2017-10-07 02:16:47 +02:00

259 lines
8.5 KiB
C

/*
matmul.c : Matrix Multiplication with tiling for openmp4 example
*/
#include <stdlib.h>
#include <math.h>
#define BLOCK_SIZE 16
/*
#define BLOCK_SIZE 32
*/
#define NSECPERSEC 1000000000L
typedef struct {
int width;
int height;
int stride;
int hpad;
float* elements;
} Matrix;
/* Correctly extract the number of nanoseconds from the two time structures */
long int get_nanosecs( struct timespec start_time, struct timespec end_time) {
long int nanosecs;
if ((end_time.tv_nsec-start_time.tv_nsec)<0) nanosecs =
((((long int) end_time.tv_sec- (long int) start_time.tv_sec )-1)*NSECPERSEC ) +
( NSECPERSEC + (long int) end_time.tv_nsec - (long int) start_time.tv_nsec) ;
else nanosecs =
(((long int) end_time.tv_sec- (long int) start_time.tv_sec )*NSECPERSEC ) +
( (long int) end_time.tv_nsec - (long int) start_time.tv_nsec );
return nanosecs;
}
void simple_sgemm_tt(const int M,const int N,const int K,const float alpha, const float* A,const int LDA,
const float* B,const int LDB, const float beta,float* C, const int LDC) ;
void simple_sgemm_tn(const int M,const int N,const int K,const float alpha, const float* A,const int LDA,
const float* B,const int LDB, const float beta,float* C, const int LDC) ;
void tiled_sgemm_tt(const int M,const int N,const int K,const float alpha, const float*A, const int LDA,
const float* B,const int LDB, const float beta,float* C, const int LDC) ;
int verify(float* v_res, float* v_ref, int len) {
int passed = 1;
int i;
for (i = 0; i < len; ++i) {
if (fabs(v_res[i] - v_ref[i]) > 0.001*v_ref[i]) {
__builtin_abort ();
}
}
return passed;
}
int main(int argc, char* argv[]){
Matrix A,B,Bt,C,Cref;
int a1,a2,a3,i,j;
struct timespec start_time1, end_time1;
struct timespec start_time2, end_time2;
long int nanosecs,total_ops;
float gflopsTiled,gflopsCPU;
a1 = 35;
a2 = 28;
a3 = 47;
A.height = a1;
A.width = a2;
A.stride = (((A.width-1)/BLOCK_SIZE)+1) * BLOCK_SIZE;
A.hpad = (((A.height-1)/BLOCK_SIZE)+1) * BLOCK_SIZE;
A.elements = (float*)malloc(A.stride * A.hpad* sizeof(float));
B.height = a2;
B.width = a3;
B.stride = (((B.width-1)/BLOCK_SIZE)+1) * BLOCK_SIZE;
B.hpad = (((B.height-1)/BLOCK_SIZE)+1) * BLOCK_SIZE;
B.elements = (float*)malloc(B.stride * B.hpad * sizeof(float));
/* Bt is same as B but stored in column-major order */
Bt.height = B.height;
Bt.width = B.width;
Bt.stride = B.stride;
Bt.hpad = B.hpad;
Bt.elements = (float*)malloc(Bt.stride * Bt.hpad * sizeof(float));
C.height = a1;
C.width = a3;
C.stride = (((C.width-1)/BLOCK_SIZE)+1) * BLOCK_SIZE;
C.hpad = (((C.height-1)/BLOCK_SIZE)+1) * BLOCK_SIZE;
C.elements = (float*)malloc(C.stride * C.hpad * sizeof(float));
Cref.height = a1;
Cref.width = a3;
Cref.stride = (((Cref.width-1)/BLOCK_SIZE)+1) * BLOCK_SIZE;
Cref.hpad = (((Cref.height-1)/BLOCK_SIZE)+1) * BLOCK_SIZE;
Cref.elements = (float*)malloc(Cref.stride * Cref.hpad * sizeof(float));
for(i = 0; i < A.hpad ; i++)
for(j = 0; j < A.stride; j++) {
if (( j<A.width ) && (i<A.height)) {
A.elements[i*A.stride + j] = (i % 3);
} else {
A.elements[i*A.stride + j] = 0.0;
}
}
/* Initialize B and Bt */
for(i = 0; i < B.hpad ; i++)
for(j = 0; j < B.stride; j++) {
if (( j<B.width ) && (i<B.height)) {
B.elements[i*B.stride+j] = (j % 2);
Bt.elements[j*Bt.stride+i] = B.elements[i*B.stride+j] ;
} else {
B.elements[i*B.stride+j] = 0.0;
Bt.elements[j*Bt.stride+i] = 0.0;
}
}
/* zero C, and Cref */
for(i = 0; i < C.hpad; i++)
for(j = 0; j < C.stride; j++) {
C.elements[i*C.stride+j] = 0.0;
Cref.elements[i*Cref.stride+j] = 0.0;
}
simple_sgemm_tt(A.height,B.width,B.height,1.0,A.elements,A.stride,B.elements,B.stride,1.0,Cref.elements,Cref.stride);
tiled_sgemm_tt(A.height,B.width,B.height,1.0,A.elements,A.stride,B.elements,B.stride,1.0,C.elements,C.stride);
verify(C.elements, Cref.elements, C.height * C.stride);
return 0;
}
