mirror of
https://github.com/autc04/Retro68.git
synced 2024-12-02 18:53:22 +00:00
364 lines
8.7 KiB
Go
364 lines
8.7 KiB
Go
// Copyright 2015 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// backtrack is a regular expression search with submatch
|
|
// tracking for small regular expressions and texts. It allocates
|
|
// a bit vector with (length of input) * (length of prog) bits,
|
|
// to make sure it never explores the same (character position, instruction)
|
|
// state multiple times. This limits the search to run in time linear in
|
|
// the length of the test.
|
|
//
|
|
// backtrack is a fast replacement for the NFA code on small
|
|
// regexps when onepass cannot be used.
|
|
|
|
package regexp
|
|
|
|
import "regexp/syntax"
|
|
|
|
// A job is an entry on the backtracker's job stack. It holds
|
|
// the instruction pc and the position in the input.
|
|
type job struct {
|
|
pc uint32
|
|
arg int
|
|
pos int
|
|
}
|
|
|
|
const (
|
|
visitedBits = 32
|
|
maxBacktrackProg = 500 // len(prog.Inst) <= max
|
|
maxBacktrackVector = 256 * 1024 // bit vector size <= max (bits)
|
|
)
|
|
|
|
// bitState holds state for the backtracker.
|
|
type bitState struct {
|
|
prog *syntax.Prog
|
|
|
|
end int
|
|
cap []int
|
|
jobs []job
|
|
visited []uint32
|
|
}
|
|
|
|
var notBacktrack *bitState = nil
|
|
|
|
// maxBitStateLen returns the maximum length of a string to search with
|
|
// the backtracker using prog.
|
|
func maxBitStateLen(prog *syntax.Prog) int {
|
|
if !shouldBacktrack(prog) {
|
|
return 0
|
|
}
|
|
return maxBacktrackVector / len(prog.Inst)
|
|
}
|
|
|
|
// newBitState returns a new bitState for the given prog,
|
|
// or notBacktrack if the size of the prog exceeds the maximum size that
|
|
// the backtracker will be run for.
|
|
func newBitState(prog *syntax.Prog) *bitState {
|
|
if !shouldBacktrack(prog) {
|
|
return notBacktrack
|
|
}
|
|
return &bitState{
|
|
prog: prog,
|
|
}
|
|
}
|
|
|
|
// shouldBacktrack reports whether the program is too
|
|
// long for the backtracker to run.
|
|
func shouldBacktrack(prog *syntax.Prog) bool {
|
|
return len(prog.Inst) <= maxBacktrackProg
|
|
}
|
|
|
|
// reset resets the state of the backtracker.
|
|
// end is the end position in the input.
|
|
// ncap is the number of captures.
|
|
func (b *bitState) reset(end int, ncap int) {
|
|
b.end = end
|
|
|
|
if cap(b.jobs) == 0 {
|
|
b.jobs = make([]job, 0, 256)
|
|
} else {
|
|
b.jobs = b.jobs[:0]
|
|
}
|
|
|
|
visitedSize := (len(b.prog.Inst)*(end+1) + visitedBits - 1) / visitedBits
|
|
if cap(b.visited) < visitedSize {
|
|
b.visited = make([]uint32, visitedSize, maxBacktrackVector/visitedBits)
|
|
} else {
|
|
b.visited = b.visited[:visitedSize]
|
|
for i := range b.visited {
|
|
b.visited[i] = 0
|
|
}
|
|
}
|
|
|
|
if cap(b.cap) < ncap {
|
|
b.cap = make([]int, ncap)
|
|
} else {
|
|
b.cap = b.cap[:ncap]
|
|
}
|
|
for i := range b.cap {
|
|
b.cap[i] = -1
|
|
}
|
|
}
|
|
|
|
// shouldVisit reports whether the combination of (pc, pos) has not
|
|
// been visited yet.
|
|
func (b *bitState) shouldVisit(pc uint32, pos int) bool {
|
|
n := uint(int(pc)*(b.end+1) + pos)
|
|
if b.visited[n/visitedBits]&(1<<(n&(visitedBits-1))) != 0 {
|
|
return false
|
|
}
|
|
b.visited[n/visitedBits] |= 1 << (n & (visitedBits - 1))
|
|
return true
|
|
}
|
|
|
|
// push pushes (pc, pos, arg) onto the job stack if it should be
|
|
// visited.
