mirror of
https://github.com/autc04/Retro68.git
synced 2025-01-05 22:32:37 +00:00
1414 lines
39 KiB
Java
1414 lines
39 KiB
Java
/* Arc2D.java -- represents an arc in 2-D space
|
|
Copyright (C) 2002, 2003, 2004 Free Software Foundation
|
|
|
|
This file is part of GNU Classpath.
|
|
|
|
GNU Classpath is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2, or (at your option)
|
|
any later version.
|
|
|
|
GNU Classpath is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GNU Classpath; see the file COPYING. If not, write to the
|
|
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
|
02110-1301 USA.
|
|
|
|
Linking this library statically or dynamically with other modules is
|
|
making a combined work based on this library. Thus, the terms and
|
|
conditions of the GNU General Public License cover the whole
|
|
combination.
|
|
|
|
As a special exception, the copyright holders of this library give you
|
|
permission to link this library with independent modules to produce an
|
|
executable, regardless of the license terms of these independent
|
|
modules, and to copy and distribute the resulting executable under
|
|
terms of your choice, provided that you also meet, for each linked
|
|
independent module, the terms and conditions of the license of that
|
|
module. An independent module is a module which is not derived from
|
|
or based on this library. If you modify this library, you may extend
|
|
this exception to your version of the library, but you are not
|
|
obligated to do so. If you do not wish to do so, delete this
|
|
exception statement from your version. */
|
|
|
|
package java.awt.geom;
|
|
|
|
import java.util.NoSuchElementException;
|
|
|
|
|
|
/**
|
|
* This class represents all arcs (segments of an ellipse in 2-D space). The
|
|
* arcs are defined by starting angle and extent (arc length) in degrees, as
|
|
* opposed to radians (like the rest of Java), and can be open, chorded, or
|
|
* wedge shaped. The angles are skewed according to the ellipse, so that 45
|
|
* degrees always points to the upper right corner (positive x, negative y)
|
|
* of the bounding rectangle. A positive extent draws a counterclockwise arc,
|
|
* and while the angle can be any value, the path iterator only traverses the
|
|
* first 360 degrees. Storage is up to the subclasses.
|
|
*
|
|
* @author Eric Blake (ebb9@email.byu.edu)
|
|
* @author Sven de Marothy (sven@physto.se)
|
|
* @since 1.2
|
|
*/
|
|
public abstract class Arc2D extends RectangularShape
|
|
{
|
|
/**
|
|
* An open arc, with no segment connecting the endpoints. This type of
|
|
* arc still contains the same points as a chorded version.
|
|
*/
|
|
public static final int OPEN = 0;
|
|
|
|
/**
|
|
* A closed arc with a single segment connecting the endpoints (a chord).
|
|
*/
|
|
public static final int CHORD = 1;
|
|
|
|
/**
|
|
* A closed arc with two segments, one from each endpoint, meeting at the
|
|
* center of the ellipse.
|
|
*/
|
|
public static final int PIE = 2;
|
|
|
|
/** The closure type of this arc. This is package-private to avoid an
|
|
* accessor method. */
|
|
int type;
|
|
|
|
/**
|
|
* Create a new arc, with the specified closure type.
|
|
*
|
|
* @param type one of {@link #OPEN}, {@link #CHORD}, or {@link #PIE}.
|
|
* @throws IllegalArgumentException if type is invalid
|
|
*/
|
|
protected Arc2D(int type)
|
|
{
|
|
if (type < OPEN || type > PIE)
|
|
throw new IllegalArgumentException();
|
|
this.type = type;
|
|
}
|
|
|
|
/**
|
|
* Get the starting angle of the arc in degrees.
|
|
*
|
|
* @return the starting angle
|
|
* @see #setAngleStart(double)
|
|
*/
|
|
public abstract double getAngleStart();
|
|
|
|
/**
|
|
* Get the extent angle of the arc in degrees.
|
|
*
|
|
* @return the extent angle
|
|
* @see #setAngleExtent(double)
|
|
*/
|
|
public abstract double getAngleExtent();
|
|
|
|
/**
|
|
* Return the closure type of the arc.
|
|
*
|
|
* @return the closure type
|
|
* @see #OPEN
|
|
* @see #CHORD
|
|
* @see #PIE
|
|
* @see #setArcType(int)
|
|
*/
|
|
public int getArcType()
|
|
{
|
|
return type;
|
|
}
|
|
|
|
/**
|
|
* Returns the starting point of the arc.
|
|
*
|
|
* @return the start point
|
|
*/
|
|
public Point2D getStartPoint()
|
|
{
|
|
double angle = Math.toRadians(getAngleStart());
|
|
double rx = getWidth() / 2;
|
|
double ry = getHeight() / 2;
|
|
double x = getX() + rx + rx * Math.cos(angle);
|
|
double y = getY() + ry - ry * Math.sin(angle);
|
|
return new Point2D.Double(x, y);
|
|
}
|
|
|
|
/**
|
|
* Returns the ending point of the arc.
|
|
*
|
|
* @return the end point
|
|
*/
|
|
public Point2D getEndPoint()
|
|
{
|
|
double angle = Math.toRadians(getAngleStart() + getAngleExtent());
|
|
double rx = getWidth() / 2;
|
|
double ry = getHeight() / 2;
|
|
double x = getX() + rx + rx * Math.cos(angle);
|
|
double y = getY() + ry - ry * Math.sin(angle);
|
|
return new Point2D.Double(x, y);
|
|
}
|
|
|
|
/**
|
|
* Set the parameters of the arc. The angles are in degrees, and a positive
|
|
* extent sweeps counterclockwise (from the positive x-axis to the negative
|
|
* y-axis).
|
|
*
|
|
* @param x the new x coordinate of the upper left of the bounding box
|
|
* @param y the new y coordinate of the upper left of the bounding box
|
|
* @param w the new width of the bounding box
|
|
* @param h the new height of the bounding box
|
|
* @param start the start angle, in degrees
|
|
* @param extent the arc extent, in degrees
|
|
* @param type one of {@link #OPEN}, {@link #CHORD}, or {@link #PIE}
|
|
* @throws IllegalArgumentException if type is invalid
|
|
*/
|
|
public abstract void setArc(double x, double y, double w, double h,
|
|
double start, double extent, int type);
|
|
|
|
/**
|
|
* Set the parameters of the arc. The angles are in degrees, and a positive
|
|
* extent sweeps counterclockwise (from the positive x-axis to the negative
|
|
* y-axis).
