Retro68/gcc/libgo/go/crypto/elliptic/p256_asm.go
Wolfgang Thaller 6fbf4226da gcc-9.1
2019-06-20 20:10:10 +02:00

591 lines
16 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file contains the Go wrapper for the constant-time, 64-bit assembly
// implementation of P256. The optimizations performed here are described in
// detail in:
// S.Gueron and V.Krasnov, "Fast prime field elliptic-curve cryptography with
// 256-bit primes"
// https://link.springer.com/article/10.1007%2Fs13389-014-0090-x
// https://eprint.iacr.org/2013/816.pdf
// +build ignore_for_gccgo
// +build amd64 arm64
package elliptic
import (
"math/big"
"sync"
)
type (
p256Curve struct {
*CurveParams
}
p256Point struct {
xyz [12]uint64
}
)
var (
p256 p256Curve
p256Precomputed *[43][32 * 8]uint64
precomputeOnce sync.Once
)
func initP256() {
// See FIPS 186-3, section D.2.3
p256.CurveParams = &CurveParams{Name: "P-256"}
p256.P, _ = new(big.Int).SetString("115792089210356248762697446949407573530086143415290314195533631308867097853951", 10)
p256.N, _ = new(big.Int).SetString("115792089210356248762697446949407573529996955224135760342422259061068512044369", 10)
p256.B, _ = new(big.Int).SetString("5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b", 16)
p256.Gx, _ = new(big.Int).SetString("6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296", 16)
p256.Gy, _ = new(big.Int).SetString("4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5", 16)
p256.BitSize = 256
}
func (curve p256Curve) Params() *CurveParams {
return curve.CurveParams
}
// Functions implemented in p256_asm_*64.s
// Montgomery multiplication modulo P256
//go:noescape
func p256Mul(res, in1, in2 []uint64)
// Montgomery square modulo P256, repeated n times (n >= 1)
//go:noescape
func p256Sqr(res, in []uint64, n int)
// Montgomery multiplication by 1
//go:noescape
func p256FromMont(res, in []uint64)
// iff cond == 1 val <- -val
//go:noescape
func p256NegCond(val []uint64, cond int)
// if cond == 0 res <- b; else res <- a
//go:noescape
func p256MovCond(res, a, b []uint64, cond int)
// Endianness swap
//go:noescape
func p256BigToLittle(res []uint64, in []byte)
//go:noescape
func p256LittleToBig(res []byte, in []uint64)
// Constant time table access
//go:noescape
func p256Select(point, table []uint64, idx int)
//go:noescape
func p256SelectBase(point, table []uint64, idx int)
// Montgomery multiplication modulo Ord(G)
//go:noescape
func p256OrdMul(res, in1, in2 []uint64)
// Montgomery square modulo Ord(G), repeated n times
//go:noescape
func p256OrdSqr(res, in []uint64, n int)
// Point add with in2 being affine point
// If sign == 1 -> in2 = -in2
// If sel == 0 -> res = in1
// if zero == 0 -> res = in2
//go:noescape
func p256PointAddAffineAsm(res, in1, in2 []uint64, sign, sel, zero int)
// Point add. Returns one if the two input points were equal and zero
// otherwise. (Note that, due to the way that the equations work out, some
// representations of ∞ are considered equal to everything by this function.)
//go:noescape
func p256PointAddAsm(res, in1, in2 []uint64) int
// Point double
//go:noescape
func p256PointDoubleAsm(res, in []uint64)
func (curve p256Curve) Inverse(k *big.Int) *big.Int {
if k.Sign() < 0 {
// This should never happen.
k = new(big.Int).Neg(k)
}
if k.Cmp(p256.N) >= 0 {
// This should never happen.
k = new(big.Int).Mod(k, p256.N)
}
// table will store precomputed powers of x.
var table [4 * 9]uint64
var (
_1 = table[4*0 : 4*1]
_11 = table[4*1 : 4*2]
_101 = table[4*2 : 4*3]
_111 = table[4*3 : 4*4]
_1111 = table[4*4 : 4*5]
_10101 = table[4*5 : 4*6]
_101111 = table[4*6 : 4*7]
x = table[4*7 : 4*8]
t = table[4*8 : 4*9]
)
fromBig(x[:], k)
// This code operates in the Montgomery domain where R = 2^256 mod n
// and n is the order of the scalar field. (See initP256 for the
// value.) Elements in the Montgomery domain take the form a×R and
// multiplication of x and y in the calculates (x × y × R^-1) mod n. RR
// is R×R mod n thus the Montgomery multiplication x and RR gives x×R,
// i.e. converts x into the Montgomery domain.
