mirror of
https://github.com/autc04/Retro68.git
synced 2024-12-12 11:29:30 +00:00
609 lines
23 KiB
Java
609 lines
23 KiB
Java
/* AffineTransformOp.java -- This class performs affine
|
|
transformation between two images or rasters in 2 dimensions.
|
|
Copyright (C) 2004, 2006 Free Software Foundation
|
|
|
|
This file is part of GNU Classpath.
|
|
|
|
GNU Classpath is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2, or (at your option)
|
|
any later version.
|
|
|
|
GNU Classpath is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GNU Classpath; see the file COPYING. If not, write to the
|
|
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
|
02110-1301 USA.
|
|
|
|
Linking this library statically or dynamically with other modules is
|
|
making a combined work based on this library. Thus, the terms and
|
|
conditions of the GNU General Public License cover the whole
|
|
combination.
|
|
|
|
As a special exception, the copyright holders of this library give you
|
|
permission to link this library with independent modules to produce an
|
|
executable, regardless of the license terms of these independent
|
|
modules, and to copy and distribute the resulting executable under
|
|
terms of your choice, provided that you also meet, for each linked
|
|
independent module, the terms and conditions of the license of that
|
|
module. An independent module is a module which is not derived from
|
|
or based on this library. If you modify this library, you may extend
|
|
this exception to your version of the library, but you are not
|
|
obligated to do so. If you do not wish to do so, delete this
|
|
exception statement from your version. */
|
|
|
|
package java.awt.image;
|
|
|
|
import java.awt.Graphics2D;
|
|
import java.awt.Point;
|
|
import java.awt.Rectangle;
|
|
import java.awt.RenderingHints;
|
|
import java.awt.geom.AffineTransform;
|
|
import java.awt.geom.NoninvertibleTransformException;
|
|
import java.awt.geom.Point2D;
|
|
import java.awt.geom.Rectangle2D;
|
|
import java.util.Arrays;
|
|
|
|
/**
|
|
* AffineTransformOp performs matrix-based transformations (translations,
|
|
* scales, flips, rotations, and shears).
|
|
*
|
|
* If interpolation is required, nearest neighbour, bilinear, and bicubic
|
|
* methods are available.
|
|
*
|
|
* @author Olga Rodimina (rodimina@redhat.com)
|
|
* @author Francis Kung (fkung@redhat.com)
|
|
*/
|
|
public class AffineTransformOp implements BufferedImageOp, RasterOp
|
|
{
|
|
public static final int TYPE_NEAREST_NEIGHBOR = 1;
|
|
|
|
public static final int TYPE_BILINEAR = 2;
|
|
|
|
/**
|
|
* @since 1.5.0
|
|
*/
|
|
public static final int TYPE_BICUBIC = 3;
|
|
|
|
private AffineTransform transform;
|
|
private RenderingHints hints;
|
|
|
|
/**
|
|
* Construct AffineTransformOp with the given xform and interpolationType.
|
|
* Interpolation type can be TYPE_BILINEAR, TYPE_BICUBIC or
|
|
* TYPE_NEAREST_NEIGHBOR.
|
|
*
|
|
* @param xform AffineTransform that will applied to the source image
|
|
* @param interpolationType type of interpolation used
|
|
* @throws ImagingOpException if the transform matrix is noninvertible
|
|
*/
|
|
public AffineTransformOp (AffineTransform xform, int interpolationType)
|
|
{
|
|
this.transform = xform;
|
|
if (xform.getDeterminant() == 0)
|
|
throw new ImagingOpException(null);
|
|
|
|
switch (interpolationType)
|
|
{
|
|
case TYPE_BILINEAR:
|
|
hints = new RenderingHints (RenderingHints.KEY_INTERPOLATION,
|
|
RenderingHints.VALUE_INTERPOLATION_BILINEAR);
|
|
break;
|
|
case TYPE_BICUBIC:
|
|
hints = new RenderingHints (RenderingHints.KEY_INTERPOLATION,
|
|
RenderingHints.VALUE_INTERPOLATION_BICUBIC);
|
|
break;
|
|
default:
|
|
hints = new RenderingHints (RenderingHints.KEY_INTERPOLATION,
|
|
RenderingHints.VALUE_INTERPOLATION_NEAREST_NEIGHBOR);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Construct AffineTransformOp with the given xform and rendering hints.