|
|
*
|
|
* @param p the upper left point of the bounding box
|
|
* @param d the dimensions of the bounding box
|
|
* @param start the start angle, in degrees
|
|
* @param extent the arc extent, in degrees
|
|
* @param type one of {@link #OPEN}, {@link #CHORD}, or {@link #PIE}
|
|
* @throws IllegalArgumentException if type is invalid
|
|
* @throws NullPointerException if p or d is null
|
|
*/
|
|
public void setArc(Point2D p, Dimension2D d, double start, double extent,
|
|
int type)
|
|
{
|
|
setArc(p.getX(), p.getY(), d.getWidth(), d.getHeight(), start, extent, type);
|
|
}
|
|
|
|
/**
|
|
* Set the parameters of the arc. The angles are in degrees, and a positive
|
|
* extent sweeps counterclockwise (from the positive x-axis to the negative
|
|
* y-axis).
|
|
*
|
|
* @param r the new bounding box
|
|
* @param start the start angle, in degrees
|
|
* @param extent the arc extent, in degrees
|
|
* @param type one of {@link #OPEN}, {@link #CHORD}, or {@link #PIE}
|
|
* @throws IllegalArgumentException if type is invalid
|
|
* @throws NullPointerException if r is null
|
|
*/
|
|
public void setArc(Rectangle2D r, double start, double extent, int type)
|
|
{
|
|
setArc(r.getX(), r.getY(), r.getWidth(), r.getHeight(), start, extent, type);
|
|
}
|
|
|
|
/**
|
|
* Set the parameters of the arc from the given one.
|
|
*
|
|
* @param a the arc to copy
|
|
* @throws NullPointerException if a is null
|
|
*/
|
|
public void setArc(Arc2D a)
|
|
{
|
|
setArc(a.getX(), a.getY(), a.getWidth(), a.getHeight(), a.getAngleStart(),
|
|
a.getAngleExtent(), a.getArcType());
|
|
}
|
|
|
|
/**
|
|
* Set the parameters of the arc. The angles are in degrees, and a positive
|
|
* extent sweeps counterclockwise (from the positive x-axis to the negative
|
|
* y-axis). This controls the center point and radius, so the arc will be
|
|
* circular.
|
|
*
|
|
* @param x the x coordinate of the center of the circle
|
|
* @param y the y coordinate of the center of the circle
|
|
* @param r the radius of the circle
|
|
* @param start the start angle, in degrees
|
|
* @param extent the arc extent, in degrees
|
|
* @param type one of {@link #OPEN}, {@link #CHORD}, or {@link #PIE}
|
|
* @throws IllegalArgumentException if type is invalid
|
|
*/
|
|
public void setArcByCenter(double x, double y, double r, double start,
|
|
double extent, int type)
|
|
{
|
|
setArc(x - r, y - r, r + r, r + r, start, extent, type);
|
|
}
|
|
|
|
/**
|
|
* Sets the parameters of the arc by finding the tangents of two lines, and
|
|
* using the specified radius. The arc will be circular, will begin on the
|
|
* tangent point of the line extending from p1 to p2, and will end on the
|
|
* tangent point of the line extending from p2 to p3.
|
|
*
|
|
* XXX What happens if the points are colinear, or the radius negative?
|
|
*
|
|
* @param p1 the first point
|
|
* @param p2 the tangent line intersection point
|
|
* @param p3 the third point
|
|
* @param r the radius of the arc
|
|
* @throws NullPointerException if any point is null
|
|
*/
|
|
public void setArcByTangent(Point2D p1, Point2D p2, Point2D p3, double r)
|
|
{
|
|
if ((p2.getX() - p1.getX()) * (p3.getY() - p1.getY())
|
|
- (p3.getX() - p1.getX()) * (p2.getY() - p1.getY()) > 0)
|
|
{
|
|
Point2D p = p3;
|
|
p3 = p1;
|
|
p1 = p;
|
|
}
|
|
|
|
// normalized tangent vectors
|
|
double dx1 = (p1.getX() - p2.getX()) / p1.distance(p2);
|
|
double dy1 = (p1.getY() - p2.getY()) / p1.distance(p2);
|
|
double dx2 = (p2.getX() - p3.getX()) / p3.distance(p2);
|
|
double dy2 = (p2.getY() - p3.getY()) / p3.distance(p2);
|
|
double theta1 = Math.atan2(dx1, dy1);
|
|
double theta2 = Math.atan2(dx2, dy2);
|
|
|
|
double dx = r * Math.cos(theta2) - r * Math.cos(theta1);
|
|
double dy = -r * Math.sin(theta2) + r * Math.sin(theta1);
|
|
|
|
if (theta1 < 0)
|
|
theta1 += 2 * Math.PI;
|
|
if (theta2 < 0)
|
|
theta2 += 2 * Math.PI;
|
|
if (theta2 < theta1)
|
|
theta2 += 2 * Math.PI;
|
|
|
|
// Vectors of the lines, not normalized, note we change
|
|
// the direction of line 2.
|
|
dx1 = p1.getX() - p2.getX();
|
|
dy1 = p1.getY() - p2.getY();
|
|
dx2 = p3.getX() - p2.getX();
|
|
dy2 = p3.getY() - p2.getY();
|
|
|
|
// Calculate the tangent point to the second line
|
|
double t2 = -(dx1 * dy - dy1 * dx) / (dx2 * dy1 - dx1 * dy2);
|
|
double x2 = t2 * (p3.getX() - p2.getX()) + p2.getX();
|
|
double y2 = t2 * (p3.getY() - p2.getY()) + p2.getY();
|
|
|
|
// calculate the center point
|
|
double x = x2 - r * Math.cos(theta2);
|
|
double y = y2 + r * Math.sin(theta2);
|
|
|
|
setArc(x - r, y - r, 2 * r, 2 * r, Math.toDegrees(theta1),
|
|
Math.toDegrees(theta2 - theta1), getArcType());
|
|
}
|
|
|
|
/**
|
|
* Set the start, in degrees.
