Retro68/gcc/libstdc++-v3/include/std/functional
2018-12-28 16:30:48 +01:00

1198 lines
37 KiB
C++

// <functional> -*- C++ -*-
// Copyright (C) 2001-2018 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/*
* Copyright (c) 1997
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*/
/** @file include/functional
* This is a Standard C++ Library header.
*/
#ifndef _GLIBCXX_FUNCTIONAL
#define _GLIBCXX_FUNCTIONAL 1
#pragma GCC system_header
#include <bits/c++config.h>
#include <bits/stl_function.h>
#if __cplusplus >= 201103L
#include <new>
#include <tuple>
#include <type_traits>
#include <bits/functional_hash.h>
#include <bits/invoke.h>
#include <bits/refwrap.h> // std::reference_wrapper and _Mem_fn_traits
#include <bits/std_function.h> // std::function
#if __cplusplus > 201402L
# include <unordered_map>
# include <vector>
# include <array>
# include <utility>
# include <bits/stl_algo.h>
#endif
namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
#if __cplusplus > 201402L
# define __cpp_lib_invoke 201411
/// Invoke a callable object.
template<typename _Callable, typename... _Args>
inline invoke_result_t<_Callable, _Args...>
invoke(_Callable&& __fn, _Args&&... __args)
noexcept(is_nothrow_invocable_v<_Callable, _Args...>)
{
return std::__invoke(std::forward<_Callable>(__fn),
std::forward<_Args>(__args)...);
}
#endif
template<typename _MemFunPtr,
bool __is_mem_fn = is_member_function_pointer<_MemFunPtr>::value>
class _Mem_fn_base
: public _Mem_fn_traits<_MemFunPtr>::__maybe_type
{
using _Traits = _Mem_fn_traits<_MemFunPtr>;
using _Arity = typename _Traits::__arity;
using _Varargs = typename _Traits::__vararg;
template<typename _Func, typename... _BoundArgs>
friend struct _Bind_check_arity;
_MemFunPtr _M_pmf;
public:
using result_type = typename _Traits::__result_type;
explicit constexpr
_Mem_fn_base(_MemFunPtr __pmf) noexcept : _M_pmf(__pmf) { }
template<typename... _Args>
auto
operator()(_Args&&... __args) const
noexcept(noexcept(
std::__invoke(_M_pmf, std::forward<_Args>(__args)...)))
-> decltype(std::__invoke(_M_pmf, std::forward<_Args>(__args)...))
{ return std::__invoke(_M_pmf, std::forward<_Args>(__args)...); }
};
// Partial specialization for member object pointers.
template<typename _MemObjPtr>
class _Mem_fn_base<_MemObjPtr, false>
{
using _Arity = integral_constant<size_t, 0>;
using _Varargs = false_type;
template<typename _Func, typename... _BoundArgs>
friend struct _Bind_check_arity;
_MemObjPtr _M_pm;
public:
explicit constexpr
_Mem_fn_base(_MemObjPtr __pm) noexcept : _M_pm(__pm) { }
template<typename _Tp>
auto
operator()(_Tp&& __obj) const
noexcept(noexcept(std::__invoke(_M_pm, std::forward<_Tp>(__obj))))
-> decltype(std::__invoke(_M_pm, std::forward<_Tp>(__obj)))
{ return std::__invoke(_M_pm, std::forward<_Tp>(__obj)); }
};
template<typename _MemberPointer>
struct _Mem_fn; // undefined
template<typename _Res, typename _Class>
struct _Mem_fn<_Res _Class::*>
: _Mem_fn_base<_Res _Class::*>
{
using _Mem_fn_base<_Res _Class::*>::_Mem_fn_base;
};
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// 2048. Unnecessary mem_fn overloads
/**
* @brief Returns a function object that forwards to the member
* pointer @a pm.
* @ingroup functors
*/
template<typename _Tp, typename _Class>
inline _Mem_fn<_Tp _Class::*>
mem_fn(_Tp _Class::* __pm) noexcept
{
return _Mem_fn<_Tp _Class::*>(__pm);
}
/**
* @brief Determines if the given type _Tp is a function object that
* should be treated as a subexpression when evaluating calls to
* function objects returned by bind().
