mirror of
https://github.com/autc04/Retro68.git
synced 2024-12-11 03:52:59 +00:00
2668 lines
72 KiB
C
2668 lines
72 KiB
C
/* tc-i960.c - All the i80960-specific stuff
|
||
Copyright (C) 1989-2017 Free Software Foundation, Inc.
|
||
|
||
This file is part of GAS.
|
||
|
||
GAS is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3, or (at your option)
|
||
any later version.
|
||
|
||
GAS is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GAS; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
|
||
02110-1301, USA. */
|
||
|
||
/* See comment on md_parse_option for 80960-specific invocation options. */
|
||
|
||
/* There are 4 different lengths of (potentially) symbol-based displacements
|
||
in the 80960 instruction set, each of which could require address fix-ups
|
||
and (in the case of external symbols) emission of relocation directives:
|
||
|
||
32-bit (MEMB)
|
||
This is a standard length for the base assembler and requires no
|
||
special action.
|
||
|
||
13-bit (COBR)
|
||
This is a non-standard length, but the base assembler has a
|
||
hook for bit field address fixups: the fixS structure can
|
||
point to a descriptor of the field, in which case our
|
||
md_number_to_field() routine gets called to process it.
|
||
|
||
I made the hook a little cleaner by having fix_new() (in the base
|
||
assembler) return a pointer to the fixS in question. And I made it a
|
||
little simpler by storing the field size (in this case 13) instead of
|
||
of a pointer to another structure: 80960 displacements are ALWAYS
|
||
stored in the low-order bits of a 4-byte word.
|
||
|
||
Since the target of a COBR cannot be external, no relocation
|
||
directives for this size displacement have to be generated.
|
||
But the base assembler had to be modified to issue error
|
||
messages if the symbol did turn out to be external.
|
||
|
||
24-bit (CTRL)
|
||
Fixups are handled as for the 13-bit case (except that 24 is stored
|
||
in the fixS).
|
||
|
||
The relocation directive generated is the same as that for the 32-bit
|
||
displacement, except that it's PC-relative (the 32-bit displacement
|
||
never is). The i80960 version of the linker needs a mod to
|
||
distinguish and handle the 24-bit case.
|
||
|
||
12-bit (MEMA)
|
||
MEMA formats are always promoted to MEMB (32-bit) if the displacement
|
||
is based on a symbol, because it could be relocated at link time.
|
||
The only time we use the 12-bit format is if an absolute value of
|
||
less than 4096 is specified, in which case we need neither a fixup nor
|
||
a relocation directive. */
|
||
|
||
#include "as.h"
|
||
|
||
#include "safe-ctype.h"
|
||
|
||
#include "opcode/i960.h"
|
||
|
||
#if defined (OBJ_AOUT) || defined (OBJ_BOUT)
|
||
|
||
#define TC_S_IS_SYSPROC(s) ((1 <= S_GET_OTHER (s)) && (S_GET_OTHER (s) <= 32))
|
||
#define TC_S_IS_BALNAME(s) (S_GET_OTHER (s) == N_BALNAME)
|
||
#define TC_S_IS_CALLNAME(s) (S_GET_OTHER (s) == N_CALLNAME)
|
||
#define TC_S_IS_BADPROC(s) ((S_GET_OTHER (s) != 0) && !TC_S_IS_CALLNAME (s) && !TC_S_IS_BALNAME (s) && !TC_S_IS_SYSPROC (s))
|
||
|
||
#define TC_S_SET_SYSPROC(s, p) (S_SET_OTHER ((s), (p) + 1))
|
||
#define TC_S_GET_SYSPROC(s) (S_GET_OTHER (s) - 1)
|
||
|
||
#define TC_S_FORCE_TO_BALNAME(s) (S_SET_OTHER ((s), N_BALNAME))
|
||
#define TC_S_FORCE_TO_CALLNAME(s) (S_SET_OTHER ((s), N_CALLNAME))
|
||
#define TC_S_FORCE_TO_SYSPROC(s) {;}
|
||
|
||
#else /* ! OBJ_A/BOUT */
|
||
#ifdef OBJ_COFF
|
||
|
||
#define TC_S_IS_SYSPROC(s) (S_GET_STORAGE_CLASS (s) == C_SCALL)
|
||
#define TC_S_IS_BALNAME(s) (SF_GET_BALNAME (s))
|
||
#define TC_S_IS_CALLNAME(s) (SF_GET_CALLNAME (s))
|
||
#define TC_S_IS_BADPROC(s) (TC_S_IS_SYSPROC (s) && TC_S_GET_SYSPROC (s) < 0 && 31 < TC_S_GET_SYSPROC (s))
|
||
|
||
#define TC_S_SET_SYSPROC(s, p) ((s)->sy_symbol.ost_auxent[1].x_sc.x_stindx = (p))
|
||
#define TC_S_GET_SYSPROC(s) ((s)->sy_symbol.ost_auxent[1].x_sc.x_stindx)
|
||
|
||
#define TC_S_FORCE_TO_BALNAME(s) (SF_SET_BALNAME (s))
|
||
#define TC_S_FORCE_TO_CALLNAME(s) (SF_SET_CALLNAME (s))
|
||
#define TC_S_FORCE_TO_SYSPROC(s) (S_SET_STORAGE_CLASS ((s), C_SCALL))
|
||
|
||
#else /* ! OBJ_COFF */
|
||
#ifdef OBJ_ELF
|
||
#define TC_S_IS_SYSPROC(s) 0
|
||
|
||
#define TC_S_IS_BALNAME(s) 0
|
||
#define TC_S_IS_CALLNAME(s) 0
|
||
#define TC_S_IS_BADPROC(s) 0
|
||
|
||
#define TC_S_SET_SYSPROC(s, p)
|
||
#define TC_S_GET_SYSPROC(s) 0
|
||
|
||
#define TC_S_FORCE_TO_BALNAME(s)
|
||
#define TC_S_FORCE_TO_CALLNAME(s)
|
||
#define TC_S_FORCE_TO_SYSPROC(s)
|
||
#else
|
||
#error COFF, a.out, b.out, and ELF are the only supported formats.
|
||
#endif /* ! OBJ_ELF */
|
||
#endif /* ! OBJ_COFF */
|
||
#endif /* ! OBJ_A/BOUT */
|
||
|
||
extern char *input_line_pointer;
|
||
|
||
/* Local i80960 routines. */
|
||
struct memS;
|
||
struct regop;
|
||
|
||
/* See md_parse_option() for meanings of these options. */
|
||
static char norelax; /* True if -norelax switch seen. */
|
||
static char instrument_branches; /* True if -b switch seen. */
|
||
|
||
/* Characters that always start a comment.
|
||
If the pre-processor is disabled, these aren't very useful. */
|
||
const char comment_chars[] = "#";
|
||
|
||
/* Characters that only start a comment at the beginning of
|
||
a line. If the line seems to have the form '# 123 filename'
|
||
.line and .file directives will appear in the pre-processed output.
|
||
|
||
Note that input_file.c hand checks for '#' at the beginning of the
|
||
first line of the input file. This is because the compiler outputs
|
||
#NO_APP at the beginning of its output. */
|
||
|
||
/* Also note that comments started like this one will always work. */
|
||
|
||
const char line_comment_chars[] = "#";
|
||
const char line_separator_chars[] = ";";
|
||
|
||
/* Chars that can be used to separate mant from exp in floating point nums. */
|
||
const char EXP_CHARS[] = "eE";
|
||
|
||
/* Chars that mean this number is a floating point constant,
|
||
as in 0f12.456 or 0d1.2345e12. */
|
||
const char FLT_CHARS[] = "fFdDtT";
|
||
|
||
/* Table used by base assembler to relax addresses based on varying length
|
||
instructions. The fields are:
|
||
1) most positive reach of this state,
|
||
2) most negative reach of this state,
|
||
3) how many bytes this mode will add to the size of the current frag
|
||
4) which index into the table to try if we can't fit into this one.
|
||
|
||
For i80960, the only application is the (de-)optimization of cobr
|
||
instructions into separate compare and branch instructions when a 13-bit
|
||
displacement won't hack it. */
|
||
const relax_typeS md_relax_table[] =
|
||
{
|
||
{0, 0, 0, 0}, /* State 0 => no more relaxation possible. */
|
||
{4088, -4096, 0, 2}, /* State 1: conditional branch (cobr). */
|
||
{0x800000 - 8, -0x800000, 4, 0}, /* State 2: compare (reg) & branch (ctrl). */
|
||
};
|
||
|
||
/* These are the machine dependent pseudo-ops.
|
||
|
||
This table describes all the machine specific pseudo-ops the assembler
|
||
has to support. The fields are:
|
||
pseudo-op name without dot
|
||
function to call to execute this pseudo-op
|
||
integer arg to pass to the function. */
|
||
#define S_LEAFPROC 1
|
||
#define S_SYSPROC 2
|
||
|
||
/* Macros to extract info from an 'expressionS' structure 'e'. */
|
||
#define adds(e) e.X_add_symbol
|
||
#define offs(e) e.X_add_number
|
||
|
||
/* Branch-prediction bits for CTRL/COBR format opcodes. */
|
||
#define BP_MASK 0x00000002 /* Mask for branch-prediction bit. */
|
||
#define BP_TAKEN 0x00000000 /* Value to OR in to predict branch. */
|
||
#define BP_NOT_TAKEN 0x00000002 /* Value to OR in to predict no branch. */
|
||
|
||
/* Some instruction opcodes that we need explicitly. */
|
||
#define BE 0x12000000
|
||
#define BG 0x11000000
|
||
#define BGE 0x13000000
|
||
#define BL 0x14000000
|
||
#define BLE 0x16000000
|
||
#define BNE 0x15000000
|
||
#define BNO 0x10000000
|
||
#define BO 0x17000000
|
||
#define CHKBIT 0x5a002700
|
||
#define CMPI 0x5a002080
|
||
#define CMPO 0x5a002000
|
||
|
||
#define B 0x08000000
|
||
#define BAL 0x0b000000
|
||
#define CALL 0x09000000
|
||
#define CALLS 0x66003800
|
||
#define RET 0x0a000000
|
||
|
||
/* These masks are used to build up a set of MEMB mode bits. */
|
||
#define A_BIT 0x0400
|
||
#define I_BIT 0x0800
|
||
#define MEMB_BIT 0x1000
|
||
#define D_BIT 0x2000
|
||
|
||
/* Mask for the only mode bit in a MEMA instruction (if set, abase reg is
|
||
used). */
|
||
#define MEMA_ABASE 0x2000
|
||
|
||
/* Info from which a MEMA or MEMB format instruction can be generated. */
|
||
typedef struct memS
|
||
{
|
||
/* (First) 32 bits of instruction. */
|
||
long opcode;
|
||
/* 0-(none), 12- or, 32-bit displacement needed. */
|
||
int disp;
|
||
/* The expression in the source instruction from which the
|
||
displacement should be determined. */
|
||
char *e;
|
||
}
|
||
memS;
|
||
|
||
/* The two pieces of info we need to generate a register operand. */
|
||
struct regop
|
||
{
|
||
int mode; /* 0 =>local/global/spec reg; 1=> literal or fp reg. */
|
||
int special; /* 0 =>not a sfr; 1=> is a sfr (not valid w/mode=0). */
|
||
int n; /* Register number or literal value. */
|
||
};
|
||
|
||
/* Number and assembler mnemonic for all registers that can appear in
|
||
operands. */
|
||
static const struct
|
||
{
|
||
const char *reg_name;
|
||
int reg_num;
|
||
}
|
||
regnames[] =
|
||
{
|
||
{ "pfp", 0 },
|
||
{ "sp", 1 },
|
||
{ "rip", 2 },
|
||
{ "r3", 3 },
|
||
{ "r4", 4 },
|
||
{ "r5", 5 },
|
||
{ "r6", 6 },
|
||
{ "r7", 7 },
|
||
{ "r8", 8 },
|
||
{ "r9", 9 },
|
||
{ "r10", 10 },
|
||
{ "r11", 11 },
|
||
{ "r12", 12 },
|
||
{ "r13", 13 },
|
||
{ "r14", 14 },
|
||
{ "r15", 15 },
|
||
{ "g0", 16 },
|
||
{ "g1", 17 },
|
||
{ "g2", 18 },
|
||
{ "g3", 19 },
|
||
{ "g4", 20 },
|
||
{ "g5", 21 },
|
||
{ "g6", 22 },
|
||
{ "g7", 23 },
|
||
{ "g8", 24 },
|
||
{ "g9", 25 },
|
||
{ "g10", 26 },
|
||
{ "g11", 27 },
|
||
{ "g12", 28 },
|
||
{ "g13", 29 },
|
||
{ "g14", 30 },
|
||
{ "fp", 31 },
|
||
|
||
/* Numbers for special-function registers are for assembler internal
|
||
use only: they are scaled back to range [0-31] for binary output. */
|
||
#define SF0 32
|
||
|
||
{ "sf0", 32 },
|
||
{ "sf1", 33 },
|
||
{ "sf2", 34 },
|
||
{ "sf3", 35 },
|
||
{ "sf4", 36 },
|
||
{ "sf5", 37 },
|
||
{ "sf6", 38 },
|
||
{ "sf7", 39 },
|
||
{ "sf8", 40 },
|
||
{ "sf9", 41 },
|
||
{ "sf10", 42 },
|
||
{ "sf11", 43 },
|
||
{ "sf12", 44 },
|
||
{ "sf13", 45 },
|
||
{ "sf14", 46 },
|
||
{ "sf15", 47 },
|
||
{ "sf16", 48 },
|
||
{ "sf17", 49 },
|
||
{ "sf18", 50 },
|
||
{ "sf19", 51 },
|
||
{ "sf20", 52 },
|
||
{ "sf21", 53 },
|
||
{ "sf22", 54 },
|
||
{ "sf23", 55 },