|
|
*
|
|
* @param xform AffineTransform that will applied to the source image
|
|
* @param hints rendering hints that will be used during transformation
|
|
* @throws ImagingOpException if the transform matrix is noninvertible
|
|
*/
|
|
public AffineTransformOp (AffineTransform xform, RenderingHints hints)
|
|
{
|
|
this.transform = xform;
|
|
this.hints = hints;
|
|
if (xform.getDeterminant() == 0)
|
|
throw new ImagingOpException(null);
|
|
}
|
|
|
|
/**
|
|
* Creates a new BufferedImage with the size equal to that of the
|
|
* transformed image and the correct number of bands. The newly created
|
|
* image is created with the specified ColorModel.
|
|
* If a ColorModel is not specified, an appropriate ColorModel is used.
|
|
*
|
|
* @param src the source image.
|
|
* @param destCM color model for the destination image (can be null).
|
|
* @return a new compatible destination image.
|
|
*/
|
|
public BufferedImage createCompatibleDestImage (BufferedImage src,
|
|
ColorModel destCM)
|
|
{
|
|
if (destCM != null)
|
|
return new BufferedImage(destCM,
|
|
createCompatibleDestRaster(src.getRaster()),
|
|
src.isAlphaPremultiplied(), null);
|
|
|
|
// This behaviour was determined by Mauve testcases, and is compatible
|
|
// with the reference implementation
|
|
if (src.getType() == BufferedImage.TYPE_INT_ARGB_PRE
|
|
|| src.getType() == BufferedImage.TYPE_4BYTE_ABGR
|
|
|| src.getType() == BufferedImage.TYPE_4BYTE_ABGR_PRE)
|
|
return new BufferedImage(src.getWidth(), src.getHeight(), src.getType());
|
|
|
|
else
|
|
return new BufferedImage(src.getWidth(), src.getHeight(),
|
|
BufferedImage.TYPE_INT_ARGB);
|
|
}
|
|
|
|
/**
|
|
* Creates a new WritableRaster with the size equal to the transformed
|
|
* source raster and correct number of bands .
|
|
*
|
|
* @param src the source raster.
|
|
* @throws RasterFormatException if resulting width or height of raster is 0.
|
|
* @return a new compatible raster.
|
|
*/
|
|
public WritableRaster createCompatibleDestRaster (Raster src)
|
|
{
|
|
Rectangle2D rect = getBounds2D(src);
|
|
|
|
if (rect.getWidth() == 0 || rect.getHeight() == 0)
|
|
throw new RasterFormatException("width or height is 0");
|
|
|
|
return src.createCompatibleWritableRaster((int) rect.getWidth(),
|
|
(int) rect.getHeight());
|
|
}
|
|
|
|
/**
|
|
* Transforms source image using transform specified at the constructor.
|
|
* The resulting transformed image is stored in the destination image if one
|
|
* is provided; otherwise a new BufferedImage is created and returned.
|
|
*
|
|
* @param src source image
|
|
* @param dst destination image
|
|
* @throws IllegalArgumentException if the source and destination image are
|
|
* the same
|
|
* @return transformed source image.
|
|
*/
|
|
public final BufferedImage filter (BufferedImage src, BufferedImage dst)
|
|
{
|
|
if (dst == src)
|
|
throw new IllegalArgumentException("src image cannot be the same as "
|
|
+ "the dst image");
|
|
|
|
// If the destination image is null, then use a compatible BufferedImage
|
|
if (dst == null)
|
|
dst = createCompatibleDestImage(src, null);
|
|
|
|
Graphics2D gr = dst.createGraphics();
|
|
gr.setRenderingHints(hints);
|
|
gr.drawImage(src, transform, null);
|
|
return dst;
|
|
}
|
|
|
|
/**
|
|
* Transforms source raster using transform specified at the constructor.
|
|
* The resulting raster is stored in the destination raster if it is not
|
|
* null, otherwise a new raster is created and returned.