*
* C++11 [func.bind.isbind].
* @ingroup binders
*/
template<typename _Tp>
struct is_bind_expression
: public false_type { };
/**
* @brief Determines if the given type _Tp is a placeholder in a
* bind() expression and, if so, which placeholder it is.
*
* C++11 [func.bind.isplace].
* @ingroup binders
*/
template<typename _Tp>
struct is_placeholder
: public integral_constant<int, 0>
{ };
#if __cplusplus > 201402L
template <typename _Tp> inline constexpr bool is_bind_expression_v
= is_bind_expression<_Tp>::value;
template <typename _Tp> inline constexpr int is_placeholder_v
= is_placeholder<_Tp>::value;
#endif // C++17
/** @brief The type of placeholder objects defined by libstdc++.
* @ingroup binders
*/
template<int _Num> struct _Placeholder { };
/** @namespace std::placeholders
* @brief ISO C++11 entities sub-namespace for functional.
* @ingroup binders
*/
namespace placeholders
{
/* Define a large number of placeholders. There is no way to
* simplify this with variadic templates, because we're introducing
* unique names for each.
*/
extern const _Placeholder<1> _1;
extern const _Placeholder<2> _2;
extern const _Placeholder<3> _3;
extern const _Placeholder<4> _4;
extern const _Placeholder<5> _5;
extern const _Placeholder<6> _6;
extern const _Placeholder<7> _7;
extern const _Placeholder<8> _8;
extern const _Placeholder<9> _9;
extern const _Placeholder<10> _10;
extern const _Placeholder<11> _11;
extern const _Placeholder<12> _12;
extern const _Placeholder<13> _13;
extern const _Placeholder<14> _14;
extern const _Placeholder<15> _15;
extern const _Placeholder<16> _16;
extern const _Placeholder<17> _17;
extern const _Placeholder<18> _18;
extern const _Placeholder<19> _19;
extern const _Placeholder<20> _20;
extern const _Placeholder<21> _21;
extern const _Placeholder<22> _22;
extern const _Placeholder<23> _23;
extern const _Placeholder<24> _24;
extern const _Placeholder<25> _25;
extern const _Placeholder<26> _26;
extern const _Placeholder<27> _27;
extern const _Placeholder<28> _28;
extern const _Placeholder<29> _29;
}
/**
* Partial specialization of is_placeholder that provides the placeholder
* number for the placeholder objects defined by libstdc++.
* @ingroup binders
*/
template<int _Num>
struct is_placeholder<_Placeholder<_Num> >
: public integral_constant<int, _Num>
{ };
template<int _Num>
struct is_placeholder<const _Placeholder<_Num> >
: public integral_constant<int, _Num>
{ };
// Like tuple_element_t but SFINAE-friendly.
template<std::size_t __i, typename _Tuple>
using _Safe_tuple_element_t
= typename enable_if<(__i < tuple_size<_Tuple>::value),
tuple_element<__i, _Tuple>>::type::type;
/**
* Maps an argument to bind() into an actual argument to the bound
* function object [func.bind.bind]/10. Only the first parameter should
* be specified: the rest are used to determine among the various
* implementations. Note that, although this class is a function
* object, it isn't entirely normal because it takes only two
* parameters regardless of the number of parameters passed to the
* bind expression. The first parameter is the bound argument and
* the second parameter is a tuple containing references to the
* rest of the arguments.
*/
template<typename _Arg,
bool _IsBindExp = is_bind_expression<_Arg>::value,
bool _IsPlaceholder = (is_placeholder<_Arg>::value > 0)>
class _Mu;
/**
* If the argument is reference_wrapper<_Tp>, returns the
* underlying reference.
* C++11 [func.bind.bind] p10 bullet 1.
*/
template<typename _Tp>
class _Mu<reference_wrapper<_Tp>, false, false>
{
public:
/* Note: This won't actually work for const volatile
* reference_wrappers, because reference_wrapper::get() is const
* but not volatile-qualified. This might be a defect in the TR.
*/
template<typename _CVRef, typename _Tuple>
_Tp&
operator()(_CVRef& __arg, _Tuple&) const volatile
{ return __arg.get(); }
};
/**
* If the argument is a bind expression, we invoke the underlying
* function object with the same cv-qualifiers as we are given and
* pass along all of our arguments (unwrapped).