|
||
{ "sf24", 56 },
|
||
{ "sf25", 57 },
|
||
{ "sf26", 58 },
|
||
{ "sf27", 59 },
|
||
{ "sf28", 60 },
|
||
{ "sf29", 61 },
|
||
{ "sf30", 62 },
|
||
{ "sf31", 63 },
|
||
|
||
/* Numbers for floating point registers are for assembler internal
|
||
use only: they are scaled back to [0-3] for binary output. */
|
||
#define FP0 64
|
||
|
||
{ "fp0", 64 },
|
||
{ "fp1", 65 },
|
||
{ "fp2", 66 },
|
||
{ "fp3", 67 },
|
||
|
||
{ NULL, 0 }, /* END OF LIST */
|
||
};
|
||
|
||
#define IS_RG_REG(n) ((0 <= (n)) && ((n) < SF0))
|
||
#define IS_SF_REG(n) ((SF0 <= (n)) && ((n) < FP0))
|
||
#define IS_FP_REG(n) ((n) >= FP0)
|
||
|
||
/* Number and assembler mnemonic for all registers that can appear as
|
||
'abase' (indirect addressing) registers. */
|
||
static const struct
|
||
{
|
||
const char *areg_name;
|
||
int areg_num;
|
||
}
|
||
aregs[] =
|
||
{
|
||
{ "(pfp)", 0 },
|
||
{ "(sp)", 1 },
|
||
{ "(rip)", 2 },
|
||
{ "(r3)", 3 },
|
||
{ "(r4)", 4 },
|
||
{ "(r5)", 5 },
|
||
{ "(r6)", 6 },
|
||
{ "(r7)", 7 },
|
||
{ "(r8)", 8 },
|
||
{ "(r9)", 9 },
|
||
{ "(r10)", 10 },
|
||
{ "(r11)", 11 },
|
||
{ "(r12)", 12 },
|
||
{ "(r13)", 13 },
|
||
{ "(r14)", 14 },
|
||
{ "(r15)", 15 },
|
||
{ "(g0)", 16 },
|
||
{ "(g1)", 17 },
|
||
{ "(g2)", 18 },
|
||
{ "(g3)", 19 },
|
||
{ "(g4)", 20 },
|
||
{ "(g5)", 21 },
|
||
{ "(g6)", 22 },
|
||
{ "(g7)", 23 },
|
||
{ "(g8)", 24 },
|
||
{ "(g9)", 25 },
|
||
{ "(g10)", 26 },
|
||
{ "(g11)", 27 },
|
||
{ "(g12)", 28 },
|
||
{ "(g13)", 29 },
|
||
{ "(g14)", 30 },
|
||
{ "(fp)", 31 },
|
||
|
||
#define IPREL 32
|
||
/* For assembler internal use only: this number never appears in binary
|
||
output. */
|
||
{ "(ip)", IPREL },
|
||
|
||
{ NULL, 0 }, /* END OF LIST */
|
||
};
|
||
|
||
/* Hash tables. */
|
||
static struct hash_control *op_hash; /* Opcode mnemonics. */
|
||
static struct hash_control *reg_hash; /* Register name hash table. */
|
||
static struct hash_control *areg_hash; /* Abase register hash table. */
|
||
|
||
/* Architecture for which we are assembling. */
|
||
#define ARCH_ANY 0 /* Default: no architecture checking done. */
|
||
#define ARCH_KA 1
|
||
#define ARCH_KB 2
|
||
#define ARCH_MC 3
|
||
#define ARCH_CA 4
|
||
#define ARCH_JX 5
|
||
#define ARCH_HX 6
|
||
int architecture = ARCH_ANY; /* Architecture requested on invocation line. */
|
||
int iclasses_seen; /* OR of instruction classes (I_* constants)
|
||
for which we've actually assembled
|
||
instructions. */
|
||
|
||
/* BRANCH-PREDICTION INSTRUMENTATION
|
||
|
||
The following supports generation of branch-prediction instrumentation
|
||
(turned on by -b switch). The instrumentation collects counts
|
||
of branches taken/not-taken for later input to a utility that will
|
||
set the branch prediction bits of the instructions in accordance with
|
||
the behavior observed. (Note that the KX series does not have
|
||
branch-prediction.)
|
||
|
||
The instrumentation consists of:
|
||
|
||
(1) before and after each conditional branch, a call to an external
|
||
routine that increments and steps over an inline counter. The
|
||
counter itself, initialized to 0, immediately follows the call
|
||
instruction. For each branch, the counter following the branch
|
||
is the number of times the branch was not taken, and the difference
|
||
between the counters is the number of times it was taken. An
|
||
example of an instrumented conditional branch:
|
||
|
||
call BR_CNT_FUNC
|
||
.word 0
|
||
LBRANCH23: be label
|
||
call BR_CNT_FUNC
|
||
.word 0
|
||
|
||
(2) a table of pointers to the instrumented branches, so that an
|
||
external postprocessing routine can locate all of the counters.
|
||
the table begins with a 2-word header: a pointer to the next in
|
||
a linked list of such tables (initialized to 0); and a count
|
||
of the number of entries in the table (exclusive of the header.
|
||
|
||
Note that input source code is expected to already contain calls
|
||
an external routine that will link the branch local table into a
|
||
list of such tables. */
|
||
|
||
/* Number of branches instrumented so far. Also used to generate
|
||
unique local labels for each instrumented branch. */
|
||
static int br_cnt;
|
||
|
||
#define BR_LABEL_BASE "LBRANCH"
|
||
/* Basename of local labels on instrumented branches, to avoid
|
||
conflict with compiler- generated local labels. */
|
||
|
||
#define BR_CNT_FUNC "__inc_branch"
|
||
/* Name of the external routine that will increment (and step over) an
|
||
inline counter. */
|
||
|
||
#define BR_TAB_NAME "__BRANCH_TABLE__"
|
||
/* Name of the table of pointers to branches. A local (i.e.,
|
||
non-external) symbol. */
|
||
|
||
static void ctrl_fmt (const char *, long, int);
|
||
|
||
|
||
void
|
||
md_begin (void)
|
||
{
|
||
int i; /* Loop counter. */
|
||
const struct i960_opcode *oP; /* Pointer into opcode table. */
|
||
const char *retval; /* Value returned by hash functions. */
|
||
|
||
op_hash = hash_new ();
|
||
reg_hash = hash_new ();
|
||
areg_hash = hash_new ();
|
||
|
||
/* For some reason, the base assembler uses an empty string for "no
|
||
error message", instead of a NULL pointer. */
|
||
retval = 0;
|
||
|
||
for (oP = i960_opcodes; oP->name && !retval; oP++)
|
||
retval = hash_insert (op_hash, oP->name, (void *) oP);
|
||
|
||
for (i = 0; regnames[i].reg_name && !retval; i++)
|
||
retval = hash_insert (reg_hash, regnames[i].reg_name,
|
||
(char *) ®names[i].reg_num);
|
||
|
||
for (i = 0; aregs[i].areg_name && !retval; i++)
|
||
retval = hash_insert (areg_hash, aregs[i].areg_name,
|
||
(char *) &aregs[i].areg_num);
|
||
|
||
if (retval)
|
||
as_fatal (_("Hashing returned \"%s\"."), retval);
|
||
}
|
||
|
||
/* parse_expr: parse an expression
|
||
|
||
Use base assembler's expression parser to parse an expression.
|
||
It, unfortunately, runs off a global which we have to save/restore
|
||
in order to make it work for us.
|
||
|
||
An empty expression string is treated as an absolute 0.
|
||
|
||
Sets O_illegal regardless of expression evaluation if entire input
|
||
string is not consumed in the evaluation -- tolerate no dangling junk! */
|
||
|
||
static void
|
||
parse_expr (const char *textP, /* Text of expression to be parsed. */
|
||
expressionS *expP) /* Where to put the results of parsing. */
|
||
{
|
||
char *save_in; /* Save global here. */
|
||
symbolS *symP;
|
||
|
||
know (textP);
|
||
|
||
if (*textP == '\0')
|
||
{
|
||
/* Treat empty string as absolute 0. */
|
||
expP->X_add_symbol = expP->X_op_symbol = NULL;
|
||
expP->X_add_number = 0;
|
||
expP->X_op = O_constant;
|
||
}
|
||
else
|
||
{
|
||
save_in = input_line_pointer; /* Save global. */
|
||
input_line_pointer = (char *) textP; /* Make parser work for us. */
|
||
|
||
(void) expression (expP);
|
||
if ((size_t) (input_line_pointer - textP) != strlen (textP))
|
||
/* Did not consume all of the input. */
|
||
expP->X_op = O_illegal;
|
||
|
||
symP = expP->X_add_symbol;
|
||
if (symP && (hash_find (reg_hash, S_GET_NAME (symP))))
|
||
/* Register name in an expression. */
|
||
/* FIXME: this isn't much of a check any more. */
|
||
expP->X_op = O_illegal;
|
||
|
||
input_line_pointer = save_in; /* Restore global. */
|
||
}
|
||
}
|
||
|
||
/* emit: output instruction binary
|
||
|
||
Output instruction binary, in target byte order, 4 bytes at a time.
|
||
Return pointer to where it was placed. */
|
||
|
||
static char *
|
||
emit (long instr) /* Word to be output, host byte order. */
|
||
{
|
||
char *toP; /* Where to output it. */
|
||
|
||
toP = frag_more (4); /* Allocate storage. */
|
||
md_number_to_chars (toP, instr, 4); /* Convert to target byte order. */
|
||
return toP;
|
||
}
|
||
|
||
/* get_cdisp: handle displacement for a COBR or CTRL instruction.
|
||
|
||
Parse displacement for a COBR or CTRL instruction.
|
||
|
||
If successful, output the instruction opcode and set up for it,
|
||
depending on the arg 'var_frag', either:
|
||
o an address fixup to be done when all symbol values are known, or
|
||
o a varying length code fragment, with address fixup info. This
|
||
will be done for cobr instructions that may have to be relaxed
|
||
in to compare/branch instructions (8 bytes) if the final
|
||
address displacement is greater than 13 bits. */
|
||
|
||
static void
|
||
get_cdisp (const char *dispP, /* Displacement as specified in source instruction. */
|
||
const char *ifmtP, /* "COBR" or "CTRL" (for use in error message). */
|
||
long instr, /* Instruction needing the displacement. */
|
||
int numbits, /* # bits of displacement (13 for COBR, 24 for CTRL). */
|
||
int var_frag,/* 1 if varying length code fragment should be emitted;
|
||
0 if an address fix should be emitted. */
|
||
int callj) /* 1 if callj relocation should be done; else 0. */
|
||
{
|
||
expressionS e; /* Parsed expression. */
|
||
fixS *fixP; /* Structure describing needed address fix. */
|
||
char *outP; /* Where instruction binary is output to. */
|
||
|
||
fixP = NULL;
|
||
|
||
parse_expr (dispP, &e);
|
||
switch (e.X_op)
|
||
{
|
||
case O_illegal:
|
||
as_bad (_("expression syntax error"));
|
||
break;
|
||
|
||
case O_symbol:
|
||
if (S_GET_SEGMENT (e.X_add_symbol) == now_seg
|
||
|| S_GET_SEGMENT (e.X_add_symbol) == undefined_section)
|
||
{
|
||
if (var_frag)
|
||
{
|
||
outP = frag_more (8); /* Allocate worst-case storage. */
|
||
md_number_to_chars (outP, instr, 4);
|
||
frag_variant (rs_machine_dependent, 4, 4, 1,
|
||
adds (e), offs (e), outP);
|
||
}
|
||
else
|
||
{
|
||
/* Set up a new fix structure, so address can be updated
|
||
when all symbol values are known. */
|
||
outP = emit (instr);
|
||
fixP = fix_new (frag_now,
|
||
outP - frag_now->fr_literal,
|
||
4,
|
||
adds (e),
|
||
offs (e),
|
||
1,
|
||
NO_RELOC);
|
||
|
||
fixP->fx_tcbit = callj;
|
||
|
||
/* We want to modify a bit field when the address is
|
||
known. But we don't need all the garbage in the
|
||
bit_fix structure. So we're going to lie and store
|
||
the number of bits affected instead of a pointer. */
|
||
fixP->fx_bit_fixP = (bit_fixS *) (size_t) numbits;
|
||
}
|
||
}
|
||
else
|
||
as_bad (_("attempt to branch into different segment"));
|
||
break;
|
||
|
||
default:
|
||
as_bad (_("target of %s instruction must be a label"), ifmtP);
|
||
break;
|
||
}
|
||
}
|
||
|
||
static int
|
||
md_chars_to_number (char * val, /* Value in target byte order. */
|
||
int n) /* Number of bytes in the input. */
|
||
{
|
||
int retval;
|
||
|
||
for (retval = 0; n--;)
|
||
{
|
||
retval <<= 8;
|
||
retval |= (unsigned char) val[n];
|
||
}
|
||
return retval;
|
||
}
|
||
|
||
/* mema_to_memb: convert a MEMA-format opcode to a MEMB-format opcode.