|
|
*
|
|
* @param src source raster
|
|
* @param dst destination raster
|
|
* @throws IllegalArgumentException if the source and destination are not
|
|
* compatible
|
|
* @return transformed raster.
|
|
*/
|
|
public final WritableRaster filter(Raster src, WritableRaster dst)
|
|
{
|
|
// Initial checks
|
|
if (dst == src)
|
|
throw new IllegalArgumentException("src image cannot be the same as"
|
|
+ " the dst image");
|
|
|
|
if (dst == null)
|
|
dst = createCompatibleDestRaster(src);
|
|
|
|
if (src.getNumBands() != dst.getNumBands())
|
|
throw new IllegalArgumentException("src and dst must have same number"
|
|
+ " of bands");
|
|
|
|
// Optimization for rasters that can be represented in the RGB colormodel:
|
|
// wrap the rasters in images, and let Cairo do the transformation
|
|
if (ColorModel.getRGBdefault().isCompatibleSampleModel(src.getSampleModel())
|
|
&& ColorModel.getRGBdefault().isCompatibleSampleModel(dst.getSampleModel()))
|
|
{
|
|
WritableRaster src2 = Raster.createWritableRaster(src.getSampleModel(),
|
|
src.getDataBuffer(),
|
|
new Point(src.getMinX(),
|
|
src.getMinY()));
|
|
BufferedImage iSrc = new BufferedImage(ColorModel.getRGBdefault(),
|
|
src2, false, null);
|
|
BufferedImage iDst = new BufferedImage(ColorModel.getRGBdefault(), dst,
|
|
false, null);
|
|
|
|
return filter(iSrc, iDst).getRaster();
|
|
}
|
|
|
|
// Otherwise, we need to do the transformation in java code...
|
|
// Create arrays to hold all the points
|
|
double[] dstPts = new double[dst.getHeight() * dst.getWidth() * 2];
|
|
double[] srcPts = new double[dst.getHeight() * dst.getWidth() * 2];
|
|
|
|
// Populate array with all points in the *destination* raster
|
|
int i = 0;
|
|
for (int x = 0; x < dst.getWidth(); x++)
|
|
{
|
|
for (int y = 0; y < dst.getHeight(); y++)
|
|
{
|
|
dstPts[i++] = x;
|
|
dstPts[i++] = y;
|
|
}
|
|
}
|
|
Rectangle srcbounds = src.getBounds();
|
|
|
|
// Use an inverse transform to map each point in the destination to
|
|
// a point in the source. Note that, while all points in the destination
|
|
// matrix are integers, this is not necessarily true for points in the
|
|
// source (hence why interpolation is required)
|
|
try
|
|
{
|
|
AffineTransform inverseTx = transform.createInverse();
|
|
inverseTx.transform(dstPts, 0, srcPts, 0, dstPts.length / 2);
|
|
}
|
|
catch (NoninvertibleTransformException e)
|
|
{
|
|
// Shouldn't happen since the constructor traps this
|
|
throw new ImagingOpException(e.getMessage());
|
|
}
|
|
|
|
// Different interpolation methods...
|
|
if (hints.containsValue(RenderingHints.VALUE_INTERPOLATION_NEAREST_NEIGHBOR))
|
|
filterNearest(src, dst, dstPts, srcPts);
|
|
|
|
else if (hints.containsValue(RenderingHints.VALUE_INTERPOLATION_BILINEAR))
|
|
filterBilinear(src, dst, dstPts, srcPts);
|
|
|
|
else // bicubic
|
|
filterBicubic(src, dst, dstPts, srcPts);
|
|
|
|
return dst;
|
|
}
|
|
|
|
/**
|
|
* Transforms source image using transform specified at the constructor and
|
|
* returns bounds of the transformed image.
|
|
*
|
|
* @param src image to be transformed
|
|
* @return bounds of the transformed image.
|
|
*/
|
|
public final Rectangle2D getBounds2D (BufferedImage src)
|
|
{
|
|
return getBounds2D (src.getRaster());
|
|
}
|
|
|
|
/**
|
|
* Returns bounds of the transformed raster.
|
|
*
|
|
* @param src raster to be transformed
|
|
* @return bounds of the transformed raster.