* C++11 [func.bind.bind] p10 bullet 2.
*/
template<typename _Arg>
class _Mu<_Arg, true, false>
{
public:
template<typename _CVArg, typename... _Args>
auto
operator()(_CVArg& __arg,
tuple<_Args...>& __tuple) const volatile
-> decltype(__arg(declval<_Args>()...))
{
// Construct an index tuple and forward to __call
typedef typename _Build_index_tuple<sizeof...(_Args)>::__type
_Indexes;
return this->__call(__arg, __tuple, _Indexes());
}
private:
// Invokes the underlying function object __arg by unpacking all
// of the arguments in the tuple.
template<typename _CVArg, typename... _Args, std::size_t... _Indexes>
auto
__call(_CVArg& __arg, tuple<_Args...>& __tuple,
const _Index_tuple<_Indexes...>&) const volatile
-> decltype(__arg(declval<_Args>()...))
{
return __arg(std::get<_Indexes>(std::move(__tuple))...);
}
};
/**
* If the argument is a placeholder for the Nth argument, returns
* a reference to the Nth argument to the bind function object.
* C++11 [func.bind.bind] p10 bullet 3.
*/
template<typename _Arg>
class _Mu<_Arg, false, true>
{
public:
template<typename _Tuple>
_Safe_tuple_element_t<(is_placeholder<_Arg>::value - 1), _Tuple>&&
operator()(const volatile _Arg&, _Tuple& __tuple) const volatile
{
return
::std::get<(is_placeholder<_Arg>::value - 1)>(std::move(__tuple));
}
};
/**
* If the argument is just a value, returns a reference to that
* value. The cv-qualifiers on the reference are determined by the caller.
* C++11 [func.bind.bind] p10 bullet 4.
*/
template<typename _Arg>
class _Mu<_Arg, false, false>
{
public:
template<typename _CVArg, typename _Tuple>
_CVArg&&
operator()(_CVArg&& __arg, _Tuple&) const volatile
{ return std::forward<_CVArg>(__arg); }
};
// std::get<I> for volatile-qualified tuples
template<std::size_t _Ind, typename... _Tp>
inline auto
__volget(volatile tuple<_Tp...>& __tuple)
-> __tuple_element_t<_Ind, tuple<_Tp...>> volatile&
{ return std::get<_Ind>(const_cast<tuple<_Tp...>&>(__tuple)); }
// std::get<I> for const-volatile-qualified tuples
template<std::size_t _Ind, typename... _Tp>
inline auto
__volget(const volatile tuple<_Tp...>& __tuple)
-> __tuple_element_t<_Ind, tuple<_Tp...>> const volatile&
{ return std::get<_Ind>(const_cast<const tuple<_Tp...>&>(__tuple)); }
/// Type of the function object returned from bind().
template<typename _Signature>
struct _Bind;
template<typename _Functor, typename... _Bound_args>
class _Bind<_Functor(_Bound_args...)>
: public _Weak_result_type<_Functor>
{
typedef typename _Build_index_tuple<sizeof...(_Bound_args)>::__type
_Bound_indexes;
_Functor _M_f;
tuple<_Bound_args...> _M_bound_args;
// Call unqualified
template<typename _Result, typename... _Args, std::size_t... _Indexes>
_Result
__call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>)
{
return std::__invoke(_M_f,
_Mu<_Bound_args>()(std::get<_Indexes>(_M_bound_args), __args)...
);
}
// Call as const
template<typename _Result, typename... _Args, std::size_t... _Indexes>
_Result
__call_c(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>) const
{
return std::__invoke(_M_f,
_Mu<_Bound_args>()(std::get<_Indexes>(_M_bound_args), __args)...
);
}
// Call as volatile
template<typename _Result, typename... _Args, std::size_t... _Indexes>
_Result
__call_v(tuple<_Args...>&& __args,
_Index_tuple<_Indexes...>) volatile
{
return std::__invoke(_M_f,
_Mu<_Bound_args>()(__volget<_Indexes>(_M_bound_args), __args)...