|
|
*
|
|
* @param start the new start angle
|
|
* @see #getAngleStart()
|
|
*/
|
|
public abstract void setAngleStart(double start);
|
|
|
|
/**
|
|
* Set the extent, in degrees.
|
|
*
|
|
* @param extent the new extent angle
|
|
* @see #getAngleExtent()
|
|
*/
|
|
public abstract void setAngleExtent(double extent);
|
|
|
|
/**
|
|
* Sets the starting angle to the angle of the given point relative to
|
|
* the center of the arc. The extent remains constant; in other words,
|
|
* this rotates the arc.
|
|
*
|
|
* @param p the new start point
|
|
* @throws NullPointerException if p is null
|
|
* @see #getStartPoint()
|
|
* @see #getAngleStart()
|
|
*/
|
|
public void setAngleStart(Point2D p)
|
|
{
|
|
// Normalize.
|
|
double x = p.getX() - (getX() + getWidth() / 2);
|
|
double y = p.getY() - (getY() + getHeight() / 2);
|
|
setAngleStart(Math.toDegrees(Math.atan2(-y, x)));
|
|
}
|
|
|
|
/**
|
|
* Sets the starting and extent angles to those of the given points
|
|
* relative to the center of the arc. The arc will be non-empty, and will
|
|
* extend counterclockwise.
|
|
*
|
|
* @param x1 the first x coordinate
|
|
* @param y1 the first y coordinate
|
|
* @param x2 the second x coordinate
|
|
* @param y2 the second y coordinate
|
|
* @see #setAngleStart(Point2D)
|
|
*/
|
|
public void setAngles(double x1, double y1, double x2, double y2)
|
|
{
|
|
// Normalize the points.
|
|
double mx = getX();
|
|
double my = getY();
|
|
double mw = getWidth();
|
|
double mh = getHeight();
|
|
x1 = x1 - (mx + mw / 2);
|
|
y1 = y1 - (my + mh / 2);
|
|
x2 = x2 - (mx + mw / 2);
|
|
y2 = y2 - (my + mh / 2);
|
|
double start = Math.toDegrees(Math.atan2(-y1, x1));
|
|
double extent = Math.toDegrees(Math.atan2(-y2, x2)) - start;
|
|
if (extent < 0)
|
|
extent += 360;
|
|
setAngleStart(start);
|
|
setAngleExtent(extent);
|
|
}
|
|
|
|
/**
|
|
* Sets the starting and extent angles to those of the given points
|
|
* relative to the center of the arc. The arc will be non-empty, and will
|
|
* extend counterclockwise.
|
|
*
|
|
* @param p1 the first point
|
|
* @param p2 the second point
|
|
* @throws NullPointerException if either point is null
|
|
* @see #setAngleStart(Point2D)
|
|
*/
|
|
public void setAngles(Point2D p1, Point2D p2)
|
|
{
|
|
setAngles(p1.getX(), p1.getY(), p2.getX(), p2.getY());
|
|
}
|
|
|
|
/**
|
|
* Set the closure type of this arc.
|
|
*
|
|
* @param type one of {@link #OPEN}, {@link #CHORD}, or {@link #PIE}
|
|
* @throws IllegalArgumentException if type is invalid
|
|
* @see #getArcType()
|
|
*/
|
|
public void setArcType(int type)
|
|
{
|
|
if (type < OPEN || type > PIE)
|
|
throw new IllegalArgumentException();
|
|
this.type = type;
|
|
}
|
|
|
|
/**
|
|
* Sets the location and bounds of the ellipse of which this arc is a part.
|
|
*
|
|
* @param x the new x coordinate
|
|
* @param y the new y coordinate
|
|
* @param w the new width
|
|
* @param h the new height
|
|
* @see #getFrame()
|
|
*/
|
|
public void setFrame(double x, double y, double w, double h)
|
|
{
|
|
setArc(x, y, w, h, getAngleStart(), getAngleExtent(), type);
|
|
}
|
|
|
|
/**
|
|
* Gets the bounds of the arc. This is much tighter than
|
|
* <code>getBounds</code>, as it takes into consideration the start and
|
|
* end angles, and the center point of a pie wedge, rather than just the
|
|
* overall ellipse.
|
|
*
|
|
* @return the bounds of the arc
|
|
* @see #getBounds()
|
|
*/
|
|
public Rectangle2D getBounds2D()
|
|
{
|
|
double extent = getAngleExtent();
|
|
if (Math.abs(extent) >= 360)
|
|
return makeBounds(getX(), getY(), getWidth(), getHeight());
|
|
|
|
// Find the minimal bounding box. This determined by its extrema,
|
|
// which are the center, the endpoints of the arc, and any local
|
|
// maximum contained by the arc.
|
|
double rX = getWidth() / 2;
|
|
double rY = getHeight() / 2;
|
|
double centerX = getX() + rX;
|
|
double centerY = getY() + rY;
|
|
|
|
Point2D p1 = getStartPoint();
|
|
Rectangle2D result = makeBounds(p1.getX(), p1.getY(), 0, 0);
|
|
result.add(getEndPoint());
|
|
|
|
if (type == PIE)
|
|
result.add(centerX, centerY);
|
|
if (containsAngle(0))
|
|
result.add(centerX + rX, centerY);
|
|
if (containsAngle(90))
|
|
result.add(centerX, centerY - rY);
|
|
if (containsAngle(180))
|
|
result.add(centerX - rX, centerY);
|
|
if (containsAngle(270))
|
|
result.add(centerX, centerY + rY);
|
|
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Construct a bounding box in a precision appropriate for the subclass.
|
|
*
|
|
* @param x the x coordinate
|
|
* @param y the y coordinate
|
|
* @param w the width
|
|
* @param h the height
|
|
* @return the rectangle for use in getBounds2D
|
|
*/
|
|
protected abstract Rectangle2D makeBounds(double x, double y, double w,
|
|
double h);
|
|
|
|
/**
|
|
* Tests if the given angle, in degrees, is included in the arc.
|
|
* All angles are normalized to be between 0 and 360 degrees.