|
||
|
||
There are 2 possible MEMA formats:
|
||
- displacement only
|
||
- displacement + abase
|
||
|
||
They are distinguished by the setting of the MEMA_ABASE bit. */
|
||
|
||
static void
|
||
mema_to_memb (char * opcodeP) /* Where to find the opcode, in target byte order. */
|
||
{
|
||
long opcode; /* Opcode in host byte order. */
|
||
long mode; /* Mode bits for MEMB instruction. */
|
||
|
||
opcode = md_chars_to_number (opcodeP, 4);
|
||
know (!(opcode & MEMB_BIT));
|
||
|
||
mode = MEMB_BIT | D_BIT;
|
||
if (opcode & MEMA_ABASE)
|
||
mode |= A_BIT;
|
||
|
||
opcode &= 0xffffc000; /* Clear MEMA offset and mode bits. */
|
||
opcode |= mode; /* Set MEMB mode bits. */
|
||
|
||
md_number_to_chars (opcodeP, opcode, 4);
|
||
}
|
||
|
||
/* targ_has_sfr:
|
||
|
||
Return TRUE iff the target architecture supports the specified
|
||
special-function register (sfr). */
|
||
|
||
static int
|
||
targ_has_sfr (int n) /* Number (0-31) of sfr. */
|
||
{
|
||
switch (architecture)
|
||
{
|
||
case ARCH_KA:
|
||
case ARCH_KB:
|
||
case ARCH_MC:
|
||
case ARCH_JX:
|
||
return 0;
|
||
case ARCH_HX:
|
||
return ((0 <= n) && (n <= 4));
|
||
case ARCH_CA:
|
||
default:
|
||
return ((0 <= n) && (n <= 2));
|
||
}
|
||
}
|
||
|
||
/* Look up a (suspected) register name in the register table and return the
|
||
associated register number (or -1 if not found). */
|
||
|
||
static int
|
||
get_regnum (char *regname) /* Suspected register name. */
|
||
{
|
||
int *rP;
|
||
|
||
rP = (int *) hash_find (reg_hash, regname);
|
||
return (rP == NULL) ? -1 : *rP;
|
||
}
|
||
|
||
/* syntax: Issue a syntax error. */
|
||
|
||
static void
|
||
syntax (void)
|
||
{
|
||
as_bad (_("syntax error"));
|
||
}
|
||
|
||
/* parse_regop: parse a register operand.
|
||
|
||
In case of illegal operand, issue a message and return some valid
|
||
information so instruction processing can continue. */
|
||
|
||
static void
|
||
parse_regop (struct regop *regopP, /* Where to put description of register operand. */
|
||
char *optext, /* Text of operand. */
|
||
char opdesc) /* Descriptor byte: what's legal for this operand. */
|
||
{
|
||
int n; /* Register number. */
|
||
expressionS e; /* Parsed expression. */
|
||
|
||
/* See if operand is a register. */
|
||
n = get_regnum (optext);
|
||
if (n >= 0)
|
||
{
|
||
if (IS_RG_REG (n))
|
||
{
|
||
/* Global or local register. */
|
||
if (!REG_ALIGN (opdesc, n))
|
||
as_bad (_("unaligned register"));
|
||
|
||
regopP->n = n;
|
||
regopP->mode = 0;
|
||
regopP->special = 0;
|
||
return;
|
||
}
|
||
else if (IS_FP_REG (n) && FP_OK (opdesc))
|
||
{
|
||
/* Floating point register, and it's allowed. */
|
||
regopP->n = n - FP0;
|
||
regopP->mode = 1;
|
||
regopP->special = 0;
|
||
return;
|
||
}
|
||
else if (IS_SF_REG (n) && SFR_OK (opdesc))
|
||
{
|
||
/* Special-function register, and it's allowed. */
|
||
regopP->n = n - SF0;
|
||
regopP->mode = 0;
|
||
regopP->special = 1;
|
||
if (!targ_has_sfr (regopP->n))
|
||
as_bad (_("no such sfr in this architecture"));
|
||
|
||
return;
|
||
}
|
||
}
|
||
else if (LIT_OK (opdesc))
|
||
{
|
||
/* How about a literal? */
|
||
regopP->mode = 1;
|
||
regopP->special = 0;
|
||
if (FP_OK (opdesc))
|
||
{
|
||
/* Floating point literal acceptable. */
|
||
/* Skip over 0f, 0d, or 0e prefix. */
|
||
if ((optext[0] == '0')
|
||
&& (optext[1] >= 'd')
|
||
&& (optext[1] <= 'f'))
|
||
optext += 2;
|
||
|
||
if (!strcmp (optext, "0.0") || !strcmp (optext, "0"))
|
||
{
|
||
regopP->n = 0x10;
|
||
return;
|
||
}
|
||
|
||
if (!strcmp (optext, "1.0") || !strcmp (optext, "1"))
|
||
{
|
||
regopP->n = 0x16;
|
||
return;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Fixed point literal acceptable. */
|
||
parse_expr (optext, &e);
|
||
if (e.X_op != O_constant
|
||
|| (offs (e) < 0) || (offs (e) > 31))
|
||
{
|
||
as_bad (_("illegal literal"));
|
||
offs (e) = 0;
|
||
}
|
||
regopP->n = offs (e);
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* Nothing worked. */
|
||
syntax ();
|
||
regopP->mode = 0; /* Register r0 is always a good one. */
|
||
regopP->n = 0;
|
||
regopP->special = 0;
|
||
}
|
||
|
||
/* get_ispec: parse a memory operand for an index specification
|
||
|
||
Here, an "index specification" is taken to be anything surrounded
|
||
by square brackets and NOT followed by anything else.
|
||
|
||
If it's found, detach it from the input string, remove the surrounding
|
||
square brackets, and return a pointer to it. Otherwise, return NULL. */
|
||
|
||
static char *
|
||
get_ispec (char *textP) /* Pointer to memory operand from source instruction, no white space. */
|
||
|
||
{
|
||
/* Points to start of index specification. */
|
||
char *start;
|
||
/* Points to end of index specification. */
|
||
char *end;
|
||
|
||
/* Find opening square bracket, if any. */
|
||
start = strchr (textP, '[');
|
||
|
||
if (start != NULL)
|
||
{
|
||
/* Eliminate '[', detach from rest of operand. */
|
||
*start++ = '\0';
|
||
|
||
end = strchr (start, ']');
|
||
|
||
if (end == NULL)
|
||
as_bad (_("unmatched '['"));
|
||
else
|
||
{
|
||
/* Eliminate ']' and make sure it was the last thing
|
||
in the string. */
|
||
*end = '\0';
|
||
if (*(end + 1) != '\0')
|
||
as_bad (_("garbage after index spec ignored"));
|
||
}
|
||
}
|
||
return start;
|
||
}
|
||
|
||
/* parse_memop: parse a memory operand
|
||
|
||
This routine is based on the observation that the 4 mode bits of the
|
||
MEMB format, taken individually, have fairly consistent meaning:
|
||
|
||
M3 (bit 13): 1 if displacement is present (D_BIT)
|
||
M2 (bit 12): 1 for MEMB instructions (MEMB_BIT)
|
||
M1 (bit 11): 1 if index is present (I_BIT)
|
||
M0 (bit 10): 1 if abase is present (A_BIT)
|
||
|
||
So we parse the memory operand and set bits in the mode as we find
|
||
things. Then at the end, if we go to MEMB format, we need only set
|
||
the MEMB bit (M2) and our mode is built for us.
|
||
|
||
Unfortunately, I said "fairly consistent". The exceptions:
|
||
|
||
DBIA
|
||
0100 Would seem illegal, but means "abase-only".
|
||
|
||
0101 Would seem to mean "abase-only" -- it means IP-relative.
|
||
Must be converted to 0100.
|
||
|
||
0110 Would seem to mean "index-only", but is reserved.
|
||
We turn on the D bit and provide a 0 displacement.