);
}
// Call as const volatile
template<typename _Result, typename... _Args, std::size_t... _Indexes>
_Result
__call_c_v(tuple<_Args...>&& __args,
_Index_tuple<_Indexes...>) const volatile
{
return std::__invoke(_M_f,
_Mu<_Bound_args>()(__volget<_Indexes>(_M_bound_args), __args)...
);
}
template<typename _BoundArg, typename _CallArgs>
using _Mu_type = decltype(
_Mu<typename remove_cv<_BoundArg>::type>()(
std::declval<_BoundArg&>(), std::declval<_CallArgs&>()) );
template<typename _Fn, typename _CallArgs, typename... _BArgs>
using _Res_type_impl
= typename result_of< _Fn&(_Mu_type<_BArgs, _CallArgs>&&...) >::type;
template<typename _CallArgs>
using _Res_type = _Res_type_impl<_Functor, _CallArgs, _Bound_args...>;
template<typename _CallArgs>
using __dependent = typename
enable_if<bool(tuple_size<_CallArgs>::value+1), _Functor>::type;
template<typename _CallArgs, template<class> class __cv_quals>
using _Res_type_cv = _Res_type_impl<
typename __cv_quals<__dependent<_CallArgs>>::type,
_CallArgs,
typename __cv_quals<_Bound_args>::type...>;
public:
template<typename... _Args>
explicit _Bind(const _Functor& __f, _Args&&... __args)
: _M_f(__f), _M_bound_args(std::forward<_Args>(__args)...)
{ }
template<typename... _Args>
explicit _Bind(_Functor&& __f, _Args&&... __args)
: _M_f(std::move(__f)), _M_bound_args(std::forward<_Args>(__args)...)
{ }
_Bind(const _Bind&) = default;
_Bind(_Bind&& __b)
: _M_f(std::move(__b._M_f)), _M_bound_args(std::move(__b._M_bound_args))
{ }
// Call unqualified
template<typename... _Args,
typename _Result = _Res_type<tuple<_Args...>>>
_Result
operator()(_Args&&... __args)
{
return this->__call<_Result>(
std::forward_as_tuple(std::forward<_Args>(__args)...),
_Bound_indexes());
}
// Call as const
template<typename... _Args,
typename _Result = _Res_type_cv<tuple<_Args...>, add_const>>
_Result
operator()(_Args&&... __args) const
{
return this->__call_c<_Result>(
std::forward_as_tuple(std::forward<_Args>(__args)...),
_Bound_indexes());
}
#if __cplusplus > 201402L
# define _GLIBCXX_DEPR_BIND \
[[deprecated("std::bind does not support volatile in C++17")]]
#else
# define _GLIBCXX_DEPR_BIND
#endif
// Call as volatile
template<typename... _Args,
typename _Result = _Res_type_cv<tuple<_Args...>, add_volatile>>
_GLIBCXX_DEPR_BIND
_Result
operator()(_Args&&... __args) volatile
{
return this->__call_v<_Result>(
std::forward_as_tuple(std::forward<_Args>(__args)...),
_Bound_indexes());
}
// Call as const volatile
template<typename... _Args,
typename _Result = _Res_type_cv<tuple<_Args...>, add_cv>>
_GLIBCXX_DEPR_BIND
_Result
operator()(_Args&&... __args) const volatile
{
return this->__call_c_v<_Result>(
std::forward_as_tuple(std::forward<_Args>(__args)...),
_Bound_indexes());
}
};
/// Type of the function object returned from bind<R>().