|
|
*
|
|
* @param a the angle to test
|
|
* @return true if it is contained
|
|
*/
|
|
public boolean containsAngle(double a)
|
|
{
|
|
double start = getAngleStart();
|
|
double extent = getAngleExtent();
|
|
double end = start + extent;
|
|
|
|
if (extent == 0)
|
|
return false;
|
|
|
|
if (extent >= 360 || extent <= -360)
|
|
return true;
|
|
|
|
if (extent < 0)
|
|
{
|
|
end = start;
|
|
start += extent;
|
|
}
|
|
|
|
start %= 360;
|
|
while (start < 0)
|
|
start += 360;
|
|
|
|
end %= 360;
|
|
while (end < start)
|
|
end += 360;
|
|
|
|
a %= 360;
|
|
while (a < start)
|
|
a += 360;
|
|
|
|
return a >= start && a < end; // starting angle included, ending angle not
|
|
}
|
|
|
|
/**
|
|
* Determines if the arc contains the given point. If the bounding box
|
|
* is empty, then this will return false.
|
|
*
|
|
* The area considered 'inside' an arc of type OPEN is the same as the
|
|
* area inside an equivalent filled CHORD-type arc. The area considered
|
|
* 'inside' a CHORD-type arc is the same as the filled area.
|
|
*
|
|
* @param x the x coordinate to test
|
|
* @param y the y coordinate to test
|
|
* @return true if the point is inside the arc
|
|
*/
|
|
public boolean contains(double x, double y)
|
|
{
|
|
double w = getWidth();
|
|
double h = getHeight();
|
|
double extent = getAngleExtent();
|
|
if (w <= 0 || h <= 0 || extent == 0)
|
|
return false;
|
|
|
|
double mx = getX() + w / 2;
|
|
double my = getY() + h / 2;
|
|
double dx = (x - mx) * 2 / w;
|
|
double dy = (y - my) * 2 / h;
|
|
if ((dx * dx + dy * dy) >= 1.0)
|
|
return false;
|
|
|
|
double angle = Math.toDegrees(Math.atan2(-dy, dx));
|
|
if (getArcType() == PIE)
|
|
return containsAngle(angle);
|
|
|
|
double a1 = Math.toRadians(getAngleStart());
|
|
double a2 = Math.toRadians(getAngleStart() + extent);
|
|
double x1 = mx + getWidth() * Math.cos(a1) / 2;
|
|
double y1 = my - getHeight() * Math.sin(a1) / 2;
|
|
double x2 = mx + getWidth() * Math.cos(a2) / 2;
|
|
double y2 = my - getHeight() * Math.sin(a2) / 2;
|
|
double sgn = ((x2 - x1) * (my - y1) - (mx - x1) * (y2 - y1)) * ((x2 - x1) * (y
|
|
- y1) - (x - x1) * (y2 - y1));
|
|
|
|
if (Math.abs(extent) > 180)
|
|
{
|
|
if (containsAngle(angle))
|
|
return true;
|
|
return sgn > 0;
|
|
}
|
|
else
|
|
{
|
|
if (! containsAngle(angle))
|
|
return false;
|
|
return sgn < 0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Tests if a given rectangle intersects the area of the arc.
|
|
*
|
|
* For a definition of the 'inside' area, see the contains() method.
|
|
* @see #contains(double, double)
|
|
*
|
|
* @param x the x coordinate of the rectangle
|
|
* @param y the y coordinate of the rectangle
|
|
* @param w the width of the rectangle
|
|
* @param h the height of the rectangle
|
|
* @return true if the two shapes share common points
|
|
*/
|
|
public boolean intersects(double x, double y, double w, double h)
|
|
{
|
|
double extent = getAngleExtent();
|
|
if (extent == 0)
|
|
return false;
|
|
|
|
if (contains(x, y) || contains(x, y + h) || contains(x + w, y)
|
|
|| contains(x + w, y + h))
|
|
return true;
|
|
|
|
Rectangle2D rect = new Rectangle2D.Double(x, y, w, h);
|
|
|
|
double a = getWidth() / 2.0;
|
|
double b = getHeight() / 2.0;
|
|
|
|
double mx = getX() + a;
|
|
double my = getY() + b;
|
|
double x1 = mx + a * Math.cos(Math.toRadians(getAngleStart()));
|
|
double y1 = my - b * Math.sin(Math.toRadians(getAngleStart()));
|
|
double x2 = mx + a * Math.cos(Math.toRadians(getAngleStart() + extent));
|
|
double y2 = my - b * Math.sin(Math.toRadians(getAngleStart() + extent));
|
|
|
|
if (getArcType() != CHORD)
|
|
{
|
|
// check intersections against the pie radii
|
|
if (rect.intersectsLine(mx, my, x1, y1))
|
|
return true;
|
|
if (rect.intersectsLine(mx, my, x2, y2))
|
|
return true;
|
|
}
|
|
else// check the chord
|
|
if (rect.intersectsLine(x1, y1, x2, y2))
|
|
return true;
|
|
|
|
// Check the Arc segment against the four edges
|
|
double dx;
|
|
|
|
// Check the Arc segment against the four edges
|
|
double dy;
|
|
dy = y - my;
|
|
dx = a * Math.sqrt(1 - ((dy * dy) / (b * b)));
|
|
if (! java.lang.Double.isNaN(dx))
|
|
{
|
|
if (mx + dx >= x && mx + dx <= x + w
|
|
&& containsAngle(Math.toDegrees(Math.atan2(-dy, dx))))
|
|
return true;
|
|
if (mx - dx >= x && mx - dx <= x + w
|
|
&& containsAngle(Math.toDegrees(Math.atan2(-dy, -dx))))
|
|
return true;
|
|
}
|
|
dy = (y + h) - my;
|
|
dx = a * Math.sqrt(1 - ((dy * dy) / (b * b)));
|
|
if (! java.lang.Double.isNaN(dx))
|
|
{
|
|
if (mx + dx >= x && mx + dx <= x + w
|
|
&& containsAngle(Math.toDegrees(Math.atan2(-dy, dx))))
|
|
return true;
|
|
if (mx - dx >= x && mx - dx <= x + w
|
|
&& containsAngle(Math.toDegrees(Math.atan2(-dy, -dx))))
|
|
return true;
|
|
}
|
|
dx = x - mx;
|
|
dy = b * Math.sqrt(1 - ((dx * dx) / (a * a)));
|
|
if (! java.lang.Double.isNaN(dy))
|
|
{
|
|
if (my + dy >= y && my + dy <= y + h
|
|
&& containsAngle(Math.toDegrees(Math.atan2(-dy, dx))))
|
|
return true;
|
|
if (my - dy >= y && my - dy <= y + h
|
|
&& containsAngle(Math.toDegrees(Math.atan2(dy, dx))))
|
|
return true;
|
|
}
|
|
|
|
dx = (x + w) - mx;
|
|
dy = b * Math.sqrt(1 - ((dx * dx) / (a * a)));
|
|
if (! java.lang.Double.isNaN(dy))
|
|
{
|
|
if (my + dy >= y && my + dy <= y + h
|
|
&& containsAngle(Math.toDegrees(Math.atan2(-dy, dx))))
|
|
return true;
|
|
if (my - dy >= y && my - dy <= y + h
|
|
&& containsAngle(Math.toDegrees(Math.atan2(dy, dx))))
|
|
return true;
|
|
}
|
|
|
|
// Check whether the arc is contained within the box
|
|
if (rect.contains(mx, my))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Tests if a given rectangle is contained in the area of the arc.