|
||
|
||
The other thing to observe is that we parse from the right, peeling
|
||
things * off as we go: first any index spec, then any abase, then
|
||
the displacement. */
|
||
|
||
static void
|
||
parse_memop (memS *memP, /* Where to put the results. */
|
||
char *argP, /* Text of the operand to be parsed. */
|
||
int optype) /* MEM1, MEM2, MEM4, MEM8, MEM12, or MEM16. */
|
||
{
|
||
char *indexP; /* Pointer to index specification with "[]" removed. */
|
||
char *p; /* Temp char pointer. */
|
||
char iprel_flag; /* True if this is an IP-relative operand. */
|
||
int regnum; /* Register number. */
|
||
/* Scale factor: 1,2,4,8, or 16. Later converted to internal format
|
||
(0,1,2,3,4 respectively). */
|
||
int scale;
|
||
int mode; /* MEMB mode bits. */
|
||
int *intP; /* Pointer to register number. */
|
||
|
||
/* The following table contains the default scale factors for each
|
||
type of memory instruction. It is accessed using (optype-MEM1)
|
||
as an index -- thus it assumes the 'optype' constants are
|
||
assigned consecutive values, in the order they appear in this
|
||
table. */
|
||
static const int def_scale[] =
|
||
{
|
||
1, /* MEM1 */
|
||
2, /* MEM2 */
|
||
4, /* MEM4 */
|
||
8, /* MEM8 */
|
||
-1, /* MEM12 -- no valid default */
|
||
16 /* MEM16 */
|
||
};
|
||
|
||
iprel_flag = mode = 0;
|
||
|
||
/* Any index present? */
|
||
indexP = get_ispec (argP);
|
||
if (indexP)
|
||
{
|
||
p = strchr (indexP, '*');
|
||
if (p == NULL)
|
||
{
|
||
/* No explicit scale -- use default for this instruction
|
||
type and assembler mode. */
|
||
if (flag_mri)
|
||
scale = 1;
|
||
else
|
||
/* GNU960 compatibility */
|
||
scale = def_scale[optype - MEM1];
|
||
}
|
||
else
|
||
{
|
||
*p++ = '\0'; /* Eliminate '*' */
|
||
|
||
/* Now indexP->a '\0'-terminated register name,
|
||
and p->a scale factor. */
|
||
|
||
if (!strcmp (p, "16"))
|
||
scale = 16;
|
||
else if (strchr ("1248", *p) && (p[1] == '\0'))
|
||
scale = *p - '0';
|
||
else
|
||
scale = -1;
|
||
}
|
||
|
||
regnum = get_regnum (indexP); /* Get index reg. # */
|
||
if (!IS_RG_REG (regnum))
|
||
{
|
||
as_bad (_("invalid index register"));
|
||
return;
|
||
}
|
||
|
||
/* Convert scale to its binary encoding. */
|
||
switch (scale)
|
||
{
|
||
case 1:
|
||
scale = 0 << 7;
|
||
break;
|
||
case 2:
|
||
scale = 1 << 7;
|
||
break;
|
||
case 4:
|
||
scale = 2 << 7;
|
||
break;
|
||
case 8:
|
||
scale = 3 << 7;
|
||
break;
|
||
case 16:
|
||
scale = 4 << 7;
|
||
break;
|
||
default:
|
||
as_bad (_("invalid scale factor"));
|
||
return;
|
||
};
|
||
|
||
memP->opcode |= scale | regnum; /* Set index bits in opcode. */
|
||
mode |= I_BIT; /* Found a valid index spec. */
|
||
}
|
||
|
||
/* Any abase (Register Indirect) specification present? */
|
||
if ((p = strrchr (argP, '(')) != NULL)
|
||
{
|
||
/* "(" is there -- does it start a legal abase spec? If not, it
|
||
could be part of a displacement expression. */
|
||
intP = (int *) hash_find (areg_hash, p);
|
||
if (intP != NULL)
|
||
{
|
||
/* Got an abase here. */
|
||
regnum = *intP;
|
||
*p = '\0'; /* Discard register spec. */
|
||
if (regnum == IPREL)
|
||
/* We have to special-case ip-rel mode. */
|
||
iprel_flag = 1;
|
||
else
|
||
{
|
||
memP->opcode |= regnum << 14;
|
||
mode |= A_BIT;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Any expression present? */
|
||
memP->e = argP;
|
||
if (*argP != '\0')
|
||
mode |= D_BIT;
|
||
|
||
/* Special-case ip-relative addressing. */
|
||
if (iprel_flag)
|
||
{
|
||
if (mode & I_BIT)
|
||
syntax ();
|
||
else
|
||
{
|
||
memP->opcode |= 5 << 10; /* IP-relative mode. */
|
||
memP->disp = 32;
|
||
}
|
||
return;
|
||
}
|
||
|
||
/* Handle all other modes. */
|
||
switch (mode)
|
||
{
|
||
case D_BIT | A_BIT:
|
||
/* Go with MEMA instruction format for now (grow to MEMB later
|
||
if 12 bits is not enough for the displacement). MEMA format
|
||
has a single mode bit: set it to indicate that abase is
|
||
present. */
|
||
memP->opcode |= MEMA_ABASE;
|
||
memP->disp = 12;
|
||
break;
|
||
|
||
case D_BIT:
|
||
/* Go with MEMA instruction format for now (grow to MEMB later
|
||
if 12 bits is not enough for the displacement). */
|
||
memP->disp = 12;
|
||
break;
|
||
|
||
case A_BIT:
|
||
/* For some reason, the bit string for this mode is not
|
||
consistent: it should be 0 (exclusive of the MEMB bit), so we
|
||
set it "by hand" here. */
|
||
memP->opcode |= MEMB_BIT;
|
||
break;
|
||
|
||
case A_BIT | I_BIT:
|
||
/* set MEMB bit in mode, and OR in mode bits. */
|
||
memP->opcode |= mode | MEMB_BIT;
|
||
break;
|
||
|
||
case I_BIT:
|
||
/* Treat missing displacement as displacement of 0. */
|
||
mode |= D_BIT;
|
||
/* Fall through. */
|
||
case D_BIT | A_BIT | I_BIT:
|
||
case D_BIT | I_BIT:
|
||
/* Set MEMB bit in mode, and OR in mode bits. */
|
||
memP->opcode |= mode | MEMB_BIT;
|
||
memP->disp = 32;
|
||
break;
|
||
|
||
default:
|
||
syntax ();
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Generate a MEMA- or MEMB-format instruction. */
|
||
|
||
static void
|
||
mem_fmt (char *args[], /* args[0]->opcode mnemonic, args[1-3]->operands. */
|
||
struct i960_opcode *oP,/* Pointer to description of instruction. */
|
||
int callx) /* Is this a callx opcode. */
|
||
{
|
||
int i; /* Loop counter. */
|
||
struct regop regop; /* Description of register operand. */
|
||
char opdesc; /* Operand descriptor byte. */
|
||
memS instr; /* Description of binary to be output. */
|
||
char *outP; /* Where the binary was output to. */
|
||
expressionS exp; /* Parsed expression. */
|
||
/* ->description of deferred address fixup. */
|
||
fixS *fixP;
|
||
|
||
#ifdef OBJ_COFF
|
||
/* COFF support isn't in place yet for callx relaxing. */
|
||
callx = 0;
|
||
#endif
|
||
|
||
memset (&instr, '\0', sizeof (memS));
|
||
instr.opcode = oP->opcode;
|
||
|
||
/* Process operands. */
|
||
for (i = 1; i <= oP->num_ops; i++)
|
||
{
|
||
opdesc = oP->operand[i - 1];
|
||
|
||
if (MEMOP (opdesc))
|
||
parse_memop (&instr, args[i], oP->format);
|
||
else
|
||
{
|
||
parse_regop (®op, args[i], opdesc);
|
||
instr.opcode |= regop.n << 19;
|
||
}
|
||
}
|
||
|
||
/* Parse the displacement; this must be done before emitting the
|
||
opcode, in case it is an expression using `.'. */
|
||
parse_expr (instr.e, &exp);
|
||
|
||
/* Output opcode. */
|
||
outP = emit (instr.opcode);
|
||
|
||
if (instr.disp == 0)
|
||
return;
|
||
|
||
/* Process the displacement. */
|
||
switch (exp.X_op)
|
||
{
|
||
case O_illegal:
|
||
as_bad (_("expression syntax error"));
|
||
break;
|
||
|
||
case O_constant:
|
||
if (instr.disp == 32)
|
||
(void) emit (offs (exp)); /* Output displacement. */
|
||
else
|
||
{
|
||
/* 12-bit displacement. */
|
||
if (offs (exp) & ~0xfff)
|
||
{
|
||
/* Won't fit in 12 bits: convert already-output
|
||
instruction to MEMB format, output
|
||
displacement. */
|
||
mema_to_memb (outP);
|
||
(void) emit (offs (exp));
|
||
}
|
||
else
|
||
{
|
||
/* WILL fit in 12 bits: OR into opcode and
|
||
overwrite the binary we already put out. */
|
||
instr.opcode |= offs (exp);
|
||
md_number_to_chars (outP, instr.opcode, 4);
|
||
}
|
||
}
|
||
break;
|
||
|
||
default:
|
||
if (instr.disp == 12)
|
||
/* Displacement is dependent on a symbol, whose value
|
||
may change at link time. We HAVE to reserve 32 bits.
|
||
Convert already-output opcode to MEMB format. */
|
||
mema_to_memb (outP);
|
||
|
||
/* Output 0 displacement and set up address fixup for when
|
||
this symbol's value becomes known. */
|
||
outP = emit ((long) 0);
|
||
fixP = fix_new_exp (frag_now,
|
||
outP - frag_now->fr_literal,
|
||
4, &exp, 0, NO_RELOC);
|
||
/* Steve's linker relaxing hack. Mark this 32-bit relocation as
|
||
being in the instruction stream, specifically as part of a callx
|
||
instruction. */
|
||
fixP->fx_bsr = callx;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* targ_has_iclass:
|
||
|
||
Return TRUE iff the target architecture supports the indicated
|
||
class of instructions. */
|
||
|
||
static int
|
||
targ_has_iclass (int ic) /* Instruction class; one of:
|
||
I_BASE, I_CX, I_DEC, I_KX, I_FP, I_MIL, I_CASIM, I_CX2, I_HX, I_HX2. */
|
||
{
|
||
iclasses_seen |= ic;
|
||
|
||
switch (architecture)
|
||
{
|
||
case ARCH_KA:
|
||
return ic & (I_BASE | I_KX);
|
||
case ARCH_KB:
|
||
return ic & (I_BASE | I_KX | I_FP | I_DEC);
|
||
case ARCH_MC:
|
||
return ic & (I_BASE | I_KX | I_FP | I_DEC | I_MIL);
|
||
case ARCH_CA:
|
||
return ic & (I_BASE | I_CX | I_CX2 | I_CASIM);
|
||
case ARCH_JX:
|
||
return ic & (I_BASE | I_CX2 | I_JX);
|
||
case ARCH_HX:
|
||
return ic & (I_BASE | I_CX2 | I_JX | I_HX);
|
||
default:
|
||
if ((iclasses_seen & (I_KX | I_FP | I_DEC | I_MIL))
|
||
&& (iclasses_seen & (I_CX | I_CX2)))
|
||
{
|
||
as_warn (_("architecture of opcode conflicts with that of earlier instruction(s)"));
|
||
iclasses_seen &= ~ic;
|
||
}
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
/* shift_ok:
|
||
Determine if a "shlo" instruction can be used to implement a "ldconst".
|
||
This means that some number X < 32 can be shifted left to produce the
|
||
constant of interest.
|
||
|
||
Return the shift count, or 0 if we can't do it.
|
||
Caller calculates X by shifting original constant right 'shift' places. */
|
||
|
||
static int
|
||
shift_ok (int n) /* The constant of interest. */
|
||
{
|
||
int shift; /* The shift count. */
|
||
|
||
if (n <= 0)
|
||
/* Can't do it for negative numbers. */
|
||
return 0;
|
||
|
||
/* Shift 'n' right until a 1 is about to be lost. */
|
||
for (shift = 0; (n & 1) == 0; shift++)
|
||
n >>= 1;
|
||
|
||
if (n >= 32)
|
||
return 0;
|
||
|
||
return shift;
|
||
}
|
||
|
||
/* parse_ldcont:
|
||
Parse and replace a 'ldconst' pseudo-instruction with an appropriate
|
||
i80960 instruction.
|
||
|
||
Assumes the input consists of:
|
||
arg[0] opcode mnemonic ('ldconst')
|
||
arg[1] first operand (constant)
|
||
arg[2] name of register to be loaded
|
||
|
||
Replaces opcode and/or operands as appropriate.
|
||
|
||
Returns the new number of arguments, or -1 on failure. */
|
||
|
||
static int
|
||
parse_ldconst (char *arg[]) /* See above. */
|
||
{
|
||
int n; /* Constant to be loaded. */
|
||
int shift; /* Shift count for "shlo" instruction. */
|
||
static char buf[5]; /* Literal for first operand. */
|
||
static char buf2[5]; /* Literal for second operand. */
|
||
expressionS e; /* Parsed expression. */
|
||
|
||
arg[3] = NULL; /* So we can tell at the end if it got used or not. */
|
||
|
||
parse_expr (arg[1], &e);
|
||
switch (e.X_op)
|
||
{
|
||
default:
|
||
/* We're dependent on one or more symbols -- use "lda". */
|
||
arg[0] = (char *) "lda";
|
||
break;
|
||
|
||
case O_constant:
|
||
/* Try the following mappings:
|
||
ldconst 0,<reg> -> mov 0,<reg>
|
||
ldconst 31,<reg> -> mov 31,<reg>
|
||
ldconst 32,<reg> -> addo 1,31,<reg>
|
||
ldconst 62,<reg> -> addo 31,31,<reg>
|
||
ldconst 64,<reg> -> shlo 8,3,<reg>
|
||
ldconst -1,<reg> -> subo 1,0,<reg>
|
||
ldconst -31,<reg> -> subo 31,0,<reg>
|
||
|
||
Anything else becomes:
|
||
lda xxx,<reg>. */
|
||
n = offs (e);
|
||
if ((0 <= n) && (n <= 31))
|
||
arg[0] = (char *) "mov";
|
||
else if ((-31 <= n) && (n <= -1))
|
||
{
|
||
arg[0] = (char *) "subo";
|
||
arg[3] = arg[2];
|
||
sprintf (buf, "%d", -n);
|
||
arg[1] = buf;
|
||
arg[2] = (char *) "0";
|
||
}
|
||
else if ((32 <= n) && (n <= 62))
|
||
{
|
||
arg[0] = (char *) "addo";
|
||
arg[3] = arg[2];
|
||
arg[1] = (char *) "31";
|
||
sprintf (buf, "%d", n - 31);
|
||
arg[2] = buf;
|
||
}
|
||
else if ((shift = shift_ok (n)) != 0)
|
||
{
|
||
arg[0] = (char *) "shlo";
|
||
arg[3] = arg[2];
|
||
sprintf (buf, "%d", shift);
|
||
arg[1] = buf;
|
||
sprintf (buf2, "%d", n >> shift);
|
||
arg[2] = buf2;
|
||
}
|
||
else
|
||
arg[0] = (char *) "lda";
|
||
break;
|
||
|
||
case O_illegal:
|
||
as_bad (_("invalid constant"));
|
||
return -1;
|
||
break;
|
||
}
|
||
return (arg[3] == 0) ? 2 : 3;
|
||
}
|
||
|
||
/* reg_fmt: generate a REG-format instruction. */
|
||
|
||
static void
|
||
reg_fmt (char *args[], /* args[0]->opcode mnemonic, args[1-3]->operands. */
|
||
struct i960_opcode *oP)/* Pointer to description of instruction. */
|
||
{
|
||
long instr; /* Binary to be output. */
|
||
struct regop regop; /* Description of register operand. */
|
||
int n_ops; /* Number of operands. */
|
||
|
||
instr = oP->opcode;
|
||
n_ops = oP->num_ops;
|
||
|
||
if (n_ops >= 1)
|
||
{
|
||
parse_regop (®op, args[1], oP->operand[0]);
|
||
|
||
if ((n_ops == 1) && !(instr & M3))
|
||
{
|
||
/* 1-operand instruction in which the dst field should
|
||
be used (instead of src1). */
|
||
regop.n <<= 19;
|
||
if (regop.special)
|
||
regop.mode = regop.special;
|
||
regop.mode <<= 13;
|
||
regop.special = 0;
|
||
}
|
||
else
|
||
{
|
||
/* regop.n goes in bit 0, needs no shifting. */
|
||
regop.mode <<= 11;
|
||
regop.special <<= 5;
|
||
}
|
||
instr |= regop.n | regop.mode | regop.special;
|
||
}
|
||
|
||
if (n_ops >= 2)
|
||
{
|
||
parse_regop (®op, args[2], oP->operand[1]);
|
||
|
||
if ((n_ops == 2) && !(instr & M3))
|
||
{
|
||
/* 2-operand instruction in which the dst field should
|
||
be used instead of src2). */
|
||
regop.n <<= 19;
|
||
if (regop.special)
|
||
regop.mode = regop.special;
|
||
regop.mode <<= 13;
|
||
regop.special = 0;
|
||
}
|
||
else
|
||
{
|
||
regop.n <<= 14;
|
||
regop.mode <<= 12;
|
||
regop.special <<= 6;
|
||
}
|
||
instr |= regop.n | regop.mode | regop.special;
|
||
}
|
||
if (n_ops == 3)
|
||
{
|
||
parse_regop (®op, args[3], oP->operand[2]);
|
||
if (regop.special)
|
||
regop.mode = regop.special;
|
||
instr |= (regop.n <<= 19) | (regop.mode <<= 13);
|
||
}
|
||
emit (instr);
|
||
}
|
||
|
||
/* get_args: break individual arguments out of comma-separated list
|
||
|
||
Input assumptions:
|
||
- all comments and labels have been removed
|
||
- all strings of whitespace have been collapsed to a single blank.