template<typename _Result, typename _Signature>
struct _Bind_result;
template<typename _Result, typename _Functor, typename... _Bound_args>
class _Bind_result<_Result, _Functor(_Bound_args...)>
{
typedef typename _Build_index_tuple<sizeof...(_Bound_args)>::__type
_Bound_indexes;
_Functor _M_f;
tuple<_Bound_args...> _M_bound_args;
// sfinae types
template<typename _Res>
using __enable_if_void
= typename enable_if<is_void<_Res>{}>::type;
template<typename _Res>
using __disable_if_void
= typename enable_if<!is_void<_Res>{}, _Result>::type;
// Call unqualified
template<typename _Res, typename... _Args, std::size_t... _Indexes>
__disable_if_void<_Res>
__call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>)
{
return std::__invoke(_M_f, _Mu<_Bound_args>()
(std::get<_Indexes>(_M_bound_args), __args)...);
}
// Call unqualified, return void
template<typename _Res, typename... _Args, std::size_t... _Indexes>
__enable_if_void<_Res>
__call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>)
{
std::__invoke(_M_f, _Mu<_Bound_args>()
(std::get<_Indexes>(_M_bound_args), __args)...);
}
// Call as const
template<typename _Res, typename... _Args, std::size_t... _Indexes>
__disable_if_void<_Res>
__call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>) const
{
return std::__invoke(_M_f, _Mu<_Bound_args>()
(std::get<_Indexes>(_M_bound_args), __args)...);
}
// Call as const, return void
template<typename _Res, typename... _Args, std::size_t... _Indexes>
__enable_if_void<_Res>
__call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>) const
{
std::__invoke(_M_f, _Mu<_Bound_args>()
(std::get<_Indexes>(_M_bound_args), __args)...);
}
// Call as volatile
template<typename _Res, typename... _Args, std::size_t... _Indexes>
__disable_if_void<_Res>
__call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>) volatile
{
return std::__invoke(_M_f, _Mu<_Bound_args>()
(__volget<_Indexes>(_M_bound_args), __args)...);
}
// Call as volatile, return void
template<typename _Res, typename... _Args, std::size_t... _Indexes>
__enable_if_void<_Res>
__call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>) volatile
{
std::__invoke(_M_f, _Mu<_Bound_args>()
(__volget<_Indexes>(_M_bound_args), __args)...);
}
// Call as const volatile
template<typename _Res, typename... _Args, std::size_t... _Indexes>
__disable_if_void<_Res>
__call(tuple<_Args...>&& __args,
_Index_tuple<_Indexes...>) const volatile
{
return std::__invoke(_M_f, _Mu<_Bound_args>()
(__volget<_Indexes>(_M_bound_args), __args)...);
}
// Call as const volatile, return void
template<typename _Res, typename... _Args, std::size_t... _Indexes>
__enable_if_void<_Res>
__call(tuple<_Args...>&& __args,
_Index_tuple<_Indexes...>) const volatile
{
std::__invoke(_M_f, _Mu<_Bound_args>()
(__volget<_Indexes>(_M_bound_args), __args)...);
}
public:
typedef _Result result_type;
template<typename... _Args>
explicit _Bind_result(const _Functor& __f, _Args&&... __args)
: _M_f(__f), _M_bound_args(std::forward<_Args>(__args)...)
{ }
template<typename... _Args>
explicit _Bind_result(_Functor&& __f, _Args&&... __args)
: _M_f(std::move(__f)), _M_bound_args(std::forward<_Args>(__args)...)
{ }
_Bind_result(const _Bind_result&) = default;
_Bind_result(_Bind_result&& __b)
: _M_f(std::move(__b._M_f)), _M_bound_args(std::move(__b._M_bound_args))
{ }
// Call unqualified
template<typename... _Args>
result_type
operator()(_Args&&... __args)
{
return this->__call<_Result>(
std::forward_as_tuple(std::forward<_Args>(__args)...),
_Bound_indexes());
}
// Call as const
template<typename... _Args>
result_type
operator()(_Args&&... __args) const
{
return this->__call<_Result>(
std::forward_as_tuple(std::forward<_Args>(__args)...),
_Bound_indexes());
}
// Call as volatile
template<typename... _Args>
_GLIBCXX_DEPR_BIND
result_type
operator()(_Args&&... __args) volatile
{
return this->__call<_Result>(
std::forward_as_tuple(std::forward<_Args>(__args)...),
_Bound_indexes());
}
// Call as const volatile
template<typename... _Args>
_GLIBCXX_DEPR_BIND
result_type
operator()(_Args&&... __args) const volatile
{
return this->__call<_Result>(
std::forward_as_tuple(std::forward<_Args>(__args)...),
_Bound_indexes());
}
};
#undef _GLIBCXX_DEPR_BIND
/**
* @brief Class template _Bind is always a bind expression.