|
|
*/
|
|
public final Rectangle2D getBounds2D (Raster src)
|
|
{
|
|
return transform.createTransformedShape(src.getBounds()).getBounds2D();
|
|
}
|
|
|
|
/**
|
|
* Returns interpolation type used during transformations.
|
|
*
|
|
* @return interpolation type
|
|
*/
|
|
public final int getInterpolationType ()
|
|
{
|
|
if (hints.containsValue(RenderingHints.VALUE_INTERPOLATION_BILINEAR))
|
|
return TYPE_BILINEAR;
|
|
|
|
else if (hints.containsValue(RenderingHints.VALUE_INTERPOLATION_BICUBIC))
|
|
return TYPE_BICUBIC;
|
|
|
|
else
|
|
return TYPE_NEAREST_NEIGHBOR;
|
|
}
|
|
|
|
/**
|
|
* Returns location of the transformed source point. The resulting point
|
|
* is stored in the dstPt if one is specified.
|
|
*
|
|
* @param srcPt point to be transformed
|
|
* @param dstPt destination point
|
|
* @return the location of the transformed source point.
|
|
*/
|
|
public final Point2D getPoint2D (Point2D srcPt, Point2D dstPt)
|
|
{
|
|
return transform.transform (srcPt, dstPt);
|
|
}
|
|
|
|
/**
|
|
* Returns rendering hints that are used during transformation.
|
|
*
|
|
* @return the rendering hints used in this Op.
|
|
*/
|
|
public final RenderingHints getRenderingHints ()
|
|
{
|
|
return hints;
|
|
}
|
|
|
|
/**
|
|
* Returns transform used in transformation between source and destination
|
|
* image.
|
|
*
|
|
* @return the transform used in this Op.
|
|
*/
|
|
public final AffineTransform getTransform ()
|
|
{
|
|
return transform;
|
|
}
|
|
|
|
/**
|
|
* Perform nearest-neighbour filtering
|
|
*
|
|
* @param src the source raster
|
|
* @param dst the destination raster
|
|
* @param dpts array of points on the destination raster
|
|
* @param pts array of corresponding points on the source raster
|
|
*/
|
|
private void filterNearest(Raster src, WritableRaster dst, double[] dpts,
|
|
double[] pts)
|
|
{
|
|
Rectangle srcbounds = src.getBounds();
|
|
|
|
// For all points on the destination raster, copy the value from the
|
|
// corrosponding (rounded) source point
|
|
for (int i = 0; i < dpts.length; i += 2)
|
|
{
|
|
int srcX = (int) Math.round(pts[i]) + src.getMinX();
|
|
int srcY = (int) Math.round(pts[i + 1]) + src.getMinY();
|
|
|
|
if (srcbounds.contains(srcX, srcY))
|
|
dst.setDataElements((int) dpts[i] + dst.getMinX(),
|
|
(int) dpts[i + 1] + dst.getMinY(),
|
|
src.getDataElements(srcX, srcY, null));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Perform bilinear filtering
|
|
*
|
|
* @param src the source raster
|
|
* @param dst the destination raster
|
|
* @param dpts array of points on the destination raster
|
|
* @param pts array of corresponding points on the source raster
|
|
*/
|
|
private void filterBilinear(Raster src, WritableRaster dst, double[] dpts,
|
|
double[] pts)
|
|
{
|
|
Rectangle srcbounds = src.getBounds();
|
|
|
|
Object xyarr = null;
|
|
Object xp1arr = null;
|
|
Object yp1arr = null;
|
|
Object xyp1arr = null;
|
|
|
|
double xy;
|
|
double xp1;
|
|
double yp1;
|
|
double xyp1;
|
|
|
|
double[] result = new double[src.getNumBands()];
|
|
|
|
// For all points in the destination raster, use bilinear interpolation
|
|
// to find the value from the corrosponding source points
|
|
for (int i = 0; i < dpts.length; i += 2)
|
|
{
|
|
int srcX = (int) Math.round(pts[i]) + src.getMinX();
|
|
int srcY = (int) Math.round(pts[i + 1]) + src.getMinY();
|
|
|
|
if (srcbounds.contains(srcX, srcY))
|
|
{
|
|
// Corner case at the bottom or right edge; use nearest neighbour
|
|
if (pts[i] >= src.getWidth() - 1
|
|
|| pts[i + 1] >= src.getHeight() - 1)
|
|
dst.setDataElements((int) dpts[i] + dst.getMinX(),
|
|
(int) dpts[i + 1] + dst.getMinY(),
|
|
src.getDataElements(srcX, srcY, null));
|
|
|
|
// Standard case, apply the bilinear formula
|
|
else
|
|
{
|
|
int x = (int) Math.floor(pts[i] + src.getMinX());
|
|
int y = (int) Math.floor(pts[i + 1] + src.getMinY());
|
|
double xdiff = pts[i] + src.getMinX() - x;
|
|
double ydiff = pts[i + 1] + src.getMinY() - y;
|
|
|
|
// Get surrounding pixels used in interpolation... optimized
|
|
// to use the smallest datatype possible.
