ADD_NONROOT, otype, &encoding)) == CTF_ERR)
|
|
return -1; /* errno is set for us. */
|
|
|
|
return ctf_add_member_offset (fp, souid, name, type, bit_offset);
|
|
}
|
|
|
|
int
|
|
ctf_add_member (ctf_dict_t *fp, ctf_id_t souid, const char *name,
|
|
ctf_id_t type)
|
|
{
|
|
return ctf_add_member_offset (fp, souid, name, type, (unsigned long) - 1);
|
|
}
|
|
|
|
int
|
|
ctf_add_variable (ctf_dict_t *fp, const char *name, ctf_id_t ref)
|
|
{
|
|
ctf_dvdef_t *dvd;
|
|
ctf_dict_t *tmp = fp;
|
|
|
|
if (!(fp->ctf_flags & LCTF_RDWR))
|
|
return (ctf_set_errno (fp, ECTF_RDONLY));
|
|
|
|
if (ctf_dvd_lookup (fp, name) != NULL)
|
|
return (ctf_set_errno (fp, ECTF_DUPLICATE));
|
|
|
|
if (ctf_lookup_by_id (&tmp, ref) == NULL)
|
|
return -1; /* errno is set for us. */
|
|
|
|
/* Make sure this type is representable. */
|
|
if ((ctf_type_resolve (fp, ref) == CTF_ERR)
|
|
&& (ctf_errno (fp) == ECTF_NONREPRESENTABLE))
|
|
return -1;
|
|
|
|
if ((dvd = malloc (sizeof (ctf_dvdef_t))) == NULL)
|
|
return (ctf_set_errno (fp, EAGAIN));
|
|
|
|
if (name != NULL && (dvd->dvd_name = strdup (name)) == NULL)
|
|
{
|
|
free (dvd);
|
|
return (ctf_set_errno (fp, EAGAIN));
|
|
}
|
|
dvd->dvd_type = ref;
|
|
dvd->dvd_snapshots = fp->ctf_snapshots;
|
|
|
|
if (ctf_dvd_insert (fp, dvd) < 0)
|
|
{
|
|
free (dvd->dvd_name);
|
|
free (dvd);
|
|
return -1; /* errno is set for us. */
|
|
}
|
|
|
|
fp->ctf_flags |= LCTF_DIRTY;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
ctf_add_funcobjt_sym (ctf_dict_t *fp, int is_function, const char *name, ctf_id_t id)
|
|
{
|
|
ctf_dict_t *tmp = fp;
|
|
char *dupname;
|
|
ctf_dynhash_t *h = is_function ? fp->ctf_funchash : fp->ctf_objthash;
|
|
|
|
if (!(fp->ctf_flags & LCTF_RDWR))
|
|
return (ctf_set_errno (fp, ECTF_RDONLY));
|
|
|
|
if (ctf_dynhash_lookup (fp->ctf_objthash, name) != NULL ||
|
|
ctf_dynhash_lookup (fp->ctf_funchash, name) != NULL)
|
|
return (ctf_set_errno (fp, ECTF_DUPLICATE));
|
|
|
|
if (ctf_lookup_by_id (&tmp, id) == NULL)
|
|
return -1; /* errno is set for us. */
|
|
|
|
if (is_function && ctf_type_kind (fp, id) != CTF_K_FUNCTION)
|
|
return (ctf_set_errno (fp, ECTF_NOTFUNC));
|
|
|
|
if ((dupname = strdup (name)) == NULL)
|
|
return (ctf_set_errno (fp, ENOMEM));
|
|
|
|
if (ctf_dynhash_insert (h, dupname, (void *) (uintptr_t) id) < 0)
|
|
{
|
|
free (dupname);
|
|
return (ctf_set_errno (fp, ENOMEM));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
ctf_add_objt_sym (ctf_dict_t *fp, const char *name, ctf_id_t id)
|
|
{
|
|
return (ctf_add_funcobjt_sym (fp, 0, name, id));
|
|
}
|
|
|
|
int
|
|
ctf_add_func_sym (ctf_dict_t *fp, const char *name, ctf_id_t id)
|
|
{
|
|
return (ctf_add_funcobjt_sym (fp, 1, name, id));
|
|
}
|
|
|
|
typedef struct ctf_bundle
|
|
{
|
|
ctf_dict_t *ctb_dict; /* CTF dict handle. */
|
|
ctf_id_t ctb_type; /* CTF type identifier. */
|
|
ctf_dtdef_t *ctb_dtd; /* CTF dynamic type definition (if any). */
|
|
} ctf_bundle_t;
|
|
|
|
static int
|
|
enumcmp (const char *name, int value, void *arg)
|
|
{
|
|
ctf_bundle_t *ctb = arg;
|
|
int bvalue;
|
|
|
|
if (ctf_enum_value (ctb->ctb_dict, ctb->ctb_type, name, &bvalue) < 0)
|