// Window values borrowed from https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion
RR := []uint64{0x83244c95be79eea2, 0x4699799c49bd6fa6, 0x2845b2392b6bec59, 0x66e12d94f3d95620}
p256OrdMul(_1, x, RR) // _1
p256OrdSqr(x, _1, 1) // _10
p256OrdMul(_11, x, _1) // _11
p256OrdMul(_101, x, _11) // _101
p256OrdMul(_111, x, _101) // _111
p256OrdSqr(x, _101, 1) // _1010
p256OrdMul(_1111, _101, x) // _1111
p256OrdSqr(t, x, 1) // _10100
p256OrdMul(_10101, t, _1) // _10101
p256OrdSqr(x, _10101, 1) // _101010
p256OrdMul(_101111, _101, x) // _101111
p256OrdMul(x, _10101, x) // _111111 = x6
p256OrdSqr(t, x, 2) // _11111100
p256OrdMul(t, t, _11) // _11111111 = x8
p256OrdSqr(x, t, 8) // _ff00
p256OrdMul(x, x, t) // _ffff = x16
p256OrdSqr(t, x, 16) // _ffff0000
p256OrdMul(t, t, x) // _ffffffff = x32
p256OrdSqr(x, t, 64)
p256OrdMul(x, x, t)
p256OrdSqr(x, x, 32)
p256OrdMul(x, x, t)
sqrs := []uint8{
6, 5, 4, 5, 5,
4, 3, 3, 5, 9,
6, 2, 5, 6, 5,
4, 5, 5, 3, 10,
2, 5, 5, 3, 7, 6}
muls := [][]uint64{
_101111, _111, _11, _1111, _10101,
_101, _101, _101, _111, _101111,
_1111, _1, _1, _1111, _111,
_111, _111, _101, _11, _101111,
_11, _11, _11, _1, _10101, _1111}
for i, s := range sqrs {
p256OrdSqr(x, x, int(s))
p256OrdMul(x, x, muls[i])
}
// Multiplying by one in the Montgomery domain converts a Montgomery
// value out of the domain.
one := []uint64{1, 0, 0, 0}
p256OrdMul(x, x, one)
xOut := make([]byte, 32)
p256LittleToBig(xOut, x)
return new(big.Int).SetBytes(xOut)
}
// fromBig converts a *big.Int into a format used by this code.
func fromBig(out []uint64, big *big.Int) {
for i := range out {
out[i] = 0
}
for i, v := range big.Bits() {
out[i] = uint64(v)
}
}
// p256GetScalar endian-swaps the big-endian scalar value from in and writes it
// to out. If the scalar is equal or greater than the order of the group, it's
// reduced modulo that order.
func p256GetScalar(out []uint64, in []byte) {
n := new(big.Int).SetBytes(in)
if n.Cmp(p256.N) >= 0 {
n.Mod(n, p256.N)
}
fromBig(out, n)
}
// p256Mul operates in a Montgomery domain with R = 2^256 mod p, where p is the
// underlying field of the curve. (See initP256 for the value.) Thus rr here is
// R×R mod p. See comment in Inverse about how this is used.
var rr = []uint64{0x0000000000000003, 0xfffffffbffffffff, 0xfffffffffffffffe, 0x00000004fffffffd}
func maybeReduceModP(in *big.Int) *big.Int {
if in.Cmp(p256.P) < 0 {
return in
}
return new(big.Int).Mod(in, p256.P)
}
func (curve p256Curve) CombinedMult(bigX, bigY *big.Int, baseScalar, scalar []byte) (x, y *big.Int) {
scalarReversed := make([]uint64, 4)
var r1, r2 p256Point
p256GetScalar(scalarReversed, baseScalar)
r1IsInfinity := scalarIsZero(scalarReversed)
r1.p256BaseMult(scalarReversed)
p256GetScalar(scalarReversed, scalar)
r2IsInfinity := scalarIsZero(scalarReversed)
fromBig(r2.xyz[0:4], maybeReduceModP(bigX))
fromBig(r2.xyz[4:8], maybeReduceModP(bigY))
p256Mul(r2.xyz[0:4], r2.xyz[0:4], rr[:])
p256Mul(r2.xyz[4:8], r2.xyz[4:8], rr[:])
// This sets r2's Z value to 1, in the Montgomery domain.