|
|
if (src.getTransferType() == DataBuffer.TYPE_DOUBLE
|
|
|| src.getTransferType() == DataBuffer.TYPE_FLOAT)
|
|
{
|
|
xyarr = src.getPixel(x, y, (double[])xyarr);
|
|
xp1arr = src.getPixel(x+1, y, (double[])xp1arr);
|
|
yp1arr = src.getPixel(x, y+1, (double[])yp1arr);
|
|
xyp1arr = src.getPixel(x+1, y+1, (double[])xyp1arr);
|
|
}
|
|
else
|
|
{
|
|
xyarr = src.getPixel(x, y, (int[])xyarr);
|
|
xp1arr = src.getPixel(x+1, y, (int[])xp1arr);
|
|
yp1arr = src.getPixel(x, y+1, (int[])yp1arr);
|
|
xyp1arr = src.getPixel(x+1, y+1, (int[])xyp1arr);
|
|
}
|
|
// using
|
|
// array[] pixels = src.getPixels(x, y, 2, 2, pixels);
|
|
// instead of doing four individual src.getPixel() calls
|
|
// should be faster, but benchmarking shows that it's not...
|
|
|
|
// Run interpolation for each band
|
|
for (int j = 0; j < src.getNumBands(); j++)
|
|
{
|
|
// Pull individual sample values out of array
|
|
if (src.getTransferType() == DataBuffer.TYPE_DOUBLE
|
|
|| src.getTransferType() == DataBuffer.TYPE_FLOAT)
|
|
{
|
|
xy = ((double[])xyarr)[j];
|
|
xp1 = ((double[])xp1arr)[j];
|
|
yp1 = ((double[])yp1arr)[j];
|
|
xyp1 = ((double[])xyp1arr)[j];
|
|
}
|
|
else
|
|
{
|
|
xy = ((int[])xyarr)[j];
|
|
xp1 = ((int[])xp1arr)[j];
|
|
yp1 = ((int[])yp1arr)[j];
|
|
xyp1 = ((int[])xyp1arr)[j];
|
|
}
|
|
|
|
// If all four samples are identical, there's no need to
|
|
// calculate anything
|
|
if (xy == xp1 && xy == yp1 && xy == xyp1)
|
|
result[j] = xy;
|
|
|
|
// Run bilinear interpolation formula
|
|
else
|
|
result[j] = (xy * (1-xdiff) + xp1 * xdiff)
|
|
* (1-ydiff)
|
|
+ (yp1 * (1-xdiff) + xyp1 * xdiff)
|
|
* ydiff;
|
|
}
|
|
|
|
dst.setPixel((int)dpts[i] + dst.getMinX(),
|
|
(int)dpts[i+1] + dst.getMinY(),
|
|
result);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Perform bicubic filtering
|
|
* based on http://local.wasp.uwa.edu.au/~pbourke/colour/bicubic/
|
|
*
|
|
* @param src the source raster
|
|
* @param dst the destination raster
|
|
* @param dpts array of points on the destination raster
|
|
* @param pts array of corresponding points on the source raster
|
|
*/
|
|
private void filterBicubic(Raster src, WritableRaster dst, double[] dpts,
|
|
double[] pts)
|
|
{
|
|
Rectangle srcbounds = src.getBounds();
|
|
double[] result = new double[src.getNumBands()];
|
|
Object pixels = null;
|
|
|
|
// For all points on the destination raster, perform bicubic interpolation