|
{
|
|
ctf_err_warn (ctb->ctb_dict, 0, 0,
|
|
_("conflict due to enum %s iteration error"), name);
|
|
return 1;
|
|
}
|
|
if (value != bvalue)
|
|
{
|
|
ctf_err_warn (ctb->ctb_dict, 1, ECTF_CONFLICT,
|
|
_("conflict due to enum value change: %i versus %i"),
|
|
value, bvalue);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
enumadd (const char *name, int value, void *arg)
|
|
{
|
|
ctf_bundle_t *ctb = arg;
|
|
|
|
return (ctf_add_enumerator (ctb->ctb_dict, ctb->ctb_type,
|
|
name, value) < 0);
|
|
}
|
|
|
|
static int
|
|
membcmp (const char *name, ctf_id_t type _libctf_unused_, unsigned long offset,
|
|
void *arg)
|
|
{
|
|
ctf_bundle_t *ctb = arg;
|
|
ctf_membinfo_t ctm;
|
|
|
|
/* Don't check nameless members (e.g. anonymous structs/unions) against each
|
|
other. */
|
|
if (name[0] == 0)
|
|
return 0;
|
|
|
|
if (ctf_member_info (ctb->ctb_dict, ctb->ctb_type, name, &ctm) < 0)
|
|
{
|
|
ctf_err_warn (ctb->ctb_dict, 0, 0,
|
|
_("conflict due to struct member %s iteration error"),
|
|
name);
|
|
return 1;
|
|
}
|
|
if (ctm.ctm_offset != offset)
|
|
{
|
|
ctf_err_warn (ctb->ctb_dict, 1, ECTF_CONFLICT,
|
|
_("conflict due to struct member %s offset change: "
|
|
"%lx versus %lx"),
|
|
name, ctm.ctm_offset, offset);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Record the correspondence between a source and ctf_add_type()-added
|
|
destination type: both types are translated into parent type IDs if need be,
|
|
so they relate to the actual dictionary they are in. Outside controlled
|
|
circumstances (like linking) it is probably not useful to do more than
|
|
compare these pointers, since there is nothing stopping the user closing the
|
|
source dict whenever they want to.
|
|
|
|
Our OOM handling here is just to not do anything, because this is called deep
|
|
enough in the call stack that doing anything useful is painfully difficult:
|
|
the worst consequence if we do OOM is a bit of type duplication anyway. */
|
|
|
|
static void
|
|
ctf_add_type_mapping (ctf_dict_t *src_fp, ctf_id_t src_type,
|
|
ctf_dict_t *dst_fp, ctf_id_t dst_type)
|
|
{
|
|
if (LCTF_TYPE_ISPARENT (src_fp, src_type) && src_fp->ctf_parent)
|
|
src_fp = src_fp->ctf_parent;
|
|
|
|
src_type = LCTF_TYPE_TO_INDEX(src_fp, src_type);
|
|
|
|
if (LCTF_TYPE_ISPARENT (dst_fp, dst_type) && dst_fp->ctf_parent)
|
|
dst_fp = dst_fp->ctf_parent;
|
|
|
|
dst_type = LCTF_TYPE_TO_INDEX(dst_fp, dst_type);
|
|
|
|
if (dst_fp->ctf_link_type_mapping == NULL)
|
|
{
|
|
ctf_hash_fun f = ctf_hash_type_key;
|
|
ctf_hash_eq_fun e = ctf_hash_eq_type_key;
|
|
|
|
if ((dst_fp->ctf_link_type_mapping = ctf_dynhash_create (f, e, free,
|
|
NULL)) == NULL)
|
|
return;
|
|
}
|
|
|
|
ctf_link_type_key_t *key;
|
|
key = calloc (1, sizeof (struct ctf_link_type_key));
|
|
if (!key)
|
|
return;
|
|
|
|
key->cltk_fp = src_fp;
|
|
key->cltk_idx = src_type;
|
|
|
|
/* No OOM checking needed, because if this doesn't work the worst we'll do is
|
|
add a few more duplicate types (which will probably run out of memory
|
|
anyway). */
|
|
ctf_dynhash_insert (dst_fp->ctf_link_type_mapping, key,
|
|
(void *) (uintptr_t) dst_type);
|
|
}
|
|
|
|