|
||
- all character constants ('x') have been replaced with decimal
|
||
|
||
Output:
|
||
args[0] is untouched. args[1] points to first operand, etc. All args:
|
||
- are NULL-terminated
|
||
- contain no whitespace
|
||
|
||
Return value:
|
||
Number of operands (0,1,2, or 3) or -1 on error. */
|
||
|
||
static int
|
||
get_args (char *p, /* Pointer to comma-separated operands; Mucked by us. */
|
||
char *args[]) /* Output arg: pointers to operands placed in args[1-3].
|
||
Must accommodate 4 entries (args[0-3]). */
|
||
|
||
{
|
||
int n; /* Number of operands. */
|
||
char *to;
|
||
|
||
/* Skip lead white space. */
|
||
while (*p == ' ')
|
||
p++;
|
||
|
||
if (*p == '\0')
|
||
return 0;
|
||
|
||
n = 1;
|
||
args[1] = p;
|
||
|
||
/* Squeeze blanks out by moving non-blanks toward start of string.
|
||
Isolate operands, whenever comma is found. */
|
||
to = p;
|
||
while (*p != '\0')
|
||
{
|
||
if (*p == ' '
|
||
&& (! ISALNUM (p[1])
|
||
|| ! ISALNUM (p[-1])))
|
||
p++;
|
||
else if (*p == ',')
|
||
{
|
||
/* Start of operand. */
|
||
if (n == 3)
|
||
{
|
||
as_bad (_("too many operands"));
|
||
return -1;
|
||
}
|
||
*to++ = '\0'; /* Terminate argument. */
|
||
args[++n] = to; /* Start next argument. */
|
||
p++;
|
||
}
|
||
else
|
||
*to++ = *p++;
|
||
}
|
||
*to = '\0';
|
||
return n;
|
||
}
|
||
|
||
/* i_scan: perform lexical scan of ascii assembler instruction.
|
||
|
||
Input assumptions:
|
||
- input string is an i80960 instruction (not a pseudo-op)
|
||
- all comments and labels have been removed
|
||
- all strings of whitespace have been collapsed to a single blank.
|
||
|
||
Output:
|
||
args[0] points to opcode, other entries point to operands. All strings:
|
||
- are NULL-terminated
|
||
- contain no whitespace
|
||
- have character constants ('x') replaced with a decimal number
|
||
|
||
Return value:
|
||
Number of operands (0,1,2, or 3) or -1 on error. */
|
||
|
||
static int
|
||
i_scan (char *iP, /* Pointer to ascii instruction; Mucked by us. */
|
||
char *args[]) /* Output arg: pointers to opcode and operands placed here.
|
||
Must accommodate 4 entries. */
|
||
{
|
||
/* Isolate opcode. */
|
||
if (*(iP) == ' ')
|
||
iP++;
|
||
|
||
args[0] = iP;
|
||
for (; *iP != ' '; iP++)
|
||
{
|
||
if (*iP == '\0')
|
||
{
|
||
/* There are no operands. */
|
||
if (args[0] == iP)
|
||
{
|
||
/* We never moved: there was no opcode either! */
|
||
as_bad (_("missing opcode"));
|
||
return -1;
|
||
}
|
||
return 0;
|
||
}
|
||
}
|
||
*iP++ = '\0';
|
||
return (get_args (iP, args));
|
||
}
|
||
|
||
static void
|
||
brcnt_emit (void)
|
||
{
|
||
/* Emit call to "increment" routine. */
|
||
ctrl_fmt (BR_CNT_FUNC, CALL, 1);
|
||
/* Emit inline counter to be incremented. */
|
||
emit (0);
|
||
}
|
||
|
||
static char *
|
||
brlab_next (void)
|
||
{
|
||
static char buf[20];
|
||
|
||
sprintf (buf, "%s%d", BR_LABEL_BASE, br_cnt++);
|
||
return buf;
|
||
}
|
||
|
||
static void
|
||
ctrl_fmt (const char *targP, /* Pointer to text of lone operand (if any). */
|
||
long opcode, /* Template of instruction. */
|
||
int num_ops) /* Number of operands. */
|
||
{
|
||
int instrument; /* TRUE iff we should add instrumentation to track
|
||
how often the branch is taken. */
|
||
|
||
if (num_ops == 0)
|
||
emit (opcode); /* Output opcode. */
|
||
else
|
||
{
|
||
instrument = instrument_branches && (opcode != CALL)
|
||
&& (opcode != B) && (opcode != RET) && (opcode != BAL);
|
||
|
||
if (instrument)
|
||
{
|
||
brcnt_emit ();
|
||
colon (brlab_next ());
|
||
}
|
||
|
||
/* The operand MUST be an ip-relative displacement. Parse it
|
||
and set up address fix for the instruction we just output. */
|
||
get_cdisp (targP, "CTRL", opcode, 24, 0, 0);
|
||
|
||
if (instrument)
|
||
brcnt_emit ();
|
||
}
|
||
}
|
||
|
||
static void
|
||
cobr_fmt (/* arg[0]->opcode mnemonic, arg[1-3]->operands (ascii) */
|
||
char *arg[],
|
||
/* Opcode, with branch-prediction bits already set if necessary. */
|
||
long opcode,
|
||
/* Pointer to description of instruction. */
|
||
struct i960_opcode *oP)
|
||
{
|
||
long instr; /* 32-bit instruction. */
|
||
struct regop regop; /* Description of register operand. */
|
||
int n; /* Number of operands. */
|
||
int var_frag; /* 1 if varying length code fragment should
|
||
be emitted; 0 if an address fix
|
||
should be emitted. */
|
||
|
||
instr = opcode;
|
||
n = oP->num_ops;
|
||
|
||
if (n >= 1)
|
||
{
|
||
/* First operand (if any) of a COBR is always a register
|
||
operand. Parse it. */
|
||
parse_regop (®op, arg[1], oP->operand[0]);
|
||
instr |= (regop.n << 19) | (regop.mode << 13);
|
||
}
|
||
|
||
if (n >= 2)
|
||
{
|
||
/* Second operand (if any) of a COBR is always a register
|
||
operand. Parse it. */
|
||
parse_regop (®op, arg[2], oP->operand[1]);
|
||
instr |= (regop.n << 14) | regop.special;
|
||
}
|
||
|
||
if (n < 3)
|
||
emit (instr);
|
||
else
|
||
{
|
||
if (instrument_branches)
|
||
{
|
||
brcnt_emit ();
|
||
colon (brlab_next ());
|
||
}
|
||
|
||
/* A third operand to a COBR is always a displacement. Parse
|
||
it; if it's relaxable (a cobr "j" directive, or any cobr
|
||
other than bbs/bbc when the "-norelax" option is not in use)
|
||
set up a variable code fragment; otherwise set up an address
|
||
fix. */
|
||
var_frag = !norelax || (oP->format == COJ); /* TRUE or FALSE */
|
||
get_cdisp (arg[3], "COBR", instr, 13, var_frag, 0);
|
||
|
||
if (instrument_branches)
|
||
brcnt_emit ();
|
||
}
|
||
}
|
||
|
||
/* Assumptions about the passed-in text:
|
||
- all comments, labels removed
|
||
- text is an instruction
|
||
- all white space compressed to single blanks
|
||
- all character constants have been replaced with decimal. */
|
||
|
||
void
|
||
md_assemble (char *textP)
|
||
{
|
||
/* Parsed instruction text, containing NO whitespace: arg[0]->opcode
|
||
mnemonic arg[1-3]->operands, with char constants replaced by
|
||
decimal numbers. */
|
||
char *args[4];
|
||
/* Number of instruction operands. */
|
||
int n_ops;
|
||
/* Pointer to instruction description. */
|
||
struct i960_opcode *oP;
|
||
/* TRUE iff opcode mnemonic included branch-prediction suffix (".f"
|
||
or ".t"). */
|
||
int branch_predict;
|
||
/* Setting of branch-prediction bit(s) to be OR'd into instruction
|
||
opcode of CTRL/COBR format instructions. */
|
||
long bp_bits;
|
||
/* Offset of last character in opcode mnemonic. */
|
||
int n;
|
||
const char *bp_error_msg = _("branch prediction invalid on this opcode");
|
||
|
||
/* Parse instruction into opcode and operands. */
|
||
memset (args, '\0', sizeof (args));
|
||
|
||
n_ops = i_scan (textP, args);
|
||
|
||
if (n_ops == -1)
|
||
return; /* Error message already issued. */
|
||
|
||
/* Do "macro substitution" (sort of) on 'ldconst' pseudo-instruction. */
|
||
if (!strcmp (args[0], "ldconst"))
|
||
{
|
||
n_ops = parse_ldconst (args);
|
||
if (n_ops == -1)
|
||
return;
|
||
}
|
||
|
||
/* Check for branch-prediction suffix on opcode mnemonic, strip it off. */
|
||
n = strlen (args[0]) - 1;
|
||
branch_predict = 0;
|
||
bp_bits = 0;
|
||
|
||
if (args[0][n - 1] == '.' && (args[0][n] == 't' || args[0][n] == 'f'))
|
||
{
|
||
/* We could check here to see if the target architecture
|
||
supports branch prediction, but why bother? The bit will
|
||
just be ignored by processors that don't use it. */
|
||
branch_predict = 1;
|
||
bp_bits = (args[0][n] == 't') ? BP_TAKEN : BP_NOT_TAKEN;
|
||
args[0][n - 1] = '\0'; /* Strip suffix from opcode mnemonic */
|
||
}
|
||
|
||
/* Look up opcode mnemonic in table and check number of operands.