void simple_sgemm_tt(const int M,const int N,const int K,const float alpha, const float* A,const int LDA,
const float* B,const int LDB, const float beta,float* C, const int LDC) {
/* A,B, and C are in row-major order */
int c_row,c_col,inner;
float sum;
for (c_col = 0 ; c_col<N; c_col++ ) {
for (c_row = 0 ; c_row<M; c_row++ ) {
sum = 0.0 ;
for (inner = 0 ; inner<K; inner++ ) {
sum += A[c_row*LDA + inner] * B[inner*LDB + c_col] ;
}
C[c_row*LDC + c_col] = alpha*sum + beta*C[ c_row*LDC + c_col] ;
}
}
}
/***************************
tiled_sgemm_tt: Tiled matrix multiplication:
***************************/
void tiled_sgemm_tt(const int M, const int N, const int K, const float alpha, const float*A, const int LDA,
const float*B, const int LDB, const float beta, float*C, const int LDC){
#pragma omp target teams map(to:A[M*K],B[K*N]) map(from:C[M*N])
#pragma omp distribute collapse(2)
for (int C_row_start=0 ; C_row_start < M ; C_row_start+=BLOCK_SIZE) {
for (int C_col_start=0 ; C_col_start < N ; C_col_start+=BLOCK_SIZE) {
// We now have M/BLOCK_SIZE * N/BLOCK_SIZE teams = (M*N)/(BLOCK_SIZE*BLOCK_SIZE)
// The grid global dimensions are M,N,1
// The grid local dimensions are BLOCK_SIZE,BLOCK_SIZE,1
// -------------------------------------------------------------------
// The rest of this code forms the HSAIL kernel with the
// pairs of "paralell for collapse(2)" loops repalced with a barrier.
// The kernel initializes these values
// C_row_start = get_group_id(0) * BLOCK_SIZE
// C_col_start = get_group_id(1) * BLOCK_SIZE
// row=get_local_id(0)
// col=get_local_id(1)
// -------------------------------------------------------------------
// Each team has a local copy of these mini matrices
float As[BLOCK_SIZE][BLOCK_SIZE];
float Bs[BLOCK_SIZE][BLOCK_SIZE];
float Cs[BLOCK_SIZE][BLOCK_SIZE];
int C_row, C_col;
/* Zero Cs for this BLOCK */
// - - - - - - - - - - - - - - - - - - - -
// REPLACE NEXT THREE LINES WITH A BARRIER
#pragma omp parallel for collapse(2)
for (int row=0 ; row < BLOCK_SIZE ; row++) {
for (int col=0 ; col < BLOCK_SIZE ; col++) {
// END BARRIER
// - - - - - - - - - - - - - - - - - - - -
Cs[row][col] = 0.0;
}
}
// This kblock loop is run on the master thread of each team
for (int kblock = 0; kblock < K ; kblock += BLOCK_SIZE ) {
// Copy global memory values to local memory
// - - - - - - - - - - - - - - - - - - - -
// REPLACE NEXT THREE LINES WITH A BARRIER
#pragma omp parallel for collapse(2)
for (int row=0 ; row < BLOCK_SIZE ; row++) {
for (int col=0 ; col < BLOCK_SIZE ; col++) {
// END BARRIER
// - - - - - - - - - - - - - - - - - - - -
C_row = C_row_start + row;
C_col = C_col_start + col;
if ((C_row < M) && (kblock + col < K))
As[row][col] = A[(C_row*LDA)+ kblock + col];
else
As[row][col] = 0;
if ((kblock + row < K) && C_col < N)
Bs[row][col] = B[((kblock+row)*LDB)+ C_col];
else
Bs[row][col] = 0;
}
}
// Calculate Cs <- Sum(As X Bs) across all kblocks
// - - - - - - - - - - - - - - - - - - - -
// REPLACE NEXT THREE LINES WITH A BARRIER
#pragma omp parallel for collapse(2)
for (int row=0 ; row < BLOCK_SIZE ; row++) {
for (int col=0 ; col < BLOCK_SIZE ; col++) {
// END BARRIER
// - - - - - - - - - - - - - - - - - - - -
for (int e = 0; e < BLOCK_SIZE; ++e)
Cs[row][col] += As[row][e] * Bs[e][col];
}
}
} /* End for kblock .. */
// Scale Update actual C from Cs
// - - - - - - - - - - - - - - - - - - - -
// REPLACE NEXT THREE LINES WITH A BARRIER
#pragma omp parallel for collapse(2)
for (int row=0 ; row < BLOCK_SIZE ; row++) {
for (int col=0 ; col < BLOCK_SIZE ; col++) {
// END BARRIER
// - - - - - - - - - - - - - - - - - - - -
C_row = C_row_start + row;
C_col = C_col_start + col;
if ((C_row < M) && (C_col < N)) {
C[(C_row*LDC)+C_col] = alpha*Cs[row][col] + beta*C[(C_row*LDC)+C_col];
}
}
}
// -------------------------------------------------------------------
// This is the end of the kernel
}
}
}