/* Look up a type mapping: return 0 if none. The DST_FP is modified to point to
|
|
the parent if need be. The ID returned is from the dst_fp's perspective. */
|
|
static ctf_id_t
|
|
ctf_type_mapping (ctf_dict_t *src_fp, ctf_id_t src_type, ctf_dict_t **dst_fp)
|
|
{
|
|
ctf_link_type_key_t key;
|
|
ctf_dict_t *target_fp = *dst_fp;
|
|
ctf_id_t dst_type = 0;
|
|
|
|
if (LCTF_TYPE_ISPARENT (src_fp, src_type) && src_fp->ctf_parent)
|
|
src_fp = src_fp->ctf_parent;
|
|
|
|
src_type = LCTF_TYPE_TO_INDEX(src_fp, src_type);
|
|
key.cltk_fp = src_fp;
|
|
key.cltk_idx = src_type;
|
|
|
|
if (target_fp->ctf_link_type_mapping)
|
|
dst_type = (uintptr_t) ctf_dynhash_lookup (target_fp->ctf_link_type_mapping,
|
|
&key);
|
|
|
|
if (dst_type != 0)
|
|
{
|
|
dst_type = LCTF_INDEX_TO_TYPE (target_fp, dst_type,
|
|
target_fp->ctf_parent != NULL);
|
|
*dst_fp = target_fp;
|
|
return dst_type;
|
|
}
|
|
|
|
if (target_fp->ctf_parent)
|
|
target_fp = target_fp->ctf_parent;
|
|
else
|
|
return 0;
|
|
|
|
if (target_fp->ctf_link_type_mapping)
|
|
dst_type = (uintptr_t) ctf_dynhash_lookup (target_fp->ctf_link_type_mapping,
|
|
&key);
|
|
|
|
if (dst_type)
|
|
dst_type = LCTF_INDEX_TO_TYPE (target_fp, dst_type,
|
|
target_fp->ctf_parent != NULL);
|
|
|
|
*dst_fp = target_fp;
|
|
return dst_type;
|
|
}
|
|
|
|
/* The ctf_add_type routine is used to copy a type from a source CTF dictionary
|
|
to a dynamic destination dictionary. This routine operates recursively by
|
|
following the source type's links and embedded member types. If the
|
|
destination dict already contains a named type which has the same attributes,
|
|
then we succeed and return this type but no changes occur. */
|
|
static ctf_id_t
|
|
ctf_add_type_internal (ctf_dict_t *dst_fp, ctf_dict_t *src_fp, ctf_id_t src_type,
|
|
ctf_dict_t *proc_tracking_fp)
|
|
{
|
|
ctf_id_t dst_type = CTF_ERR;
|
|
uint32_t dst_kind = CTF_K_UNKNOWN;
|
|
ctf_dict_t *tmp_fp = dst_fp;
|
|
ctf_id_t tmp;
|
|
|
|
const char *name;
|
|
uint32_t kind, forward_kind, flag, vlen;
|
|
|
|
const ctf_type_t *src_tp, *dst_tp;
|
|
ctf_bundle_t src, dst;
|
|
ctf_encoding_t src_en, dst_en;
|
|
ctf_arinfo_t src_ar, dst_ar;
|
|
|
|
ctf_funcinfo_t ctc;
|
|
|
|
ctf_id_t orig_src_type = src_type;
|
|
|
|
if (!(dst_fp->ctf_flags & LCTF_RDWR))
|
|
return (ctf_set_errno (dst_fp, ECTF_RDONLY));
|
|
|
|
if ((src_tp = ctf_lookup_by_id (&src_fp, src_type)) == NULL)
|
|
return (ctf_set_errno (dst_fp, ctf_errno (src_fp)));
|
|
|
|
if ((ctf_type_resolve (src_fp, src_type) == CTF_ERR)
|
|
&& (ctf_errno (src_fp) == ECTF_NONREPRESENTABLE))
|
|
return (ctf_set_errno (dst_fp, ECTF_NONREPRESENTABLE));
|
|
|
|
name = ctf_strptr (src_fp, src_tp->ctt_name);
|
|
kind = LCTF_INFO_KIND (src_fp, src_tp->ctt_info);
|
|
flag = LCTF_INFO_ISROOT (src_fp, src_tp->ctt_info);
|
|
vlen = LCTF_INFO_VLEN (src_fp, src_tp->ctt_info);
|
|
|
|
/* If this is a type we are currently in the middle of adding, hand it
|
|
straight back. (This lets us handle self-referential structures without
|
|
considering forwards and empty structures the same as their completed
|
|
forms.) */
|
|
|
|
tmp = ctf_type_mapping (src_fp, src_type, &tmp_fp);