|
|
func (b *bitState) push(pc uint32, pos int, arg int) {
|
|
if b.prog.Inst[pc].Op == syntax.InstFail {
|
|
return
|
|
}
|
|
|
|
// Only check shouldVisit when arg == 0.
|
|
// When arg > 0, we are continuing a previous visit.
|
|
if arg == 0 && !b.shouldVisit(pc, pos) {
|
|
return
|
|
}
|
|
|
|
b.jobs = append(b.jobs, job{pc: pc, arg: arg, pos: pos})
|
|
}
|
|
|
|
// tryBacktrack runs a backtracking search starting at pos.
|
|
func (m *machine) tryBacktrack(b *bitState, i input, pc uint32, pos int) bool {
|
|
longest := m.re.longest
|
|
m.matched = false
|
|
|
|
b.push(pc, pos, 0)
|
|
for len(b.jobs) > 0 {
|
|
l := len(b.jobs) - 1
|
|
// Pop job off the stack.
|
|
pc := b.jobs[l].pc
|
|
pos := b.jobs[l].pos
|
|
arg := b.jobs[l].arg
|
|
b.jobs = b.jobs[:l]
|
|
|
|
// Optimization: rather than push and pop,
|
|
// code that is going to Push and continue
|
|
// the loop simply updates ip, p, and arg
|
|
// and jumps to CheckAndLoop. We have to
|
|
// do the ShouldVisit check that Push
|
|
// would have, but we avoid the stack
|
|
// manipulation.
|
|
goto Skip
|
|
CheckAndLoop:
|
|
if !b.shouldVisit(pc, pos) {
|
|
continue
|
|
}
|
|
Skip:
|
|
|
|
inst := b.prog.Inst[pc]
|
|
|
|
switch inst.Op {
|
|
default:
|
|
panic("bad inst")
|
|
case syntax.InstFail:
|
|
panic("unexpected InstFail")
|
|
case syntax.InstAlt:
|
|
// Cannot just
|
|
// b.push(inst.Out, pos, 0)
|
|
// b.push(inst.Arg, pos, 0)
|
|
// If during the processing of inst.Out, we encounter
|
|
// inst.Arg via another path, we want to process it then.
|
|
// Pushing it here will inhibit that. Instead, re-push
|
|
// inst with arg==1 as a reminder to push inst.Arg out
|
|
// later.
|
|
switch arg {
|
|
case 0:
|
|
b.push(pc, pos, 1)
|
|
pc = inst.Out
|
|
goto CheckAndLoop
|
|
case 1:
|
|
// Finished inst.Out; try inst.Arg.
|
|
arg = 0
|
|
pc = inst.Arg
|
|
goto CheckAndLoop
|
|
}
|
|
panic("bad arg in InstAlt")
|
|
|
|
case syntax.InstAltMatch:
|
|
// One opcode consumes runes; the other leads to match.
|
|
switch b.prog.Inst[inst.Out].Op {
|
|
case syntax.InstRune, syntax.InstRune1, syntax.InstRuneAny, syntax.InstRuneAnyNotNL:
|
|
// inst.Arg is the match.
|
|
b.push(inst.Arg, pos, 0)
|
|
pc = inst.Arg
|
|
pos = b.end
|
|
goto CheckAndLoop
|
|
}
|
|
// inst.Out is the match - non-greedy
|
|
b.push(inst.Out, b.end, 0)
|
|
pc = inst.Out
|
|
goto CheckAndLoop
|
|
|
|
case syntax.InstRune:
|
|
r, width := i.step(pos)
|
|
if !inst.MatchRune(r) {
|
|
continue
|
|
}
|
|
pos += width
|
|
pc = inst.Out
|
|
goto CheckAndLoop
|
|
|
|
case syntax.InstRune1:
|
|
r, width := i.step(pos)
|
|
if r != inst.Rune[0] {
|
|
continue
|
|
}
|
|
pos += width
|
|
pc = inst.Out
|
|
goto CheckAndLoop
|
|
|
|
case syntax.InstRuneAnyNotNL:
|
|
r, width := i.step(pos)
|
|
if r == '\n' || r == endOfText {
|
|
continue
|
|
}
|
|
pos += width
|
|
pc = inst.Out
|
|
goto CheckAndLoop
|
|
|
|
case syntax.InstRuneAny:
|
|
r, width := i.step(pos)
|
|
if r == endOfText {
|
|
continue
|
|
}
|
|
pos += width
|
|
pc = inst.Out
|
|
goto CheckAndLoop
|
|
|
|
case syntax.InstCapture:
|
|
switch arg {
|
|
case 0:
|
|
if 0 <= inst.Arg && inst.Arg < uint32(len(b.cap)) {
|
|
// Capture pos to register, but save old value.