* @ingroup binders
*/
template<typename _Signature>
struct is_bind_expression<_Bind<_Signature> >
: public true_type { };
/**
* @brief Class template _Bind is always a bind expression.
* @ingroup binders
*/
template<typename _Signature>
struct is_bind_expression<const _Bind<_Signature> >
: public true_type { };
/**
* @brief Class template _Bind is always a bind expression.
* @ingroup binders
*/
template<typename _Signature>
struct is_bind_expression<volatile _Bind<_Signature> >
: public true_type { };
/**
* @brief Class template _Bind is always a bind expression.
* @ingroup binders
*/
template<typename _Signature>
struct is_bind_expression<const volatile _Bind<_Signature>>
: public true_type { };
/**
* @brief Class template _Bind_result is always a bind expression.
* @ingroup binders
*/
template<typename _Result, typename _Signature>
struct is_bind_expression<_Bind_result<_Result, _Signature>>
: public true_type { };
/**
* @brief Class template _Bind_result is always a bind expression.
* @ingroup binders
*/
template<typename _Result, typename _Signature>
struct is_bind_expression<const _Bind_result<_Result, _Signature>>
: public true_type { };
/**
* @brief Class template _Bind_result is always a bind expression.
* @ingroup binders
*/
template<typename _Result, typename _Signature>
struct is_bind_expression<volatile _Bind_result<_Result, _Signature>>
: public true_type { };
/**
* @brief Class template _Bind_result is always a bind expression.
* @ingroup binders
*/
template<typename _Result, typename _Signature>
struct is_bind_expression<const volatile _Bind_result<_Result, _Signature>>
: public true_type { };
template<typename _Func, typename... _BoundArgs>
struct _Bind_check_arity { };
template<typename _Ret, typename... _Args, typename... _BoundArgs>
struct _Bind_check_arity<_Ret (*)(_Args...), _BoundArgs...>
{
static_assert(sizeof...(_BoundArgs) == sizeof...(_Args),
"Wrong number of arguments for function");
};
template<typename _Ret, typename... _Args, typename... _BoundArgs>
struct _Bind_check_arity<_Ret (*)(_Args......), _BoundArgs...>
{
static_assert(sizeof...(_BoundArgs) >= sizeof...(_Args),
"Wrong number of arguments for function");
};
template<typename _Tp, typename _Class, typename... _BoundArgs>
struct _Bind_check_arity<_Tp _Class::*, _BoundArgs...>
{
using _Arity = typename _Mem_fn<_Tp _Class::*>::_Arity;
using _Varargs = typename _Mem_fn<_Tp _Class::*>::_Varargs;
static_assert(_Varargs::value
? sizeof...(_BoundArgs) >= _Arity::value + 1
: sizeof...(_BoundArgs) == _Arity::value + 1,
"Wrong number of arguments for pointer-to-member");
};
// Trait type used to remove std::bind() from overload set via SFINAE
// when first argument has integer type, so that std::bind() will
// not be a better match than ::bind() from the BSD Sockets API.
template<typename _Tp, typename _Tp2 = typename decay<_Tp>::type>
using __is_socketlike = __or_<is_integral<_Tp2>, is_enum<_Tp2>>;
template<bool _SocketLike, typename _Func, typename... _BoundArgs>
struct _Bind_helper
: _Bind_check_arity<typename decay<_Func>::type, _BoundArgs...>
{
typedef typename decay<_Func>::type __func_type;
typedef _Bind<__func_type(typename decay<_BoundArgs>::type...)> type;
};
// Partial specialization for is_socketlike == true, does not define
// nested type so std::bind() will not participate in overload resolution
// when the first argument might be a socket file descriptor.
template<typename _Func, typename... _BoundArgs>
struct _Bind_helper<true, _Func, _BoundArgs...>
{ };
/**
* @brief Function template for std::bind.