r2.xyz[8] = 0x0000000000000001
r2.xyz[9] = 0xffffffff00000000
r2.xyz[10] = 0xffffffffffffffff
r2.xyz[11] = 0x00000000fffffffe
r2.p256ScalarMult(scalarReversed)
var sum, double p256Point
pointsEqual := p256PointAddAsm(sum.xyz[:], r1.xyz[:], r2.xyz[:])
p256PointDoubleAsm(double.xyz[:], r1.xyz[:])
sum.CopyConditional(&double, pointsEqual)
sum.CopyConditional(&r1, r2IsInfinity)
sum.CopyConditional(&r2, r1IsInfinity)
return sum.p256PointToAffine()
}
func (curve p256Curve) ScalarBaseMult(scalar []byte) (x, y *big.Int) {
scalarReversed := make([]uint64, 4)
p256GetScalar(scalarReversed, scalar)
var r p256Point
r.p256BaseMult(scalarReversed)
return r.p256PointToAffine()
}
func (curve p256Curve) ScalarMult(bigX, bigY *big.Int, scalar []byte) (x, y *big.Int) {
scalarReversed := make([]uint64, 4)
p256GetScalar(scalarReversed, scalar)
var r p256Point
fromBig(r.xyz[0:4], maybeReduceModP(bigX))
fromBig(r.xyz[4:8], maybeReduceModP(bigY))
p256Mul(r.xyz[0:4], r.xyz[0:4], rr[:])
p256Mul(r.xyz[4:8], r.xyz[4:8], rr[:])
// This sets r2's Z value to 1, in the Montgomery domain.
r.xyz[8] = 0x0000000000000001
r.xyz[9] = 0xffffffff00000000
r.xyz[10] = 0xffffffffffffffff
r.xyz[11] = 0x00000000fffffffe
r.p256ScalarMult(scalarReversed)
return r.p256PointToAffine()
}
// uint64IsZero returns 1 if x is zero and zero otherwise.
func uint64IsZero(x uint64) int {
x = ^x
x &= x >> 32
x &= x >> 16
x &= x >> 8
x &= x >> 4
x &= x >> 2
x &= x >> 1
return int(x & 1)
}
// scalarIsZero returns 1 if scalar represents the zero value, and zero
// otherwise.
func scalarIsZero(scalar []uint64) int {
return uint64IsZero(scalar[0] | scalar[1] | scalar[2] | scalar[3])
}
func (p *p256Point) p256PointToAffine() (x, y *big.Int) {
zInv := make([]uint64, 4)
zInvSq := make([]uint64, 4)
p256Inverse(zInv, p.xyz[8:12])
p256Sqr(zInvSq, zInv, 1)
p256Mul(zInv, zInv, zInvSq)
p256Mul(zInvSq, p.xyz[0:4], zInvSq)
p256Mul(zInv, p.xyz[4:8], zInv)
p256FromMont(zInvSq, zInvSq)
p256FromMont(zInv, zInv)
xOut := make([]byte, 32)
yOut := make([]byte, 32)
p256LittleToBig(xOut, zInvSq)
p256LittleToBig(yOut, zInv)
return new(big.Int).SetBytes(xOut), new(big.Int).SetBytes(yOut)
}
// CopyConditional copies overwrites p with src if v == 1, and leaves p
// unchanged if v == 0.
func (p *p256Point) CopyConditional(src *p256Point, v int) {
pMask := uint64(v) - 1
srcMask := ^pMask
for i, n := range p.xyz {
p.xyz[i] = (n & pMask) | (src.xyz[i] & srcMask)
}
}
// p256Inverse sets out to in^-1 mod p.