|
|
*
|
|
* @param x the x coordinate of the rectangle
|
|
* @param y the y coordinate of the rectangle
|
|
* @param w the width of the rectangle
|
|
* @param h the height of the rectangle
|
|
* @return true if the arc contains the rectangle
|
|
*/
|
|
public boolean contains(double x, double y, double w, double h)
|
|
{
|
|
double extent = getAngleExtent();
|
|
if (extent == 0)
|
|
return false;
|
|
|
|
if (! (contains(x, y) && contains(x, y + h) && contains(x + w, y)
|
|
&& contains(x + w, y + h)))
|
|
return false;
|
|
|
|
Rectangle2D rect = new Rectangle2D.Double(x, y, w, h);
|
|
|
|
double a = getWidth() / 2.0;
|
|
double b = getHeight() / 2.0;
|
|
|
|
double mx = getX() + a;
|
|
double my = getY() + b;
|
|
double x1 = mx + a * Math.cos(Math.toRadians(getAngleStart()));
|
|
double y1 = my - b * Math.sin(Math.toRadians(getAngleStart()));
|
|
double x2 = mx + a * Math.cos(Math.toRadians(getAngleStart() + extent));
|
|
double y2 = my - b * Math.sin(Math.toRadians(getAngleStart() + extent));
|
|
if (getArcType() != CHORD)
|
|
{
|
|
// check intersections against the pie radii
|
|
if (rect.intersectsLine(mx, my, x1, y1))
|
|
return false;
|
|
|
|
if (rect.intersectsLine(mx, my, x2, y2))
|
|
return false;
|
|
}
|
|
else if (rect.intersectsLine(x1, y1, x2, y2))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Tests if a given rectangle is contained in the area of the arc.
|
|
*
|
|
* @param r the rectangle
|
|
* @return true if the arc contains the rectangle
|
|
*/
|
|
public boolean contains(Rectangle2D r)
|
|
{
|
|
return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight());
|
|
}
|
|
|
|
/**
|
|
* Returns an iterator over this arc, with an optional transformation.
|
|
* This iterator is threadsafe, so future modifications to the arc do not
|
|
* affect the iteration.
|
|
*
|
|
* @param at the transformation, or null
|
|
* @return a path iterator
|
|
*/
|
|
public PathIterator getPathIterator(AffineTransform at)
|
|
{
|
|
return new ArcIterator(this, at);
|
|
}
|
|
|
|
/**
|
|
* This class is used to iterate over an arc. Since ellipses are a subclass
|
|
* of arcs, this is used by Ellipse2D as well.
|
|
*
|
|
* @author Eric Blake (ebb9@email.byu.edu)
|
|
*/
|
|
static final class ArcIterator implements PathIterator
|
|
{
|
|
/** The current iteration. */
|
|
private int current;
|
|
|
|
/** The last iteration. */
|
|
private final int limit;
|
|
|
|
/** The optional transformation. */
|
|
private final AffineTransform xform;
|
|
|
|
/** The x coordinate of the bounding box. */
|
|
private final double x;
|
|
|
|
/** The y coordinate of the bounding box. */
|
|
private final double y;
|
|
|
|
/** The width of the bounding box. */
|
|
private final double w;
|
|
|
|
/** The height of the bounding box. */
|
|
private final double h;
|
|
|
|
/** The start angle, in radians (not degrees). */
|
|
private final double start;
|
|
|
|
/** The extent angle, in radians (not degrees). */
|
|
private final double extent;
|
|
|
|
/** The arc closure type. */
|
|
private final int type;
|
|
|
|
/**
|
|
* Construct a new iterator over an arc.
|
|
*
|
|
* @param a the arc
|
|
* @param xform the transform
|
|
*/
|
|
public ArcIterator(Arc2D a, AffineTransform xform)
|
|
{
|
|
this.xform = xform;
|
|
x = a.getX();
|
|
y = a.getY();
|
|
w = a.getWidth();
|
|
h = a.getHeight();
|
|
double start = Math.toRadians(a.getAngleStart());
|
|
double extent = Math.toRadians(a.getAngleExtent());
|
|
|
|
this.start = start;
|
|
this.extent = extent;
|
|
|
|
type = a.type;
|
|
if (w < 0 || h < 0)
|
|
limit = -1;
|
|
else if (extent == 0)
|
|
limit = type;
|
|
else if (Math.abs(extent) <= Math.PI / 2.0)
|
|
limit = type + 1;
|
|
else if (Math.abs(extent) <= Math.PI)
|
|
limit = type + 2;
|
|
else if (Math.abs(extent) <= 3.0 * (Math.PI / 2.0))
|
|
limit = type + 3;
|
|
else
|
|
limit = type + 4;
|
|
}
|
|
|
|
/**
|
|
* Construct a new iterator over an ellipse.
|
|
*
|
|
* @param e the ellipse
|
|
* @param xform the transform
|
|
*/
|
|
public ArcIterator(Ellipse2D e, AffineTransform xform)
|
|
{
|
|
this.xform = xform;
|
|
x = e.getX();
|
|
y = e.getY();
|
|
w = e.getWidth();
|
|
h = e.getHeight();
|
|
start = 0;
|
|
extent = 2 * Math.PI;
|
|
type = CHORD;
|
|
limit = (w < 0 || h < 0) ? -1 : 5;
|
|
}
|
|
|
|
/**
|
|
* Return the winding rule.