* @ingroup binders
*/
template<typename _Func, typename... _BoundArgs>
inline typename
_Bind_helper<__is_socketlike<_Func>::value, _Func, _BoundArgs...>::type
bind(_Func&& __f, _BoundArgs&&... __args)
{
typedef _Bind_helper<false, _Func, _BoundArgs...> __helper_type;
return typename __helper_type::type(std::forward<_Func>(__f),
std::forward<_BoundArgs>(__args)...);
}
template<typename _Result, typename _Func, typename... _BoundArgs>
struct _Bindres_helper
: _Bind_check_arity<typename decay<_Func>::type, _BoundArgs...>
{
typedef typename decay<_Func>::type __functor_type;
typedef _Bind_result<_Result,
__functor_type(typename decay<_BoundArgs>::type...)>
type;
};
/**
* @brief Function template for std::bind<R>.
* @ingroup binders
*/
template<typename _Result, typename _Func, typename... _BoundArgs>
inline
typename _Bindres_helper<_Result, _Func, _BoundArgs...>::type
bind(_Func&& __f, _BoundArgs&&... __args)
{
typedef _Bindres_helper<_Result, _Func, _BoundArgs...> __helper_type;
return typename __helper_type::type(std::forward<_Func>(__f),
std::forward<_BoundArgs>(__args)...);
}
#if __cplusplus >= 201402L
/// Generalized negator.
template<typename _Fn>
class _Not_fn
{
template<typename _Fn2, typename... _Args>
using __inv_res_t = typename __invoke_result<_Fn2, _Args...>::type;
template<typename _Tp>
static decltype(!std::declval<_Tp>())
_S_not() noexcept(noexcept(!std::declval<_Tp>()));
public:
template<typename _Fn2>
_Not_fn(_Fn2&& __fn, int)
: _M_fn(std::forward<_Fn2>(__fn)) { }
_Not_fn(const _Not_fn& __fn) = default;
_Not_fn(_Not_fn&& __fn) = default;
~_Not_fn() = default;
// Macro to define operator() with given cv-qualifiers ref-qualifiers,
// forwarding _M_fn and the function arguments with the same qualifiers,
// and deducing the return type and exception-specification.
#define _GLIBCXX_NOT_FN_CALL_OP( _QUALS ) \
template<typename... _Args> \
decltype(_S_not<__inv_res_t<_Fn _QUALS, _Args...>>()) \
operator()(_Args&&... __args) _QUALS \
noexcept(noexcept(_S_not<__inv_res_t<_Fn _QUALS, _Args...>>())) \
{ \
return !std::__invoke(std::forward< _Fn _QUALS >(_M_fn), \
std::forward<_Args>(__args)...); \
}
_GLIBCXX_NOT_FN_CALL_OP( & )
_GLIBCXX_NOT_FN_CALL_OP( const & )
_GLIBCXX_NOT_FN_CALL_OP( && )
_GLIBCXX_NOT_FN_CALL_OP( const && )
#undef _GLIBCXX_NOT_FN_CALL
private:
_Fn _M_fn;
};
template<typename _Tp, typename _Pred>
struct __is_byte_like : false_type { };
template<typename _Tp>
struct __is_byte_like<_Tp, equal_to<_Tp>>
: __bool_constant<sizeof(_Tp) == 1 && is_integral<_Tp>::value> { };
template<typename _Tp>
struct __is_byte_like<_Tp, equal_to<void>>
: __bool_constant<sizeof(_Tp) == 1 && is_integral<_Tp>::value> { };
#if __cplusplus >= 201703L
// Declare std::byte (full definition is in <cstddef>).