func p256Inverse(out, in []uint64) {
var stack [6 * 4]uint64
p2 := stack[4*0 : 4*0+4]
p4 := stack[4*1 : 4*1+4]
p8 := stack[4*2 : 4*2+4]
p16 := stack[4*3 : 4*3+4]
p32 := stack[4*4 : 4*4+4]
p256Sqr(out, in, 1)
p256Mul(p2, out, in) // 3*p
p256Sqr(out, p2, 2)
p256Mul(p4, out, p2) // f*p
p256Sqr(out, p4, 4)
p256Mul(p8, out, p4) // ff*p
p256Sqr(out, p8, 8)
p256Mul(p16, out, p8) // ffff*p
p256Sqr(out, p16, 16)
p256Mul(p32, out, p16) // ffffffff*p
p256Sqr(out, p32, 32)
p256Mul(out, out, in)
p256Sqr(out, out, 128)
p256Mul(out, out, p32)
p256Sqr(out, out, 32)
p256Mul(out, out, p32)
p256Sqr(out, out, 16)
p256Mul(out, out, p16)
p256Sqr(out, out, 8)
p256Mul(out, out, p8)
p256Sqr(out, out, 4)
p256Mul(out, out, p4)
p256Sqr(out, out, 2)
p256Mul(out, out, p2)
p256Sqr(out, out, 2)
p256Mul(out, out, in)
}
func (p *p256Point) p256StorePoint(r *[16 * 4 * 3]uint64, index int) {
copy(r[index*12:], p.xyz[:])
}
func boothW5(in uint) (int, int) {
var s uint = ^((in >> 5) - 1)
var d uint = (1 << 6) - in - 1
d = (d & s) | (in & (^s))
d = (d >> 1) + (d & 1)
return int(d), int(s & 1)
}
func boothW6(in uint) (int, int) {
var s uint = ^((in >> 6) - 1)
var d uint = (1 << 7) - in - 1
d = (d & s) | (in & (^s))
d = (d >> 1) + (d & 1)
return int(d), int(s & 1)
}
func initTable() {
p256Precomputed = new([43][32 * 8]uint64)
basePoint := []uint64{
0x79e730d418a9143c, 0x75ba95fc5fedb601, 0x79fb732b77622510, 0x18905f76a53755c6,
0xddf25357ce95560a, 0x8b4ab8e4ba19e45c, 0xd2e88688dd21f325, 0x8571ff1825885d85,
0x0000000000000001, 0xffffffff00000000, 0xffffffffffffffff, 0x00000000fffffffe,
}
t1 := make([]uint64, 12)
t2 := make([]uint64, 12)
copy(t2, basePoint)
zInv := make([]uint64, 4)
zInvSq := make([]uint64, 4)
for j := 0; j < 32; j++ {
copy(t1, t2)
for i := 0; i < 43; i++ {
// The window size is 6 so we need to double 6 times.
if i != 0 {
for k := 0; k < 6; k++ {
p256PointDoubleAsm(t1, t1)
}
}
// Convert the point to affine form. (Its values are
// still in Montgomery form however.)
p256Inverse(zInv, t1[8:12])
p256Sqr(zInvSq, zInv, 1)
p256Mul(zInv, zInv, zInvSq)
p256Mul(t1[:4], t1[:4], zInvSq)
p256Mul(t1[4:8], t1[4:8], zInv)
copy(t1[8:12], basePoint[8:12])
// Update the table entry
copy(p256Precomputed[i][j*8:], t1[:8])
}
if j == 0 {
p256PointDoubleAsm(t2, basePoint)
} else {
p256PointAddAsm(t2, t2, basePoint)
}
}
}
func (p *p256Point) p256BaseMult(scalar []uint64) {
precomputeOnce.Do(initTable)
wvalue := (scalar[0] << 1) & 0x7f
sel, sign := boothW6(uint(wvalue))
p256SelectBase(p.xyz[0:8], p256Precomputed[0][0:], sel)
p256NegCond(p.xyz[4:8], sign)
// (This is one, in the Montgomery domain.)
p.xyz[8] = 0x0000000000000001
p.xyz[9] = 0xffffffff00000000
p.xyz[10] = 0xffffffffffffffff
p.xyz[11] = 0x00000000fffffffe
var t0 p256Point
// (This is one, in the Montgomery domain.)
t0.xyz[8] = 0x0000000000000001
t0.xyz[9] = 0xffffffff00000000
t0.xyz[10] = 0xffffffffffffffff
t0.xyz[11] = 0x00000000fffffffe
index := uint(5)
zero := sel
for i := 1; i < 43; i++ {
if index < 192 {
wvalue = ((scalar[index/64] >> (index % 64)) + (scalar[index/64+1] << (64 - (index % 64)))) & 0x7f
} else {
wvalue = (scalar[index/64] >> (index % 64)) & 0x7f
}
index += 6
sel, sign = boothW6(uint(wvalue))
p256SelectBase(t0.xyz[0:8], p256Precomputed[i][0:], sel)
p256PointAddAffineAsm(p.xyz[0:12], p.xyz[0:12], t0.xyz[0:8], sign, sel, zero)
zero |= sel
}
}
func (p *p256Point) p256ScalarMult(scalar []uint64) {
// precomp is a table of precomputed points that stores powers of p
// from p^1 to p^16.