|
|
|
|
if (tmp != 0)
|
|
{
|
|
if (ctf_dynhash_lookup (proc_tracking_fp->ctf_add_processing,
|
|
(void *) (uintptr_t) src_type))
|
|
return tmp;
|
|
|
|
/* If this type has already been added from this dictionary, and is the
|
|
same kind and (if a struct or union) has the same number of members,
|
|
hand it straight back. */
|
|
|
|
if (ctf_type_kind_unsliced (tmp_fp, tmp) == (int) kind)
|
|
{
|
|
if (kind == CTF_K_STRUCT || kind == CTF_K_UNION
|
|
|| kind == CTF_K_ENUM)
|
|
{
|
|
if ((dst_tp = ctf_lookup_by_id (&tmp_fp, dst_type)) != NULL)
|
|
if (vlen == LCTF_INFO_VLEN (tmp_fp, dst_tp->ctt_info))
|
|
return tmp;
|
|
}
|
|
else
|
|
return tmp;
|
|
}
|
|
}
|
|
|
|
forward_kind = kind;
|
|
if (kind == CTF_K_FORWARD)
|
|
forward_kind = src_tp->ctt_type;
|
|
|
|
/* If the source type has a name and is a root type (visible at the top-level
|
|
scope), lookup the name in the destination dictionary and verify that it is
|
|
of the same kind before we do anything else. */
|
|
|
|
if ((flag & CTF_ADD_ROOT) && name[0] != '\0'
|
|
&& (tmp = ctf_lookup_by_rawname (dst_fp, forward_kind, name)) != 0)
|
|
{
|
|
dst_type = tmp;
|
|
dst_kind = ctf_type_kind_unsliced (dst_fp, dst_type);
|
|
}
|
|
|
|
/* If an identically named dst_type exists, fail with ECTF_CONFLICT
|
|
unless dst_type is a forward declaration and src_type is a struct,
|
|
union, or enum (i.e. the definition of the previous forward decl).
|
|
|
|
We also allow addition in the opposite order (addition of a forward when a
|
|
struct, union, or enum already exists), which is a NOP and returns the
|
|
already-present struct, union, or enum. */
|
|
|
|
if (dst_type != CTF_ERR && dst_kind != kind)
|
|
{
|
|
if (kind == CTF_K_FORWARD
|
|
&& (dst_kind == CTF_K_ENUM || dst_kind == CTF_K_STRUCT
|
|
|| dst_kind == CTF_K_UNION))
|
|
{
|
|
ctf_add_type_mapping (src_fp, src_type, dst_fp, dst_type);
|
|
return dst_type;
|
|
}
|
|
|
|
if (dst_kind != CTF_K_FORWARD
|
|
|| (kind != CTF_K_ENUM && kind != CTF_K_STRUCT
|
|
&& kind != CTF_K_UNION))
|
|
{
|
|
ctf_err_warn (dst_fp, 1, ECTF_CONFLICT,
|
|
_("ctf_add_type: conflict for type %s: "
|
|
"kinds differ, new: %i; old (ID %lx): %i"),
|
|
name, kind, dst_type, dst_kind);
|
|
return (ctf_set_errno (dst_fp, ECTF_CONFLICT));
|
|
}
|
|
}
|
|
|
|
/* We take special action for an integer, float, or slice since it is
|
|
described not only by its name but also its encoding. For integers,
|
|
bit-fields exploit this degeneracy. */
|
|
|
|
if (kind == CTF_K_INTEGER || kind == CTF_K_FLOAT || kind == CTF_K_SLICE)
|
|
{
|
|
if (ctf_type_encoding (src_fp, src_type, &src_en) != 0)
|
|
return (ctf_set_errno (dst_fp, ctf_errno (src_fp)));
|
|
|
|
if (dst_type != CTF_ERR)
|
|
{
|
|
ctf_dict_t *fp = dst_fp;
|
|
|
|
if ((dst_tp = ctf_lookup_by_id (&fp, dst_type)) == NULL)
|
|
return CTF_ERR;
|
|
|
|
if (ctf_type_encoding (dst_fp, dst_type, &dst_en) != 0)
|
|
return CTF_ERR; /* errno set for us. */
|
|
|
|
if (LCTF_INFO_ISROOT (fp, dst_tp->ctt_info) & CTF_ADD_ROOT)
|
|
{
|
|
/* The type that we found in the hash is also root-visible. If
|
|
the two types match then use the existing one; otherwise,
|
|