|
|
b.push(pc, b.cap[inst.Arg], 1) // come back when we're done.
|
|
b.cap[inst.Arg] = pos
|
|
}
|
|
pc = inst.Out
|
|
goto CheckAndLoop
|
|
case 1:
|
|
// Finished inst.Out; restore the old value.
|
|
b.cap[inst.Arg] = pos
|
|
continue
|
|
|
|
}
|
|
panic("bad arg in InstCapture")
|
|
|
|
case syntax.InstEmptyWidth:
|
|
if syntax.EmptyOp(inst.Arg)&^i.context(pos) != 0 {
|
|
continue
|
|
}
|
|
pc = inst.Out
|
|
goto CheckAndLoop
|
|
|
|
case syntax.InstNop:
|
|
pc = inst.Out
|
|
goto CheckAndLoop
|
|
|
|
case syntax.InstMatch:
|
|
// We found a match. If the caller doesn't care
|
|
// where the match is, no point going further.
|
|
if len(b.cap) == 0 {
|
|
m.matched = true
|
|
return m.matched
|
|
}
|
|
|
|
// Record best match so far.
|
|
// Only need to check end point, because this entire
|
|
// call is only considering one start position.
|
|
if len(b.cap) > 1 {
|
|
b.cap[1] = pos
|
|
}
|
|
if !m.matched || (longest && pos > 0 && pos > m.matchcap[1]) {
|
|
copy(m.matchcap, b.cap)
|
|
}
|
|
m.matched = true
|
|
|
|
// If going for first match, we're done.
|
|
if !longest {
|
|
return m.matched
|
|
}
|
|
|
|
// If we used the entire text, no longer match is possible.
|
|
if pos == b.end {
|
|
return m.matched
|
|
}
|
|
|
|
// Otherwise, continue on in hope of a longer match.
|
|
continue
|
|
}
|
|
}
|
|
|
|
return m.matched
|
|
}
|
|
|
|
// backtrack runs a backtracking search of prog on the input starting at pos.
|
|
func (m *machine) backtrack(i input, pos int, end int, ncap int) bool {
|
|
if !i.canCheckPrefix() {
|
|
panic("backtrack called for a RuneReader")
|
|
}
|
|
|
|
startCond := m.re.cond
|
|
if startCond == ^syntax.EmptyOp(0) { // impossible
|
|
return false
|
|
}
|
|
if startCond&syntax.EmptyBeginText != 0 && pos != 0 {
|
|
// Anchored match, past beginning of text.
|
|
return false
|
|
}
|
|
|
|
b := m.b
|
|
b.reset(end, ncap)
|
|
|
|
m.matchcap = m.matchcap[:ncap]
|
|
for i := range m.matchcap {
|
|
m.matchcap[i] = -1
|
|
}
|
|
|
|
// Anchored search must start at the beginning of the input
|
|
if startCond&syntax.EmptyBeginText != 0 {
|
|
if len(b.cap) > 0 {
|
|
b.cap[0] = pos
|
|
}
|
|
return m.tryBacktrack(b, i, uint32(m.p.Start), pos)
|
|
}
|
|
|
|
// Unanchored search, starting from each possible text position.
|
|
// Notice that we have to try the empty string at the end of
|
|
// the text, so the loop condition is pos <= end, not pos < end.
|
|
// This looks like it's quadratic in the size of the text,
|
|
// but we are not clearing visited between calls to TrySearch,
|
|
// so no work is duplicated and it ends up still being linear.
|
|
width := -1
|
|
for ; pos <= end && width != 0; pos += width {
|
|
if len(m.re.prefix) > 0 {
|
|
// Match requires literal prefix; fast search for it.
|
|
advance := i.index(m.re, pos)
|
|
if advance < 0 {
|
|
return false
|
|
}
|
|
pos += advance
|
|
}
|
|
|
|
if len(b.cap) > 0 {
|
|
b.cap[0] = pos
|
|
}
|
|
if m.tryBacktrack(b, i, uint32(m.p.Start), pos) {
|
|
// Match must be leftmost; done.
|
|
return true
|
|
}
|
|
_, width = i.step(pos)
|
|
}
|
|
return false
|
|
}
|