var precomp [16 * 4 * 3]uint64
var t0, t1, t2, t3 p256Point
// Prepare the table
p.p256StorePoint(&precomp, 0) // 1
p256PointDoubleAsm(t0.xyz[:], p.xyz[:])
p256PointDoubleAsm(t1.xyz[:], t0.xyz[:])
p256PointDoubleAsm(t2.xyz[:], t1.xyz[:])
p256PointDoubleAsm(t3.xyz[:], t2.xyz[:])
t0.p256StorePoint(&precomp, 1) // 2
t1.p256StorePoint(&precomp, 3) // 4
t2.p256StorePoint(&precomp, 7) // 8
t3.p256StorePoint(&precomp, 15) // 16
p256PointAddAsm(t0.xyz[:], t0.xyz[:], p.xyz[:])
p256PointAddAsm(t1.xyz[:], t1.xyz[:], p.xyz[:])
p256PointAddAsm(t2.xyz[:], t2.xyz[:], p.xyz[:])
t0.p256StorePoint(&precomp, 2) // 3
t1.p256StorePoint(&precomp, 4) // 5
t2.p256StorePoint(&precomp, 8) // 9
p256PointDoubleAsm(t0.xyz[:], t0.xyz[:])
p256PointDoubleAsm(t1.xyz[:], t1.xyz[:])
t0.p256StorePoint(&precomp, 5) // 6
t1.p256StorePoint(&precomp, 9) // 10
p256PointAddAsm(t2.xyz[:], t0.xyz[:], p.xyz[:])
p256PointAddAsm(t1.xyz[:], t1.xyz[:], p.xyz[:])
t2.p256StorePoint(&precomp, 6) // 7
t1.p256StorePoint(&precomp, 10) // 11
p256PointDoubleAsm(t0.xyz[:], t0.xyz[:])
p256PointDoubleAsm(t2.xyz[:], t2.xyz[:])
t0.p256StorePoint(&precomp, 11) // 12
t2.p256StorePoint(&precomp, 13) // 14
p256PointAddAsm(t0.xyz[:], t0.xyz[:], p.xyz[:])
p256PointAddAsm(t2.xyz[:], t2.xyz[:], p.xyz[:])
t0.p256StorePoint(&precomp, 12) // 13
t2.p256StorePoint(&precomp, 14) // 15
// Start scanning the window from top bit
index := uint(254)
var sel, sign int
wvalue := (scalar[index/64] >> (index % 64)) & 0x3f
sel, _ = boothW5(uint(wvalue))
p256Select(p.xyz[0:12], precomp[0:], sel)
zero := sel
for index > 4 {
index -= 5
p256PointDoubleAsm(p.xyz[:], p.xyz[:])
p256PointDoubleAsm(p.xyz[:], p.xyz[:])
p256PointDoubleAsm(p.xyz[:], p.xyz[:])
p256PointDoubleAsm(p.xyz[:], p.xyz[:])
p256PointDoubleAsm(p.xyz[:], p.xyz[:])
if index < 192 {
wvalue = ((scalar[index/64] >> (index % 64)) + (scalar[index/64+1] << (64 - (index % 64)))) & 0x3f
} else {
wvalue = (scalar[index/64] >> (index % 64)) & 0x3f
}
sel, sign = boothW5(uint(wvalue))
p256Select(t0.xyz[0:], precomp[0:], sel)
p256NegCond(t0.xyz[4:8], sign)
p256PointAddAsm(t1.xyz[:], p.xyz[:], t0.xyz[:])
p256MovCond(t1.xyz[0:12], t1.xyz[0:12], p.xyz[0:12], sel)
p256MovCond(p.xyz[0:12], t1.xyz[0:12], t0.xyz[0:12], zero)
zero |= sel
}
p256PointDoubleAsm(p.xyz[:], p.xyz[:])
p256PointDoubleAsm(p.xyz[:], p.xyz[:])
p256PointDoubleAsm(p.xyz[:], p.xyz[:])
p256PointDoubleAsm(p.xyz[:], p.xyz[:])
p256PointDoubleAsm(p.xyz[:], p.xyz[:])
wvalue = (scalar[0] << 1) & 0x3f
sel, sign = boothW5(uint(wvalue))
p256Select(t0.xyz[0:], precomp[0:], sel)
p256NegCond(t0.xyz[4:8], sign)
p256PointAddAsm(t1.xyz[:], p.xyz[:], t0.xyz[:])
p256MovCond(t1.xyz[0:12], t1.xyz[0:12], p.xyz[0:12], sel)
p256MovCond(p.xyz[0:12], t1.xyz[0:12], t0.xyz[0:12], zero)
}