|
|
// from corrosponding source points
|
|
for (int i = 0; i < dpts.length; i += 2)
|
|
{
|
|
if (srcbounds.contains((int) Math.round(pts[i]) + src.getMinX(),
|
|
(int) Math.round(pts[i + 1]) + src.getMinY()))
|
|
{
|
|
int x = (int) Math.floor(pts[i] + src.getMinX());
|
|
int y = (int) Math.floor(pts[i + 1] + src.getMinY());
|
|
double dx = pts[i] + src.getMinX() - x;
|
|
double dy = pts[i + 1] + src.getMinY() - y;
|
|
Arrays.fill(result, 0);
|
|
|
|
for (int m = - 1; m < 3; m++)
|
|
for (int n = - 1; n < 3; n++)
|
|
{
|
|
// R(x) = ( P(x+2)^3 - 4 P(x+1)^3 + 6 P(x)^3 - 4 P(x-1)^3 ) / 6
|
|
double r1 = 0;
|
|
double r2 = 0;
|
|
|
|
// Calculate R(m - dx)
|
|
double rx = m - dx + 2;
|
|
r1 += rx * rx * rx;
|
|
|
|
rx = m - dx + 1;
|
|
if (rx > 0)
|
|
r1 -= 4 * rx * rx * rx;
|
|
|
|
rx = m - dx;
|
|
if (rx > 0)
|
|
r1 += 6 * rx * rx * rx;
|
|
|
|
rx = m - dx - 1;
|
|
if (rx > 0)
|
|
r1 -= 4 * rx * rx * rx;
|
|
|
|
r1 /= 6;
|
|
|
|
// Calculate R(dy - n);
|
|
rx = dy - n + 2;
|
|
if (rx > 0)
|
|
r2 += rx * rx * rx;
|
|
|
|
rx = dy - n + 1;
|
|
if (rx > 0)
|
|
r2 -= 4 * rx * rx * rx;
|
|
|
|
rx = dy - n;
|
|
if (rx > 0)
|
|
r2 += 6 * rx * rx * rx;
|
|
|
|
rx = dy - n - 1;
|
|
if (rx > 0)
|
|
r2 -= 4 * rx * rx * rx;
|
|
|
|
r2 /= 6;
|
|
|
|
// Calculate F(i+m, j+n) R(m - dx) R(dy - n)
|
|
// Check corner cases
|
|
int srcX = x + m;
|
|
if (srcX >= src.getMinX() + src.getWidth())
|
|
srcX = src.getMinX() + src.getWidth() - 1;
|
|
else if (srcX < src.getMinX())
|
|
srcX = src.getMinX();
|
|
|
|
int srcY = y + n;
|
|
if (srcY >= src.getMinY() + src.getHeight())
|
|
srcY = src.getMinY() + src.getHeight() - 1;
|
|
else if (srcY < src.getMinY())
|
|
srcY = src.getMinY();
|
|
|
|
// Calculate once for each band, using the smallest
|
|
// datatype possible
|
|
if (src.getTransferType() == DataBuffer.TYPE_DOUBLE
|
|
|| src.getTransferType() == DataBuffer.TYPE_FLOAT)
|
|
{
|
|
pixels = src.getPixel(srcX, srcY, (double[])pixels);
|
|
for (int j = 0; j < result.length; j++)
|
|
result[j] += ((double[])pixels)[j] * r1 * r2;
|
|
}
|
|
else
|
|
{
|
|
pixels = src.getPixel(srcX, srcY, (int[])pixels);
|
|
for (int j = 0; j < result.length; j++)
|
|
result[j] += ((int[])pixels)[j] * r1 * r2;
|
|
}
|
|
}
|
|
|
|
// Put it all together
|
|
dst.setPixel((int)dpts[i] + dst.getMinX(),
|
|
(int)dpts[i+1] + dst.getMinY(),
|
|
result);
|
|
}
|
|
}
|
|
}
|
|
}
|