declare a conflict. Note: slices are not certain to match
|
|
even if there is no conflict: we must check the contained type
|
|
too. */
|
|
|
|
if (memcmp (&src_en, &dst_en, sizeof (ctf_encoding_t)) == 0)
|
|
{
|
|
if (kind != CTF_K_SLICE)
|
|
{
|
|
ctf_add_type_mapping (src_fp, src_type, dst_fp, dst_type);
|
|
return dst_type;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
return (ctf_set_errno (dst_fp, ECTF_CONFLICT));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* We found a non-root-visible type in the hash. If its encoding
|
|
is the same, we can reuse it, unless it is a slice. */
|
|
|
|
if (memcmp (&src_en, &dst_en, sizeof (ctf_encoding_t)) == 0)
|
|
{
|
|
if (kind != CTF_K_SLICE)
|
|
{
|
|
ctf_add_type_mapping (src_fp, src_type, dst_fp, dst_type);
|
|
return dst_type;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
src.ctb_dict = src_fp;
|
|
src.ctb_type = src_type;
|
|
src.ctb_dtd = NULL;
|
|
|
|
dst.ctb_dict = dst_fp;
|
|
dst.ctb_type = dst_type;
|
|
dst.ctb_dtd = NULL;
|
|
|
|
/* Now perform kind-specific processing. If dst_type is CTF_ERR, then we add
|
|
a new type with the same properties as src_type to dst_fp. If dst_type is
|
|
not CTF_ERR, then we verify that dst_type has the same attributes as
|
|
src_type. We recurse for embedded references. Before we start, we note
|
|
that we are processing this type, to prevent infinite recursion: we do not
|
|
re-process any type that appears in this list. The list is emptied
|
|
wholesale at the end of processing everything in this recursive stack. */
|
|
|
|
if (ctf_dynhash_insert (proc_tracking_fp->ctf_add_processing,
|
|
(void *) (uintptr_t) src_type, (void *) 1) < 0)
|
|
return ctf_set_errno (dst_fp, ENOMEM);
|
|
|
|
switch (kind)
|
|
{
|
|
case CTF_K_INTEGER:
|
|
/* If we found a match we will have either returned it or declared a
|
|
conflict. */
|
|
dst_type = ctf_add_integer (dst_fp, flag, name, &src_en);
|
|
break;
|
|
|
|
case CTF_K_FLOAT:
|
|
/* If we found a match we will have either returned it or declared a
|
|
conflict. */
|
|
dst_type = ctf_add_float (dst_fp, flag, name, &src_en);
|
|
break;
|
|
|
|
case CTF_K_SLICE:
|
|
/* We have checked for conflicting encodings: now try to add the
|
|
contained type. */
|
|
src_type = ctf_type_reference (src_fp, src_type);
|
|
src_type = ctf_add_type_internal (dst_fp, src_fp, src_type,
|
|
proc_tracking_fp);
|
|
|
|
if (src_type == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
dst_type = ctf_add_slice (dst_fp, flag, src_type, &src_en);
|
|
break;
|
|
|
|
case CTF_K_POINTER:
|
|
case CTF_K_VOLATILE:
|
|
case CTF_K_CONST:
|
|
case CTF_K_RESTRICT:
|
|
src_type = ctf_type_reference (src_fp, src_type);
|
|
src_type = ctf_add_type_internal (dst_fp, src_fp, src_type,
|
|
proc_tracking_fp);
|
|
|
|
if (src_type == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
dst_type = ctf_add_reftype (dst_fp, flag, src_type, kind);
|
|
break;
|
|
|
|
case CTF_K_ARRAY:
|
|
if (ctf_array_info (src_fp, src_type, &src_ar) != 0)
|
|
return (ctf_set_errno (dst_fp, ctf_errno (src_fp)));
|
|
|
|
src_ar.ctr_contents =
|
|
ctf_add_type_internal (dst_fp, src_fp, src_ar.ctr_contents,