|
|
*
|
|
* @return {@link PathIterator#WIND_NON_ZERO}
|
|
*/
|
|
public int getWindingRule()
|
|
{
|
|
return WIND_NON_ZERO;
|
|
}
|
|
|
|
/**
|
|
* Test if the iteration is complete.
|
|
*
|
|
* @return true if more segments exist
|
|
*/
|
|
public boolean isDone()
|
|
{
|
|
return current > limit;
|
|
}
|
|
|
|
/**
|
|
* Advance the iterator.
|
|
*/
|
|
public void next()
|
|
{
|
|
current++;
|
|
}
|
|
|
|
/**
|
|
* Put the current segment into the array, and return the segment type.
|
|
*
|
|
* @param coords an array of 6 elements
|
|
* @return the segment type
|
|
* @throws NullPointerException if coords is null
|
|
* @throws ArrayIndexOutOfBoundsException if coords is too small
|
|
*/
|
|
public int currentSegment(float[] coords)
|
|
{
|
|
double[] double_coords = new double[6];
|
|
int code = currentSegment(double_coords);
|
|
for (int i = 0; i < 6; ++i)
|
|
coords[i] = (float) double_coords[i];
|
|
return code;
|
|
}
|
|
|
|
/**
|
|
* Put the current segment into the array, and return the segment type.
|
|
*
|
|
* @param coords an array of 6 elements
|
|
* @return the segment type
|
|
* @throws NullPointerException if coords is null
|
|
* @throws ArrayIndexOutOfBoundsException if coords is too small
|
|
*/
|
|
public int currentSegment(double[] coords)
|
|
{
|
|
double rx = w / 2;
|
|
double ry = h / 2;
|
|
double xmid = x + rx;
|
|
double ymid = y + ry;
|
|
|
|
if (current > limit)
|
|
throw new NoSuchElementException("arc iterator out of bounds");
|
|
|
|
if (current == 0)
|
|
{
|
|
coords[0] = xmid + rx * Math.cos(start);
|
|
coords[1] = ymid - ry * Math.sin(start);
|
|
if (xform != null)
|
|
xform.transform(coords, 0, coords, 0, 1);
|
|
return SEG_MOVETO;
|
|
}
|
|
|
|
if (type != OPEN && current == limit)
|
|
return SEG_CLOSE;
|
|
|
|
if ((current == limit - 1) && (type == PIE))
|
|
{
|
|
coords[0] = xmid;
|
|
coords[1] = ymid;
|
|
if (xform != null)
|
|
xform.transform(coords, 0, coords, 0, 1);
|
|
return SEG_LINETO;
|
|
}
|
|
|
|
// note that this produces a cubic approximation of the arc segment,
|
|
// not a true ellipsoid. there's no ellipsoid path segment code,
|
|
// unfortunately. the cubic approximation looks about right, though.
|
|
double kappa = (Math.sqrt(2.0) - 1.0) * (4.0 / 3.0);
|
|
double quad = (Math.PI / 2.0);
|
|
|
|
double curr_begin;
|
|
double curr_extent;
|
|
if (extent > 0)
|
|
{
|
|
curr_begin = start + (current - 1) * quad;
|
|
curr_extent = Math.min((start + extent) - curr_begin, quad);
|
|
}
|
|
else
|
|
{
|
|
curr_begin = start - (current - 1) * quad;
|
|
curr_extent = Math.max((start + extent) - curr_begin, -quad);
|
|
}
|
|
|
|
double portion_of_a_quadrant = Math.abs(curr_extent / quad);
|
|
|
|
double x0 = xmid + rx * Math.cos(curr_begin);
|
|
double y0 = ymid - ry * Math.sin(curr_begin);
|
|
|
|
double x1 = xmid + rx * Math.cos(curr_begin + curr_extent);
|
|
double y1 = ymid - ry * Math.sin(curr_begin + curr_extent);
|
|
|
|
AffineTransform trans = new AffineTransform();
|
|
double[] cvec = new double[2];
|
|
double len = kappa * portion_of_a_quadrant;
|
|
double angle = curr_begin;
|
|
|
|
// in a hypothetical "first quadrant" setting, our first control
|
|
// vector would be sticking up, from [1,0] to [1,kappa].
|
|
//
|
|
// let us recall however that in java2d, y coords are upside down
|
|
// from what one would consider "normal" first quadrant rules, so we
|
|
// will *subtract* the y value of this control vector from our first
|
|
// point.
|
|
cvec[0] = 0;
|
|
if (extent > 0)
|
|
cvec[1] = len;
|
|
else
|
|
cvec[1] = -len;
|
|
|
|
trans.scale(rx, ry);
|
|
trans.rotate(angle);
|
|
trans.transform(cvec, 0, cvec, 0, 1);
|
|
coords[0] = x0 + cvec[0];
|
|
coords[1] = y0 - cvec[1];
|
|
|
|
// control vector #2 would, ideally, be sticking out and to the
|
|
// right, in a first quadrant arc segment. again, subtraction of y.
|
|
cvec[0] = 0;
|
|
if (extent > 0)
|
|
cvec[1] = -len;
|
|
else
|
|
cvec[1] = len;
|
|
|
|
trans.rotate(curr_extent);
|
|
trans.transform(cvec, 0, cvec, 0, 1);
|
|
coords[2] = x1 + cvec[0];
|
|
coords[3] = y1 - cvec[1];
|
|
|
|
// end point
|
|
coords[4] = x1;
|
|
coords[5] = y1;
|
|
|
|
if (xform != null)
|
|
xform.transform(coords, 0, coords, 0, 3);
|
|
|
|
return SEG_CUBICTO;
|
|
}
|
|
} // class ArcIterator
|
|
|
|
/**
|
|
* This class implements an arc in double precision.