|
||
Check that opcode is legal for the target architecture. If all
|
||
looks good, assemble instruction. */
|
||
oP = (struct i960_opcode *) hash_find (op_hash, args[0]);
|
||
if (!oP || !targ_has_iclass (oP->iclass))
|
||
as_bad (_("invalid opcode, \"%s\"."), args[0]);
|
||
else if (n_ops != oP->num_ops)
|
||
as_bad (_("improper number of operands. Expecting %d, got %d"),
|
||
oP->num_ops, n_ops);
|
||
else
|
||
{
|
||
switch (oP->format)
|
||
{
|
||
case FBRA:
|
||
case CTRL:
|
||
ctrl_fmt (args[1], oP->opcode | bp_bits, oP->num_ops);
|
||
if (oP->format == FBRA)
|
||
/* Now generate a 'bno' to same arg */
|
||
ctrl_fmt (args[1], BNO | bp_bits, 1);
|
||
break;
|
||
case COBR:
|
||
case COJ:
|
||
cobr_fmt (args, oP->opcode | bp_bits, oP);
|
||
break;
|
||
case REG:
|
||
if (branch_predict)
|
||
as_warn ("%s", bp_error_msg);
|
||
reg_fmt (args, oP);
|
||
break;
|
||
case MEM1:
|
||
if (args[0][0] == 'c' && args[0][1] == 'a')
|
||
{
|
||
if (branch_predict)
|
||
as_warn ("%s", bp_error_msg);
|
||
mem_fmt (args, oP, 1);
|
||
break;
|
||
}
|
||
/* Fall through. */
|
||
case MEM2:
|
||
case MEM4:
|
||
case MEM8:
|
||
case MEM12:
|
||
case MEM16:
|
||
if (branch_predict)
|
||
as_warn ("%s", bp_error_msg);
|
||
mem_fmt (args, oP, 0);
|
||
break;
|
||
case CALLJ:
|
||
if (branch_predict)
|
||
as_warn ("%s", bp_error_msg);
|
||
/* Output opcode & set up "fixup" (relocation); flag
|
||
relocation as 'callj' type. */
|
||
know (oP->num_ops == 1);
|
||
get_cdisp (args[1], "CTRL", oP->opcode, 24, 0, 1);
|
||
break;
|
||
default:
|
||
BAD_CASE (oP->format);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
void
|
||
md_number_to_chars (char *buf,
|
||
valueT value,
|
||
int n)
|
||
{
|
||
number_to_chars_littleendian (buf, value, n);
|
||
}
|
||
|
||
const char *
|
||
md_atof (int type, char *litP, int *sizeP)
|
||
{
|
||
return ieee_md_atof (type, litP, sizeP, FALSE);
|
||
}
|
||
|
||
static void
|
||
md_number_to_imm (char *buf, long val, int n)
|
||
{
|
||
md_number_to_chars (buf, val, n);
|
||
}
|
||
|
||
static void
|
||
md_number_to_field (char *instrP, /* Pointer to instruction to be fixed. */
|
||
long val, /* Address fixup value. */
|
||
bit_fixS *bfixP) /* Description of bit field to be fixed up. */
|
||
{
|
||
int numbits; /* Length of bit field to be fixed. */
|
||
long instr; /* 32-bit instruction to be fixed-up. */
|
||
long sign; /* 0 or -1, according to sign bit of 'val'. */
|
||
|
||
/* Convert instruction back to host byte order. */
|
||
instr = md_chars_to_number (instrP, 4);
|
||
|
||
/* Surprise! -- we stored the number of bits to be modified rather
|
||
than a pointer to a structure. */
|
||
numbits = (int) (size_t) bfixP;
|
||
if (numbits == 1)
|
||
/* This is a no-op, stuck here by reloc_callj(). */
|
||
return;
|
||
|
||
know ((numbits == 13) || (numbits == 24));
|
||
|
||
/* Propagate sign bit of 'val' for the given number of bits. Result
|
||
should be all 0 or all 1. */
|
||
sign = val >> ((int) numbits - 1);
|
||
if (((val < 0) && (sign != -1))
|
||
|| ((val > 0) && (sign != 0)))
|
||
as_bad (_("Fixup of %ld too large for field width of %d"),
|
||
val, numbits);
|
||
else
|
||
{
|
||
/* Put bit field into instruction and write back in target
|
||
* byte order. */
|
||
val &= ~(-(1 << (int) numbits)); /* Clear unused sign bits. */
|
||
instr |= val;
|
||
md_number_to_chars (instrP, instr, 4);
|
||
}
|
||
}
|
||
|
||
|
||
/* md_parse_option
|
||
Invocation line includes a switch not recognized by the base assembler.
|
||
See if it's a processor-specific option. For the 960, these are:
|
||
|
||
-norelax:
|
||
Conditional branch instructions that require displacements
|
||
greater than 13 bits (or that have external targets) should
|
||
generate errors. The default is to replace each such
|
||
instruction with the corresponding compare (or chkbit) and
|
||
branch instructions. Note that the Intel "j" cobr directives
|
||
are ALWAYS "de-optimized" in this way when necessary,
|
||
regardless of the setting of this option.
|
||
|
||
-b:
|
||
Add code to collect information about branches taken, for
|
||
later optimization of branch prediction bits by a separate
|
||
tool. COBR and CNTL format instructions have branch
|
||
prediction bits (in the CX architecture); if "BR" represents
|
||
an instruction in one of these classes, the following rep-
|
||
resents the code generated by the assembler:
|
||
|
||
call <increment routine>
|
||
.word 0 # pre-counter
|
||
Label: BR
|
||
call <increment routine>
|
||
.word 0 # post-counter
|
||
|
||
A table of all such "Labels" is also generated.
|
||
|
||
-AKA, -AKB, -AKC, -ASA, -ASB, -AMC, -ACA:
|
||
Select the 80960 architecture. Instructions or features not
|
||
supported by the selected architecture cause fatal errors.
|
||
The default is to generate code for any instruction or feature
|
||
that is supported by SOME version of the 960 (even if this
|
||
means mixing architectures!). */
|
||
|
||
const char *md_shortopts = "A:b";
|
||
struct option md_longopts[] =
|
||
{
|
||
#define OPTION_LINKRELAX (OPTION_MD_BASE)
|
||
{"linkrelax", no_argument, NULL, OPTION_LINKRELAX},
|
||
{"link-relax", no_argument, NULL, OPTION_LINKRELAX},
|
||
#define OPTION_NORELAX (OPTION_MD_BASE + 1)
|
||
{"norelax", no_argument, NULL, OPTION_NORELAX},
|
||
{"no-relax", no_argument, NULL, OPTION_NORELAX},
|
||
{NULL, no_argument, NULL, 0}
|
||
};
|
||
size_t md_longopts_size = sizeof (md_longopts);
|
||
|
||
struct tabentry
|
||
{
|
||
const char *flag;
|
||
int arch;
|
||
};
|
||
static const struct tabentry arch_tab[] =
|
||
{
|
||
{"KA", ARCH_KA},
|
||
{"KB", ARCH_KB},
|
||
{"SA", ARCH_KA}, /* Synonym for KA. */
|
||
{"SB", ARCH_KB}, /* Synonym for KB. */
|
||
{"KC", ARCH_MC}, /* Synonym for MC. */
|
||
{"MC", ARCH_MC},
|
||
{"CA", ARCH_CA},
|
||
{"JX", ARCH_JX},
|
||
{"HX", ARCH_HX},
|
||
{NULL, 0}
|
||
};
|
||
|
||
int
|
||
md_parse_option (int c, const char *arg)
|
||
{
|
||
switch (c)
|
||
{
|
||
case OPTION_LINKRELAX:
|
||
linkrelax = 1;
|
||
flag_keep_locals = 1;
|
||
break;
|
||
|
||
case OPTION_NORELAX:
|
||
norelax = 1;
|
||
break;
|
||
|
||
case 'b':
|
||
instrument_branches = 1;
|
||
break;
|
||
|
||
case 'A':
|
||
{
|
||
const struct tabentry *tp;
|
||
const char *p = arg;
|
||
|
||
for (tp = arch_tab; tp->flag != NULL; tp++)
|
||
if (!strcmp (p, tp->flag))
|
||
break;
|
||
|
||
if (tp->flag == NULL)
|
||
{
|
||
as_bad (_("invalid architecture %s"), p);
|
||
return 0;
|
||
}
|
||
else
|
||
architecture = tp->arch;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
void
|
||
md_show_usage (FILE *stream)
|
||
{
|
||
int i;
|
||
|
||
fprintf (stream, _("I960 options:\n"));
|
||
for (i = 0; arch_tab[i].flag; i++)
|
||
fprintf (stream, "%s-A%s", i ? " | " : "", arch_tab[i].flag);
|
||
fprintf (stream, _("\n\
|
||
specify variant of 960 architecture\n\
|
||
-b add code to collect statistics about branches taken\n\
|
||
-link-relax preserve individual alignment directives so linker\n\
|
||
can do relaxing (b.out format only)\n\
|
||
-no-relax don't alter compare-and-branch instructions for\n\
|
||
long displacements\n"));
|
||
}
|
||
|
||
/* relax_cobr:
|
||
Replace cobr instruction in a code fragment with equivalent branch and
|
||
compare instructions, so it can reach beyond a 13-bit displacement.
|
||
Set up an address fix/relocation for the new branch instruction. */
|
||
|
||
/* This "conditional jump" table maps cobr instructions into
|
||
equivalent compare and branch opcodes. */
|
||
|
||
static const
|
||
struct
|
||
{
|
||
long compare;
|
||
long branch;
|
||
}
|
||
|
||
coj[] =
|
||
{ /* COBR OPCODE: */
|
||
{ CHKBIT, BNO }, /* 0x30 - bbc */
|
||
{ CMPO, BG }, /* 0x31 - cmpobg */
|
||
{ CMPO, BE }, /* 0x32 - cmpobe */
|
||
{ CMPO, BGE }, /* 0x33 - cmpobge */
|
||
{ CMPO, BL }, /* 0x34 - cmpobl */
|
||
{ CMPO, BNE }, /* 0x35 - cmpobne */
|
||
{ CMPO, BLE }, /* 0x36 - cmpoble */
|
||
{ CHKBIT, BO }, /* 0x37 - bbs */
|
||
{ CMPI, BNO }, /* 0x38 - cmpibno */
|
||
{ CMPI, BG }, /* 0x39 - cmpibg */
|
||
{ CMPI, BE }, /* 0x3a - cmpibe */
|
||
{ CMPI, BGE }, /* 0x3b - cmpibge */
|
||
{ CMPI, BL }, /* 0x3c - cmpibl */
|
||
{ CMPI, BNE }, /* 0x3d - cmpibne */
|
||
{ CMPI, BLE }, /* 0x3e - cmpible */
|
||
{ CMPI, BO }, /* 0x3f - cmpibo */
|
||
};
|
||
|
||
static void
|
||
relax_cobr (fragS *fragP) /* fragP->fr_opcode is assumed to point to
|
||
the cobr instruction, which comes at the
|
||
end of the code fragment. */
|
||
{
|
||
int opcode, src1, src2, m1, s2;
|
||
/* Bit fields from cobr instruction. */
|
||
long bp_bits; /* Branch prediction bits from cobr instruction. */
|
||
long instr; /* A single i960 instruction. */
|
||
/* ->instruction to be replaced. */
|
||
char *iP;
|
||
fixS *fixP; /* Relocation that can be done at assembly time. */
|
||
|
||
/* Pick up & parse cobr instruction. */
|
||
iP = fragP->fr_opcode;
|
||
instr = md_chars_to_number (iP, 4);
|
||
opcode = ((instr >> 24) & 0xff) - 0x30; /* "-0x30" for table index. */
|
||
src1 = (instr >> 19) & 0x1f;
|
||
m1 = (instr >> 13) & 1;
|
||
s2 = instr & 1;
|
||
src2 = (instr >> 14) & 0x1f;
|
||
bp_bits = instr & BP_MASK;
|
||
|
||
/* Generate and output compare instruction. */
|
||
instr = coj[opcode].compare
|
||
| src1 | (m1 << 11) | (s2 << 6) | (src2 << 14);
|
||
md_number_to_chars (iP, instr, 4);
|
||
|
||
/* Output branch instruction. */
|
||
md_number_to_chars (iP + 4, coj[opcode].branch | bp_bits, 4);
|
||
|
||
/* Set up address fixup/relocation. */
|
||
fixP = fix_new (fragP,
|
||
iP + 4 - fragP->fr_literal,
|
||
4,
|
||
fragP->fr_symbol,
|
||
fragP->fr_offset,
|
||
1,
|
||
NO_RELOC);
|
||
|
||
fixP->fx_bit_fixP = (bit_fixS *) 24; /* Store size of bit field. */
|
||
|
||
fragP->fr_fix += 4;
|
||
frag_wane (fragP);
|
||
}
|
||
|
||
/* md_convert_frag:
|
||
|
||
Called by base assembler after address relaxation is finished: modify
|
||
variable fragments according to how much relaxation was done.
|
||
|
||
If the fragment substate is still 1, a 13-bit displacement was enough
|
||
to reach the symbol in question. Set up an address fixup, but otherwise
|
||
leave the cobr instruction alone.
|
||
|
||
If the fragment substate is 2, a 13-bit displacement was not enough.
|
||
Replace the cobr with a two instructions (a compare and a branch). */
|
||
|
||
void
|
||
md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED,
|
||
segT sec ATTRIBUTE_UNUSED,
|
||
fragS *fragP)
|
||
{
|
||
/* Structure describing needed address fix. */
|
||
fixS *fixP;
|
||
|
||
switch (fragP->fr_subtype)
|
||
{
|
||
case 1:
|
||
/* Leave single cobr instruction. */
|
||
fixP = fix_new (fragP,
|
||
fragP->fr_opcode - fragP->fr_literal,
|
||
4,
|
||
fragP->fr_symbol,
|
||
fragP->fr_offset,
|
||
1,
|
||
NO_RELOC);
|
||
|
||
fixP->fx_bit_fixP = (bit_fixS *) 13; /* Size of bit field. */
|
||
break;
|
||
case 2:
|
||
/* Replace cobr with compare/branch instructions. */
|
||
relax_cobr (fragP);
|
||
break;
|
||
default:
|
||
BAD_CASE (fragP->fr_subtype);
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* md_estimate_size_before_relax: How much does it look like *fragP will grow?