|
|
proc_tracking_fp);
|
|
src_ar.ctr_index = ctf_add_type_internal (dst_fp, src_fp,
|
|
src_ar.ctr_index,
|
|
proc_tracking_fp);
|
|
src_ar.ctr_nelems = src_ar.ctr_nelems;
|
|
|
|
if (src_ar.ctr_contents == CTF_ERR || src_ar.ctr_index == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
if (dst_type != CTF_ERR)
|
|
{
|
|
if (ctf_array_info (dst_fp, dst_type, &dst_ar) != 0)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
if (memcmp (&src_ar, &dst_ar, sizeof (ctf_arinfo_t)))
|
|
{
|
|
ctf_err_warn (dst_fp, 1, ECTF_CONFLICT,
|
|
_("conflict for type %s against ID %lx: array info "
|
|
"differs, old %lx/%lx/%x; new: %lx/%lx/%x"),
|
|
name, dst_type, src_ar.ctr_contents,
|
|
src_ar.ctr_index, src_ar.ctr_nelems,
|
|
dst_ar.ctr_contents, dst_ar.ctr_index,
|
|
dst_ar.ctr_nelems);
|
|
return (ctf_set_errno (dst_fp, ECTF_CONFLICT));
|
|
}
|
|
}
|
|
else
|
|
dst_type = ctf_add_array (dst_fp, flag, &src_ar);
|
|
break;
|
|
|
|
case CTF_K_FUNCTION:
|
|
ctc.ctc_return = ctf_add_type_internal (dst_fp, src_fp,
|
|
src_tp->ctt_type,
|
|
proc_tracking_fp);
|
|
ctc.ctc_argc = 0;
|
|
ctc.ctc_flags = 0;
|
|
|
|
if (ctc.ctc_return == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
dst_type = ctf_add_function (dst_fp, flag, &ctc, NULL);
|
|
break;
|
|
|
|
case CTF_K_STRUCT:
|
|
case CTF_K_UNION:
|
|
{
|
|
ctf_next_t *i = NULL;
|
|
ssize_t offset;
|
|
const char *membname;
|
|
ctf_id_t src_membtype;
|
|
|
|
/* Technically to match a struct or union we need to check both
|
|
ways (src members vs. dst, dst members vs. src) but we make
|
|
this more optimal by only checking src vs. dst and comparing
|
|
the total size of the structure (which we must do anyway)
|
|
which covers the possibility of dst members not in src.
|
|
This optimization can be defeated for unions, but is so
|
|
pathological as to render it irrelevant for our purposes. */
|
|
|
|
if (dst_type != CTF_ERR && kind != CTF_K_FORWARD
|
|
&& dst_kind != CTF_K_FORWARD)
|
|
{
|
|
if (ctf_type_size (src_fp, src_type) !=
|
|
ctf_type_size (dst_fp, dst_type))
|
|
{
|
|
ctf_err_warn (dst_fp, 1, ECTF_CONFLICT,
|
|
_("conflict for type %s against ID %lx: union "
|
|
"size differs, old %li, new %li"), name,
|
|
dst_type, (long) ctf_type_size (src_fp, src_type),
|
|
(long) ctf_type_size (dst_fp, dst_type));
|
|
return (ctf_set_errno (dst_fp, ECTF_CONFLICT));
|
|
}
|
|
|
|
if (ctf_member_iter (src_fp, src_type, membcmp, &dst))
|
|
{
|
|
ctf_err_warn (dst_fp, 1, ECTF_CONFLICT,
|
|
_("conflict for type %s against ID %lx: members "
|
|
"differ, see above"), name, dst_type);
|
|
return (ctf_set_errno (dst_fp, ECTF_CONFLICT));
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
dst_type = ctf_add_struct_sized (dst_fp, flag, name,
|
|
ctf_type_size (src_fp, src_type));
|
|
if (dst_type == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
/* Pre-emptively add this struct to the type mapping so that
|
|
structures that refer to themselves work. */
|
|
ctf_add_type_mapping (src_fp, src_type, dst_fp, dst_type);
|
|
|
|
while ((offset = ctf_member_next (src_fp, src_type, &i, &membname,
|
|
&src_membtype, 0)) >= 0)
|
|
{
|
|
ctf_dict_t *dst = dst_fp;