|
|
*
|
|
* @author Eric Blake (ebb9@email.byu.edu)
|
|
* @since 1.2
|
|
*/
|
|
public static class Double extends Arc2D
|
|
{
|
|
/** The x coordinate of the box bounding the ellipse of this arc. */
|
|
public double x;
|
|
|
|
/** The y coordinate of the box bounding the ellipse of this arc. */
|
|
public double y;
|
|
|
|
/** The width of the box bounding the ellipse of this arc. */
|
|
public double width;
|
|
|
|
/** The height of the box bounding the ellipse of this arc. */
|
|
public double height;
|
|
|
|
/** The start angle of this arc, in degrees. */
|
|
public double start;
|
|
|
|
/** The extent angle of this arc, in degrees. */
|
|
public double extent;
|
|
|
|
/**
|
|
* Create a new, open arc at (0,0) with 0 extent.
|
|
*/
|
|
public Double()
|
|
{
|
|
super(OPEN);
|
|
}
|
|
|
|
/**
|
|
* Create a new arc of the given type at (0,0) with 0 extent.
|
|
*
|
|
* @param type the arc type: {@link #OPEN}, {@link #CHORD}, or {@link #PIE}
|
|
* @throws IllegalArgumentException if type is invalid
|
|
*/
|
|
public Double(int type)
|
|
{
|
|
super(type);
|
|
}
|
|
|
|
/**
|
|
* Create a new arc with the given dimensions.
|
|
*
|
|
* @param x the x coordinate
|
|
* @param y the y coordinate
|
|
* @param w the width
|
|
* @param h the height
|
|
* @param start the start angle, in degrees
|
|
* @param extent the extent, in degrees
|
|
* @param type the arc type: {@link #OPEN}, {@link #CHORD}, or {@link #PIE}
|
|
* @throws IllegalArgumentException if type is invalid
|
|
*/
|
|
public Double(double x, double y, double w, double h, double start,
|
|
double extent, int type)
|
|
{
|
|
super(type);
|
|
this.x = x;
|
|
this.y = y;
|
|
width = w;
|
|
height = h;
|
|
this.start = start;
|
|
this.extent = extent;
|
|
}
|
|
|
|
/**
|
|
* Create a new arc with the given dimensions.
|
|
*
|
|
* @param r the bounding box
|
|
* @param start the start angle, in degrees
|
|
* @param extent the extent, in degrees
|
|
* @param type the arc type: {@link #OPEN}, {@link #CHORD}, or {@link #PIE}
|
|
* @throws IllegalArgumentException if type is invalid
|
|
* @throws NullPointerException if r is null
|
|
*/
|
|
public Double(Rectangle2D r, double start, double extent, int type)
|
|
{
|
|
super(type);
|
|
x = r.getX();
|
|
y = r.getY();
|
|
width = r.getWidth();
|
|
height = r.getHeight();
|
|
this.start = start;
|
|
this.extent = extent;
|
|
}
|
|
|
|
/**
|
|
* Return the x coordinate of the bounding box.
|
|
*
|
|
* @return the value of x
|
|
*/
|
|
public double getX()
|
|
{
|
|
return x;
|
|
}
|
|
|
|
/**
|
|
* Return the y coordinate of the bounding box.
|
|
*
|
|
* @return the value of y
|
|
*/
|
|
public double getY()
|
|
{
|
|
return y;
|
|
}
|
|
|
|
/**
|
|
* Return the width of the bounding box.
|
|
*
|
|
* @return the value of width
|
|
*/
|
|
public double getWidth()
|
|
{
|
|
return width;
|
|
}
|
|
|
|
/**
|
|
* Return the height of the bounding box.
|
|
*
|
|
* @return the value of height
|
|
*/
|
|
public double getHeight()
|
|
{
|
|
return height;
|
|
}
|
|
|
|
/**
|
|
* Return the start angle of the arc, in degrees.
|
|
*
|
|
* @return the value of start
|
|
*/
|
|
public double getAngleStart()
|
|
{
|
|
return start;
|
|
}
|
|
|
|
/**
|
|
* Return the extent of the arc, in degrees.
|
|
*
|
|
* @return the value of extent
|
|
*/
|
|
public double getAngleExtent()
|
|
{
|
|
return extent;
|
|
}
|
|
|
|
/**
|
|
* Tests if the arc contains points.
|
|
*
|
|
* @return true if the arc has no interior
|
|
*/
|
|
public boolean isEmpty()
|
|
{
|
|
return width <= 0 || height <= 0;
|
|
}
|
|
|
|
/**
|
|
* Sets the arc to the given dimensions.
|
|
*
|
|
* @param x the x coordinate
|
|
* @param y the y coordinate
|
|
* @param w the width
|
|
* @param h the height
|
|
* @param start the start angle, in degrees
|
|
* @param extent the extent, in degrees
|
|
* @param type the arc type: {@link #OPEN}, {@link #CHORD}, or {@link #PIE}
|
|
* @throws IllegalArgumentException if type is invalid
|
|
*/
|
|
public void setArc(double x, double y, double w, double h, double start,
|
|
double extent, int type)
|
|
{
|
|
this.x = x;
|
|
this.y = y;
|
|
width = w;
|
|
height = h;
|
|
this.start = start;
|
|
this.extent = extent;
|
|
setArcType(type);
|
|
}
|
|
|
|
/**
|
|
* Sets the start angle of the arc.
|
|
*
|
|
* @param start the new start angle
|
|
*/
|
|
public void setAngleStart(double start)
|
|
{
|
|
this.start = start;
|
|
}
|
|
|
|
/**
|
|
* Sets the extent angle of the arc.
|
|
*
|
|
* @param extent the new extent angle
|
|
*/
|
|
public void setAngleExtent(double extent)
|
|
{
|
|
this.extent = extent;
|
|
}
|
|
|
|
/**
|
|
* Creates a tight bounding box given dimensions that more precise than
|
|
* the bounding box of the ellipse.
|
|
*
|
|
* @param x the x coordinate
|
|
* @param y the y coordinate
|
|
* @param w the width
|
|
* @param h the height
|
|
*/
|
|
protected Rectangle2D makeBounds(double x, double y, double w, double h)
|
|
{
|
|
return new Rectangle2D.Double(x, y, w, h);
|
|
}
|
|
} // class Double
|
|
|
|
/**
|
|
* This class implements an arc in float precision.