|
||
|
||
Called by base assembler just before address relaxation.
|
||
Return the amount by which the fragment will grow.
|
||
|
||
Any symbol that is now undefined will not become defined; cobr's
|
||
based on undefined symbols will have to be replaced with a compare
|
||
instruction and a branch instruction, and the code fragment will grow
|
||
by 4 bytes. */
|
||
|
||
int
|
||
md_estimate_size_before_relax (fragS *fragP, segT segment_type)
|
||
{
|
||
/* If symbol is undefined in this segment, go to "relaxed" state
|
||
(compare and branch instructions instead of cobr) right now. */
|
||
if (S_GET_SEGMENT (fragP->fr_symbol) != segment_type)
|
||
{
|
||
relax_cobr (fragP);
|
||
return 4;
|
||
}
|
||
|
||
return md_relax_table[fragP->fr_subtype].rlx_length;
|
||
}
|
||
|
||
#if defined(OBJ_AOUT) | defined(OBJ_BOUT)
|
||
|
||
/* md_ri_to_chars:
|
||
This routine exists in order to overcome machine byte-order problems
|
||
when dealing with bit-field entries in the relocation_info struct.
|
||
|
||
But relocation info will be used on the host machine only (only
|
||
executable code is actually downloaded to the i80960). Therefore,
|
||
we leave it in host byte order. */
|
||
|
||
static void
|
||
md_ri_to_chars (char *where, struct relocation_info *ri)
|
||
{
|
||
host_number_to_chars (where, ri->r_address, 4);
|
||
host_number_to_chars (where + 4, ri->r_index, 3);
|
||
#if WORDS_BIGENDIAN
|
||
where[7] = (ri->r_pcrel << 7
|
||
| ri->r_length << 5
|
||
| ri->r_extern << 4
|
||
| ri->r_bsr << 3
|
||
| ri->r_disp << 2
|
||
| ri->r_callj << 1
|
||
| ri->nuthin << 0);
|
||
#else
|
||
where[7] = (ri->r_pcrel << 0
|
||
| ri->r_length << 1
|
||
| ri->r_extern << 3
|
||
| ri->r_bsr << 4
|
||
| ri->r_disp << 5
|
||
| ri->r_callj << 6
|
||
| ri->nuthin << 7);
|
||
#endif
|
||
}
|
||
|
||
#endif /* defined(OBJ_AOUT) | defined(OBJ_BOUT) */
|
||
|
||
|
||
/* brtab_emit: generate the fetch-prediction branch table.
|
||
|
||
See the comments above the declaration of 'br_cnt' for details on
|
||
branch-prediction instrumentation.
|
||
|
||
The code emitted here would be functionally equivalent to the following
|
||
example assembler source.
|
||
|
||
.data
|
||
.align 2
|
||
BR_TAB_NAME:
|
||
.word 0 # link to next table
|
||
.word 3 # length of table
|
||
.word LBRANCH0 # 1st entry in table proper
|
||
.word LBRANCH1
|
||
.word LBRANCH2 */
|
||
|
||
void
|
||
brtab_emit (void)
|
||
{
|
||
int i;
|
||
char buf[20];
|
||
/* Where the binary was output to. */
|
||
char *p;
|
||
|
||
if (!instrument_branches)
|
||
return;
|
||
|
||
subseg_set (data_section, 0); /* .data */
|
||
frag_align (2, 0, 0); /* .align 2 */
|
||
record_alignment (now_seg, 2);
|
||
colon (BR_TAB_NAME); /* BR_TAB_NAME: */
|
||
emit (0); /* .word 0 #link to next table */
|
||
emit (br_cnt); /* .word n #length of table */
|
||
|
||
for (i = 0; i < br_cnt; i++)
|
||
{
|
||
sprintf (buf, "%s%d", BR_LABEL_BASE, i);
|
||
p = emit (0);
|
||
fix_new (frag_now,
|
||
p - frag_now->fr_literal,
|
||
4, symbol_find (buf), 0, 0, NO_RELOC);
|
||
}
|
||
}
|
||
|
||
/* s_leafproc: process .leafproc pseudo-op
|
||
|
||
.leafproc takes two arguments, the second one is optional:
|
||
arg[1]: name of 'call' entry point to leaf procedure
|
||
arg[2]: name of 'bal' entry point to leaf procedure
|
||
|
||
If the two arguments are identical, or if the second one is missing,
|
||
the first argument is taken to be the 'bal' entry point.
|
||
|
||
If there are 2 distinct arguments, we must make sure that the 'bal'
|
||
entry point immediately follows the 'call' entry point in the linked
|
||
list of symbols. */
|
||
|
||
static void
|
||
s_leafproc (int n_ops, /* Number of operands. */
|
||
char *args[]) /* args[1]->1st operand, args[2]->2nd operand. */
|
||
{
|
||
symbolS *callP; /* Pointer to leafproc 'call' entry point symbol. */
|
||
symbolS *balP; /* Pointer to leafproc 'bal' entry point symbol. */
|
||
|
||
if ((n_ops != 1) && (n_ops != 2))
|
||
{
|
||
as_bad (_("should have 1 or 2 operands"));
|
||
return;
|
||
}
|
||
|
||
/* Find or create symbol for 'call' entry point. */
|
||
callP = symbol_find_or_make (args[1]);
|
||
|
||
if (TC_S_IS_CALLNAME (callP))
|
||
as_warn (_("Redefining leafproc %s"), S_GET_NAME (callP));
|
||
|
||
/* If that was the only argument, use it as the 'bal' entry point.
|
||
Otherwise, mark it as the 'call' entry point and find or create
|
||
another symbol for the 'bal' entry point. */
|
||
if ((n_ops == 1) || !strcmp (args[1], args[2]))
|
||
{
|
||
TC_S_FORCE_TO_BALNAME (callP);
|
||
}
|
||
else
|
||
{
|
||
TC_S_FORCE_TO_CALLNAME (callP);
|
||
|
||
balP = symbol_find_or_make (args[2]);
|
||
if (TC_S_IS_CALLNAME (balP))
|
||
as_warn (_("Redefining leafproc %s"), S_GET_NAME (balP));
|
||
|
||
TC_S_FORCE_TO_BALNAME (balP);
|
||
|
||
#ifndef OBJ_ELF
|
||
tc_set_bal_of_call (callP, balP);
|
||
#endif
|
||
}
|
||
}
|
||
|
||
/* s_sysproc: process .sysproc pseudo-op
|
||
|
||
.sysproc takes two arguments:
|
||
arg[1]: name of entry point to system procedure
|
||
arg[2]: 'entry_num' (index) of system procedure in the range
|
||
[0,31] inclusive.
|
||
|
||
For [ab].out, we store the 'entrynum' in the 'n_other' field of
|
||
the symbol. Since that entry is normally 0, we bias 'entrynum'
|
||
by adding 1 to it. It must be unbiased before it is used. */
|
||
|
||
static void
|
||
s_sysproc (int n_ops, /* Number of operands. */
|
||
char *args[]) /* args[1]->1st operand, args[2]->2nd operand. */
|
||
{
|
||
expressionS exp;
|
||
symbolS *symP;
|
||
|
||
if (n_ops != 2)
|
||
{
|
||
as_bad (_("should have two operands"));
|
||
return;
|
||
}
|
||
|
||
/* Parse "entry_num" argument and check it for validity. */
|
||
parse_expr (args[2], &exp);
|
||
if (exp.X_op != O_constant
|
||
|| (offs (exp) < 0)
|
||
|| (offs (exp) > 31))
|
||
{
|
||
as_bad (_("'entry_num' must be absolute number in [0,31]"));
|
||
return;
|
||
}
|
||
|
||
/* Find/make symbol and stick entry number (biased by +1) into it. */
|
||
symP = symbol_find_or_make (args[1]);
|
||
|
||
if (TC_S_IS_SYSPROC (symP))
|
||
as_warn (_("Redefining entrynum for sysproc %s"), S_GET_NAME (symP));
|
||
|
||
TC_S_SET_SYSPROC (symP, offs (exp)); /* Encode entry number. */
|
||
TC_S_FORCE_TO_SYSPROC (symP);
|
||
}
|
||
|
||
/* parse_po: parse machine-dependent pseudo-op
|
||
|
||
This is a top-level routine for machine-dependent pseudo-ops. It slurps
|
||
up the rest of the input line, breaks out the individual arguments,
|
||
and dispatches them to the correct handler. */
|
||
|
||
static void
|
||
parse_po (int po_num) /* Pseudo-op number: currently S_LEAFPROC or S_SYSPROC. */
|
||
{
|
||
/* Pointers operands, with no embedded whitespace.
|
||
arg[0] unused, arg[1-3]->operands. */
|
||
char *args[4];
|
||
int n_ops; /* Number of operands. */
|
||
char *p; /* Pointer to beginning of unparsed argument string. */
|
||
char eol; /* Character that indicated end of line. */
|
||
|
||
extern char is_end_of_line[];
|
||
|
||
/* Advance input pointer to end of line. */
|
||
p = input_line_pointer;
|
||
while (!is_end_of_line[(unsigned char) *input_line_pointer])
|
||
input_line_pointer++;
|
||
|
||
eol = *input_line_pointer; /* Save end-of-line char. */
|
||
*input_line_pointer = '\0'; /* Terminate argument list. */
|
||
|
||
/* Parse out operands. */
|
||
n_ops = get_args (p, args);
|
||
if (n_ops == -1)
|
||
return;
|
||
|
||
/* Dispatch to correct handler. */
|
||
switch (po_num)
|
||
{
|
||
case S_SYSPROC:
|
||
s_sysproc (n_ops, args);
|
||
break;
|
||
case S_LEAFPROC:
|
||
s_leafproc (n_ops, args);
|
||
break;
|
||
default:
|
||
BAD_CASE (po_num);
|
||
break;
|
||
}
|
||
|
||
/* Restore eol, so line numbers get updated correctly. Base
|
||
assembler assumes we leave input pointer pointing at char
|
||
following the eol. */
|
||
*input_line_pointer++ = eol;
|
||
}
|
||
|
||
/* reloc_callj: Relocate a 'callj' instruction
|
||
|
||
This is a "non-(GNU)-standard" machine-dependent hook. The base
|
||
assembler calls it when it decides it can relocate an address at
|
||
assembly time instead of emitting a relocation directive.
|
||
|
||
Check to see if the relocation involves a 'callj' instruction to a:
|
||
sysproc: Replace the default 'call' instruction with a 'calls'
|
||
leafproc: Replace the default 'call' instruction with a 'bal'.
|
||
other proc: Do nothing.
|
||
|
||
See b.out.h for details on the 'n_other' field in a symbol structure.
|
||
|
||
IMPORTANT!:
|
||
Assumes the caller has already figured out, in the case of a leafproc,
|
||
to use the 'bal' entry point, and has substituted that symbol into the
|
||
passed fixup structure. */
|
||
|
||
int
|
||
reloc_callj (fixS *fixP) /* Relocation that can be done at assembly time. */
|
||
{
|
||
/* Points to the binary for the instruction being relocated. */
|
||
char *where;
|
||
|
||
if (!fixP->fx_tcbit)
|
||
/* This wasn't a callj instruction in the first place. */
|
||
return 0;
|
||
|
||
where = fixP->fx_frag->fr_literal + fixP->fx_where;
|
||
|
||
if (TC_S_IS_SYSPROC (fixP->fx_addsy))
|
||
{
|
||
/* Symbol is a .sysproc: replace 'call' with 'calls'. System
|
||
procedure number is (other-1). */
|
||
md_number_to_chars (where, CALLS | TC_S_GET_SYSPROC (fixP->fx_addsy), 4);
|
||
|
||
/* Nothing else needs to be done for this instruction. Make
|
||
sure 'md_number_to_field()' will perform a no-op. */
|
||
fixP->fx_bit_fixP = (bit_fixS *) 1;
|
||
}
|
||
else if (TC_S_IS_CALLNAME (fixP->fx_addsy))
|
||
{
|
||
/* Should not happen: see block comment above. */
|
||
as_fatal (_("Trying to 'bal' to %s"), S_GET_NAME (fixP->fx_addsy));
|
||
}
|
||
else if (TC_S_IS_BALNAME (fixP->fx_addsy))
|
||
{
|
||
/* Replace 'call' with 'bal'; both instructions have the same
|
||
format, so calling code should complete relocation as if
|
||
nothing happened here. */
|
||
md_number_to_chars (where, BAL, 4);
|
||
}
|
||
else if (TC_S_IS_BADPROC (fixP->fx_addsy))
|
||
as_bad (_("Looks like a proc, but can't tell what kind.\n"));
|
||
|
||
/* Otherwise Symbol is neither a sysproc nor a leafproc. */
|
||
return 0;
|
||
}
|
||
|
||
/* Handle the MRI .endian pseudo-op. */
|
||
|
||
static void
|
||
s_endian (int ignore ATTRIBUTE_UNUSED)
|
||
{
|
||
char *name;
|
||
char c;
|
||
|
||
c = get_symbol_name (&name);
|
||
if (strcasecmp (name, "little") == 0)
|
||
;
|
||
else if (strcasecmp (name, "big") == 0)
|
||
as_bad (_("big endian mode is not supported"));
|
||
else
|
||
as_warn (_("ignoring unrecognized .endian type `%s'"), name);
|
||
|
||
(void) restore_line_pointer (c);
|
||
|
||
demand_empty_rest_of_line ();
|
||
}
|
||
|
||
/* We have no need to default values of symbols. */
|
||
|
||
symbolS *
|
||
md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
/* Exactly what point is a PC-relative offset relative TO?