|
|
ctf_id_t dst_membtype = ctf_type_mapping (src_fp, src_membtype, &dst);
|
|
|
|
if (dst_membtype == 0)
|
|
{
|
|
dst_membtype = ctf_add_type_internal (dst_fp, src_fp,
|
|
src_membtype,
|
|
proc_tracking_fp);
|
|
if (dst_membtype == CTF_ERR)
|
|
{
|
|
if (ctf_errno (dst_fp) != ECTF_NONREPRESENTABLE)
|
|
{
|
|
ctf_next_destroy (i);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ctf_add_member_offset (dst_fp, dst_type, membname,
|
|
dst_membtype, offset) < 0)
|
|
{
|
|
ctf_next_destroy (i);
|
|
break;
|
|
}
|
|
}
|
|
if (ctf_errno (src_fp) != ECTF_NEXT_END)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
break;
|
|
}
|
|
|
|
case CTF_K_ENUM:
|
|
if (dst_type != CTF_ERR && kind != CTF_K_FORWARD
|
|
&& dst_kind != CTF_K_FORWARD)
|
|
{
|
|
if (ctf_enum_iter (src_fp, src_type, enumcmp, &dst)
|
|
|| ctf_enum_iter (dst_fp, dst_type, enumcmp, &src))
|
|
{
|
|
ctf_err_warn (dst_fp, 1, ECTF_CONFLICT,
|
|
_("conflict for enum %s against ID %lx: members "
|
|
"differ, see above"), name, dst_type);
|
|
return (ctf_set_errno (dst_fp, ECTF_CONFLICT));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
dst_type = ctf_add_enum (dst_fp, flag, name);
|
|
if ((dst.ctb_type = dst_type) == CTF_ERR
|
|
|| ctf_enum_iter (src_fp, src_type, enumadd, &dst))
|
|
return CTF_ERR; /* errno is set for us */
|
|
}
|
|
break;
|
|
|
|
case CTF_K_FORWARD:
|
|
if (dst_type == CTF_ERR)
|
|
dst_type = ctf_add_forward (dst_fp, flag, name, forward_kind);
|
|
break;
|
|
|
|
case CTF_K_TYPEDEF:
|
|
src_type = ctf_type_reference (src_fp, src_type);
|
|
src_type = ctf_add_type_internal (dst_fp, src_fp, src_type,
|
|
proc_tracking_fp);
|
|
|
|
if (src_type == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
/* If dst_type is not CTF_ERR at this point, we should check if
|
|
ctf_type_reference(dst_fp, dst_type) != src_type and if so fail with
|
|
ECTF_CONFLICT. However, this causes problems with bitness typedefs
|
|
that vary based on things like if 32-bit then pid_t is int otherwise
|
|
long. We therefore omit this check and assume that if the identically
|
|
named typedef already exists in dst_fp, it is correct or
|
|
equivalent. */
|
|
|
|
if (dst_type == CTF_ERR)
|
|
dst_type = ctf_add_typedef (dst_fp, flag, name, src_type);
|
|
|
|
break;
|
|
|
|
default:
|
|
return (ctf_set_errno (dst_fp, ECTF_CORRUPT));
|
|
}
|
|
|
|
if (dst_type != CTF_ERR)
|
|
ctf_add_type_mapping (src_fp, orig_src_type, dst_fp, dst_type);
|
|
return dst_type;
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_type (ctf_dict_t *dst_fp, ctf_dict_t *src_fp, ctf_id_t src_type)
|
|
{
|
|
ctf_id_t id;
|
|
|
|
if (!src_fp->ctf_add_processing)
|
|
src_fp->ctf_add_processing = ctf_dynhash_create (ctf_hash_integer,
|
|
ctf_hash_eq_integer,
|
|
NULL, NULL);
|
|
|
|
/* We store the hash on the source, because it contains only source type IDs:
|
|
but callers will invariably expect errors to appear on the dest. */
|
|
if (!src_fp->ctf_add_processing)
|
|
return (ctf_set_errno (dst_fp, ENOMEM));
|
|
|
|
id = ctf_add_type_internal (dst_fp, src_fp, src_type, src_fp);
|
|
ctf_dynhash_empty (src_fp->ctf_add_processing);
|
|
|
|
return id;
|
|
}
|