|
|
*
|
|
* @author Eric Blake (ebb9@email.byu.edu)
|
|
* @since 1.2
|
|
*/
|
|
public static class Float extends Arc2D
|
|
{
|
|
/** The x coordinate of the box bounding the ellipse of this arc. */
|
|
public float x;
|
|
|
|
/** The y coordinate of the box bounding the ellipse of this arc. */
|
|
public float y;
|
|
|
|
/** The width of the box bounding the ellipse of this arc. */
|
|
public float width;
|
|
|
|
/** The height of the box bounding the ellipse of this arc. */
|
|
public float height;
|
|
|
|
/** The start angle of this arc, in degrees. */
|
|
public float start;
|
|
|
|
/** The extent angle of this arc, in degrees. */
|
|
public float extent;
|
|
|
|
/**
|
|
* Create a new, open arc at (0,0) with 0 extent.
|
|
*/
|
|
public Float()
|
|
{
|
|
super(OPEN);
|
|
}
|
|
|
|
/**
|
|
* Create a new arc of the given type at (0,0) with 0 extent.
|
|
*
|
|
* @param type the arc type: {@link #OPEN}, {@link #CHORD}, or {@link #PIE}
|
|
* @throws IllegalArgumentException if type is invalid
|
|
*/
|
|
public Float(int type)
|
|
{
|
|
super(type);
|
|
}
|
|
|
|
/**
|
|
* Create a new arc with the given dimensions.
|
|
*
|
|
* @param x the x coordinate
|
|
* @param y the y coordinate
|
|
* @param w the width
|
|
* @param h the height
|
|
* @param start the start angle, in degrees
|
|
* @param extent the extent, in degrees
|
|
* @param type the arc type: {@link #OPEN}, {@link #CHORD}, or {@link #PIE}
|
|
* @throws IllegalArgumentException if type is invalid
|
|
*/
|
|
public Float(float x, float y, float w, float h, float start,
|
|
float extent, int type)
|
|
{
|
|
super(type);
|
|
this.x = x;
|
|
this.y = y;
|
|
width = w;
|
|
height = h;
|
|
this.start = start;
|
|
this.extent = extent;
|
|
}
|
|
|
|
/**
|
|
* Create a new arc with the given dimensions.
|
|
*
|
|
* @param r the bounding box
|
|
* @param start the start angle, in degrees
|
|
* @param extent the extent, in degrees
|
|
* @param type the arc type: {@link #OPEN}, {@link #CHORD}, or {@link #PIE}
|
|
* @throws IllegalArgumentException if type is invalid
|
|
* @throws NullPointerException if r is null
|
|
*/
|
|
public Float(Rectangle2D r, float start, float extent, int type)
|
|
{
|
|
super(type);
|
|
x = (float) r.getX();
|
|
y = (float) r.getY();
|
|
width = (float) r.getWidth();
|
|
height = (float) r.getHeight();
|
|
this.start = start;
|
|
this.extent = extent;
|
|
}
|
|
|
|
/**
|
|
* Return the x coordinate of the bounding box.
|
|
*
|
|
* @return the value of x
|
|
*/
|
|
public double getX()
|
|
{
|
|
return x;
|
|
}
|
|
|
|
/**
|
|
* Return the y coordinate of the bounding box.
|
|
*
|
|
* @return the value of y
|
|
*/
|
|
public double getY()
|
|
{
|
|
return y;
|
|
}
|
|
|
|
/**
|
|
* Return the width of the bounding box.
|
|
*
|
|
* @return the value of width
|
|
*/
|
|
public double getWidth()
|
|
{
|
|
return width;
|
|
}
|
|
|
|
/**
|
|
* Return the height of the bounding box.
|
|
*
|
|
* @return the value of height
|
|
*/
|
|
public double getHeight()
|
|
{
|
|
return height;
|
|
}
|
|
|
|
/**
|
|
* Return the start angle of the arc, in degrees.
|
|
*
|
|
* @return the value of start
|
|
*/
|
|
public double getAngleStart()
|
|
{
|
|
return start;
|
|
}
|
|
|
|
/**
|
|
* Return the extent of the arc, in degrees.
|
|
*
|
|
* @return the value of extent
|
|
*/
|
|
public double getAngleExtent()
|
|
{
|
|
return extent;
|
|
}
|
|
|
|
/**
|
|
* Tests if the arc contains points.
|
|
*
|
|
* @return true if the arc has no interior
|
|
*/
|
|
public boolean isEmpty()
|
|
{
|
|
return width <= 0 || height <= 0;
|
|
}
|
|
|
|
/**
|
|
* Sets the arc to the given dimensions.
|
|
*
|
|
* @param x the x coordinate
|
|
* @param y the y coordinate
|
|
* @param w the width
|
|
* @param h the height
|
|
* @param start the start angle, in degrees
|
|
* @param extent the extent, in degrees
|
|
* @param type the arc type: {@link #OPEN}, {@link #CHORD}, or {@link #PIE}
|
|
* @throws IllegalArgumentException if type is invalid
|
|
*/
|
|
public void setArc(double x, double y, double w, double h, double start,
|
|
double extent, int type)
|
|
{
|
|
this.x = (float) x;
|
|
this.y = (float) y;
|
|
width = (float) w;
|
|
height = (float) h;
|
|
this.start = (float) start;
|
|
this.extent = (float) extent;
|
|
setArcType(type);
|
|
}
|
|
|
|
/**
|
|
* Sets the start angle of the arc.
|
|
*
|
|
* @param start the new start angle
|
|
*/
|
|
public void setAngleStart(double start)
|
|
{
|
|
this.start = (float) start;
|
|
}
|
|
|
|
/**
|
|
* Sets the extent angle of the arc.
|
|
*
|
|
* @param extent the new extent angle
|
|
*/
|
|
public void setAngleExtent(double extent)
|
|
{
|
|
this.extent = (float) extent;
|
|
}
|
|
|
|
/**
|
|
* Creates a tight bounding box given dimensions that more precise than
|
|
* the bounding box of the ellipse.
|
|
*
|
|
* @param x the x coordinate
|
|
* @param y the y coordinate
|
|
* @param w the width
|
|
* @param h the height
|
|
*/
|
|
protected Rectangle2D makeBounds(double x, double y, double w, double h)
|
|
{
|
|
return new Rectangle2D.Float((float) x, (float) y, (float) w, (float) h);
|
|
}
|
|
} // class Float
|
|
} // class Arc2D
|