|
||
On the i960, they're relative to the address of the instruction,
|
||
which we have set up as the address of the fixup too. */
|
||
long
|
||
md_pcrel_from (fixS *fixP)
|
||
{
|
||
return fixP->fx_where + fixP->fx_frag->fr_address;
|
||
}
|
||
|
||
void
|
||
md_apply_fix (fixS *fixP,
|
||
valueT *valP,
|
||
segT seg ATTRIBUTE_UNUSED)
|
||
{
|
||
long val = *valP;
|
||
char *place = fixP->fx_where + fixP->fx_frag->fr_literal;
|
||
|
||
if (!fixP->fx_bit_fixP)
|
||
{
|
||
md_number_to_imm (place, val, fixP->fx_size);
|
||
}
|
||
else if ((int) (size_t) fixP->fx_bit_fixP == 13
|
||
&& fixP->fx_addsy != NULL
|
||
&& S_GET_SEGMENT (fixP->fx_addsy) == undefined_section)
|
||
{
|
||
/* This is a COBR instruction. They have only a
|
||
13-bit displacement and are only to be used
|
||
for local branches: flag as error, don't generate
|
||
relocation. */
|
||
as_bad_where (fixP->fx_file, fixP->fx_line,
|
||
_("can't use COBR format with external label"));
|
||
fixP->fx_addsy = NULL;
|
||
}
|
||
else
|
||
md_number_to_field (place, val, fixP->fx_bit_fixP);
|
||
|
||
if (fixP->fx_addsy == NULL)
|
||
fixP->fx_done = 1;
|
||
}
|
||
|
||
#if defined(OBJ_AOUT) | defined(OBJ_BOUT)
|
||
void
|
||
tc_bout_fix_to_chars (char *where,
|
||
fixS *fixP,
|
||
relax_addressT segment_address_in_file)
|
||
{
|
||
static const unsigned char nbytes_r_length[] = {42, 0, 1, 42, 2};
|
||
struct relocation_info ri;
|
||
symbolS *symbolP;
|
||
|
||
memset ((char *) &ri, '\0', sizeof (ri));
|
||
symbolP = fixP->fx_addsy;
|
||
know (symbolP != 0 || fixP->fx_r_type != NO_RELOC);
|
||
ri.r_bsr = fixP->fx_bsr; /*SAC LD RELAX HACK */
|
||
/* These two 'cuz of NS32K */
|
||
ri.r_callj = fixP->fx_tcbit;
|
||
if (fixP->fx_bit_fixP)
|
||
ri.r_length = 2;
|
||
else
|
||
ri.r_length = nbytes_r_length[fixP->fx_size];
|
||
ri.r_pcrel = fixP->fx_pcrel;
|
||
ri.r_address = fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file;
|
||
|
||
if (fixP->fx_r_type != NO_RELOC)
|
||
{
|
||
switch (fixP->fx_r_type)
|
||
{
|
||
case rs_align:
|
||
ri.r_index = -2;
|
||
ri.r_pcrel = 1;
|
||
ri.r_length = fixP->fx_size - 1;
|
||
break;
|
||
case rs_org:
|
||
ri.r_index = -2;
|
||
ri.r_pcrel = 0;
|
||
break;
|
||
case rs_fill:
|
||
ri.r_index = -1;
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
ri.r_extern = 0;
|
||
}
|
||
else if (linkrelax || !S_IS_DEFINED (symbolP) || fixP->fx_bsr)
|
||
{
|
||
ri.r_extern = 1;
|
||
ri.r_index = symbolP->sy_number;
|
||
}
|
||
else
|
||
{
|
||
ri.r_extern = 0;
|
||
ri.r_index = S_GET_TYPE (symbolP);
|
||
}
|
||
|
||
/* Output the relocation information in machine-dependent form. */
|
||
md_ri_to_chars (where, &ri);
|
||
}
|
||
|
||
#endif /* OBJ_AOUT or OBJ_BOUT */
|
||
|
||
/* Align an address by rounding it up to the specified boundary. */
|
||
|
||
valueT
|
||
md_section_align (segT seg,
|
||
valueT addr) /* Address to be rounded up. */
|
||
{
|
||
int align;
|
||
|
||
align = bfd_get_section_alignment (stdoutput, seg);
|
||
return (addr + (1 << align) - 1) & -(1 << align);
|
||
}
|
||
|
||
extern int coff_flags;
|
||
|
||
/* For aout or bout, the bal immediately follows the call.
|
||
|
||
For coff, we cheat and store a pointer to the bal symbol in the
|
||
second aux entry of the call. */
|
||
|
||
#undef OBJ_ABOUT
|
||
#ifdef OBJ_AOUT
|
||
#define OBJ_ABOUT
|
||
#endif
|
||
#ifdef OBJ_BOUT
|
||
#define OBJ_ABOUT
|
||
#endif
|
||
|
||
void
|
||
tc_set_bal_of_call (symbolS *callP ATTRIBUTE_UNUSED,
|
||
symbolS *balP ATTRIBUTE_UNUSED)
|
||
{
|
||
know (TC_S_IS_CALLNAME (callP));
|
||
know (TC_S_IS_BALNAME (balP));
|
||
|
||
#ifdef OBJ_COFF
|
||
|
||
callP->sy_tc = balP;
|
||
S_SET_NUMBER_AUXILIARY (callP, 2);
|
||
|
||
#else /* ! OBJ_COFF */
|
||
#ifdef OBJ_ABOUT
|
||
|
||
/* If the 'bal' entry doesn't immediately follow the 'call'
|
||
symbol, unlink it from the symbol list and re-insert it. */
|
||
if (symbol_next (callP) != balP)
|
||
{
|
||
symbol_remove (balP, &symbol_rootP, &symbol_lastP);
|
||
symbol_append (balP, callP, &symbol_rootP, &symbol_lastP);
|
||
} /* if not in order */
|
||
|
||
#else /* ! OBJ_ABOUT */
|
||
as_fatal ("Only supported for a.out, b.out, or COFF");
|
||
#endif /* ! OBJ_ABOUT */
|
||
#endif /* ! OBJ_COFF */
|
||
}
|
||
|
||
symbolS *
|
||
tc_get_bal_of_call (symbolS *callP ATTRIBUTE_UNUSED)
|
||
{
|
||
symbolS *retval;
|
||
|
||
know (TC_S_IS_CALLNAME (callP));
|
||
|
||
#ifdef OBJ_COFF
|
||
retval = callP->sy_tc;
|
||
#else
|
||
#ifdef OBJ_ABOUT
|
||
retval = symbol_next (callP);
|
||
#else
|
||
as_fatal ("Only supported for a.out, b.out, or COFF");
|
||
#endif /* ! OBJ_ABOUT */
|
||
#endif /* ! OBJ_COFF */
|
||
|
||
know (TC_S_IS_BALNAME (retval));
|
||
return retval;
|
||
}
|
||
|
||
#ifdef OBJ_COFF
|
||
void
|
||
tc_coff_symbol_emit_hook (symbolS *symbolP ATTRIBUTE_UNUSED)
|
||
{
|
||
if (TC_S_IS_CALLNAME (symbolP))
|
||
{
|
||
symbolS *balP = tc_get_bal_of_call (symbolP);
|
||
|
||
symbolP->sy_symbol.ost_auxent[1].x_bal.x_balntry = S_GET_VALUE (balP);
|
||
if (S_GET_STORAGE_CLASS (symbolP) == C_EXT)
|
||
S_SET_STORAGE_CLASS (symbolP, C_LEAFEXT);
|
||
else
|
||
S_SET_STORAGE_CLASS (symbolP, C_LEAFSTAT);
|
||
S_SET_DATA_TYPE (symbolP, S_GET_DATA_TYPE (symbolP) | (DT_FCN << N_BTSHFT));
|
||
/* Fix up the bal symbol. */
|
||
S_SET_STORAGE_CLASS (balP, C_LABEL);
|
||
}
|
||
}
|
||
#endif /* OBJ_COFF */
|
||
|
||
void
|
||
i960_handle_align (fragS *fragp ATTRIBUTE_UNUSED)
|
||
{
|
||
if (!linkrelax)
|
||
return;
|
||
|
||
#ifndef OBJ_BOUT
|
||
as_bad (_("option --link-relax is only supported in b.out format"));
|
||
linkrelax = 0;
|
||
return;
|
||
#else
|
||
|
||
/* The text section "ends" with another alignment reloc, to which we
|
||
aren't adding padding. */
|
||
if (fragp->fr_next == text_last_frag
|
||
|| fragp->fr_next == data_last_frag)
|
||
return;
|
||
|
||
/* alignment directive */
|
||
fix_new (fragp, fragp->fr_fix, fragp->fr_offset, 0, 0, 0,
|
||
(int) fragp->fr_type);
|
||
#endif /* OBJ_BOUT */
|
||
}
|
||
|
||
int
|
||
i960_validate_fix (fixS *fixP, segT this_segment_type ATTRIBUTE_UNUSED)
|
||
{
|
||
if (fixP->fx_tcbit && TC_S_IS_CALLNAME (fixP->fx_addsy))
|
||
{
|
||
/* Relocation should be done via the associated 'bal'
|
||
entry point symbol. */
|
||
if (!TC_S_IS_BALNAME (tc_get_bal_of_call (fixP->fx_addsy)))
|
||
{
|
||
as_bad_where (fixP->fx_file, fixP->fx_line,
|
||
_("No 'bal' entry point for leafproc %s"),
|
||
S_GET_NAME (fixP->fx_addsy));
|
||
return 0;
|
||
}
|
||
fixP->fx_addsy = tc_get_bal_of_call (fixP->fx_addsy);
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* From cgen.c: */
|
||
|
||
static short
|
||
tc_bfd_fix2rtype (fixS *fixP)
|
||
{
|
||
if (fixP->fx_pcrel == 0 && fixP->fx_size == 4)
|
||
return BFD_RELOC_32;
|
||
|
||
if (fixP->fx_pcrel != 0 && fixP->fx_size == 4)
|
||
return BFD_RELOC_24_PCREL;
|
||
|
||
abort ();
|
||
return 0;
|
||
}
|
||
|
||
/* Translate internal representation of relocation info to BFD target
|
||
format.
|
||
|
||
FIXME: To what extent can we get all relevant targets to use this? */
|
||
|
||
arelent *
|
||
tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixP)
|
||
{
|
||
arelent * reloc;
|
||
|
||
reloc = XNEW (arelent);
|
||
|
||
/* HACK: Is this right? */
|
||
fixP->fx_r_type = tc_bfd_fix2rtype (fixP);
|
||
|
||
reloc->howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
|
||
if (reloc->howto == NULL)
|
||
{
|
||
as_bad_where (fixP->fx_file, fixP->fx_line,
|
||
_("internal error: can't export reloc type %d (`%s')"),
|
||
fixP->fx_r_type,
|
||
bfd_get_reloc_code_name (fixP->fx_r_type));
|
||
return NULL;
|
||
}
|
||
|
||
gas_assert (!fixP->fx_pcrel == !reloc->howto->pc_relative);
|
||
|
||
reloc->sym_ptr_ptr = XNEW (asymbol *);
|
||
*reloc->sym_ptr_ptr = symbol_get_bfdsym (fixP->fx_addsy);
|
||
reloc->address = fixP->fx_frag->fr_address + fixP->fx_where;
|
||
reloc->addend = fixP->fx_addnumber;
|
||
|
||
return reloc;
|
||
}
|
||
|
||
/* end from cgen.c */
|
||
|
||
const pseudo_typeS md_pseudo_table[] =
|
||
{
|
||
{"bss", s_lcomm, 1},
|
||
{"endian", s_endian, 0},
|
||
{"extended", float_cons, 't'},
|
||
{"leafproc", parse_po, S_LEAFPROC},
|
||
{"sysproc", parse_po, S_SYSPROC},
|
||
|
||
{"word", cons, 4},
|
||
{"quad", cons, 16},
|
||
|
||
{0, 0, 0}
|
||
};
|