enum class byte : unsigned char;
template<>
struct __is_byte_like<byte, equal_to<byte>>
: true_type { };
template<>
struct __is_byte_like<byte, equal_to<void>>
: true_type { };
#define __cpp_lib_not_fn 201603
/// [func.not_fn] Function template not_fn
template<typename _Fn>
inline auto
not_fn(_Fn&& __fn)
noexcept(std::is_nothrow_constructible<std::decay_t<_Fn>, _Fn&&>::value)
{
return _Not_fn<std::decay_t<_Fn>>{std::forward<_Fn>(__fn), 0};
}
// Searchers
#define __cpp_lib_boyer_moore_searcher 201603
template<typename _ForwardIterator1, typename _BinaryPredicate = equal_to<>>
class default_searcher
{
public:
default_searcher(_ForwardIterator1 __pat_first,
_ForwardIterator1 __pat_last,
_BinaryPredicate __pred = _BinaryPredicate())
: _M_m(__pat_first, __pat_last, std::move(__pred))
{ }
template<typename _ForwardIterator2>
pair<_ForwardIterator2, _ForwardIterator2>
operator()(_ForwardIterator2 __first, _ForwardIterator2 __last) const
{
_ForwardIterator2 __first_ret =
std::search(__first, __last, std::get<0>(_M_m), std::get<1>(_M_m),
std::get<2>(_M_m));
auto __ret = std::make_pair(__first_ret, __first_ret);
if (__ret.first != __last)
std::advance(__ret.second, std::distance(std::get<0>(_M_m),
std::get<1>(_M_m)));
return __ret;
}
private:
tuple<_ForwardIterator1, _ForwardIterator1, _BinaryPredicate> _M_m;
};
template<typename _Key, typename _Tp, typename _Hash, typename _Pred>
struct __boyer_moore_map_base
{
template<typename _RAIter>
__boyer_moore_map_base(_RAIter __pat, size_t __patlen,
_Hash&& __hf, _Pred&& __pred)
: _M_bad_char{ __patlen, std::move(__hf), std::move(__pred) }
{
if (__patlen > 0)
for (__diff_type __i = 0; __i < __patlen - 1; ++__i)
_M_bad_char[__pat[__i]] = __patlen - 1 - __i;
}
using __diff_type = _Tp;
__diff_type
_M_lookup(_Key __key, __diff_type __not_found) const
{
auto __iter = _M_bad_char.find(__key);
if (__iter == _M_bad_char.end())
return __not_found;
return __iter->second;
}
_Pred
_M_pred() const { return _M_bad_char.key_eq(); }
_GLIBCXX_STD_C::unordered_map<_Key, _Tp, _Hash, _Pred> _M_bad_char;
};
template<typename _Tp, size_t _Len, typename _Pred>
struct __boyer_moore_array_base
{
template<typename _RAIter, typename _Unused>
__boyer_moore_array_base(_RAIter __pat, size_t __patlen,
_Unused&&, _Pred&& __pred)
: _M_bad_char{ _GLIBCXX_STD_C::array<_Tp, _Len>{}, std::move(__pred) }
{
std::get<0>(_M_bad_char).fill(__patlen);
if (__patlen > 0)
for (__diff_type __i = 0; __i < __patlen - 1; ++__i)
{
auto __ch = __pat[__i];
using _UCh = make_unsigned_t<decltype(__ch)>;
auto __uch = static_cast<_UCh>(__ch);
std::get<0>(_M_bad_char)[__uch] = __patlen - 1 - __i;
}
}
using __diff_type = _Tp;
template<typename _Key>
__diff_type
_M_lookup(_Key __key, __diff_type __not_found) const
{
auto __ukey = static_cast<make_unsigned_t<_Key>>(__key);
if (__ukey >= _Len)
return __not_found;
return std::get<0>(_M_bad_char)[__ukey];
}
const _Pred&
_M_pred() const { return std::get<1>(_M_bad_char); }
tuple<_GLIBCXX_STD_C::array<_Tp, _Len>, _Pred> _M_bad_char;
};
// Use __boyer_moore_array_base when pattern consists of narrow characters
// (or std::byte) and uses std::equal_to as the predicate.
template<typename _RAIter, typename _Hash, typename _Pred,
typename _Val = typename iterator_traits<_RAIter>::value_type,
typename _Diff = typename iterator_traits<_RAIter>::difference_type>
using __boyer_moore_base_t
= conditional_t<__is_byte_like<_Val, _Pred>::value,
__boyer_moore_array_base<_Diff, 256, _Pred>,
__boyer_moore_map_base<_Val, _Diff, _Hash, _Pred>>;
template<typename _RAIter, typename _Hash
= hash<typename iterator_traits<_RAIter>::value_type>,
typename _BinaryPredicate = equal_to<>>
class boyer_moore_searcher
: __boyer_moore_base_t<_RAIter, _Hash, _BinaryPredicate>
{
using _Base = __boyer_moore_base_t<_RAIter, _Hash, _BinaryPredicate>;
using typename _Base::__diff_type;
public:
boyer_moore_searcher(_RAIter __pat_first, _RAIter __pat_last,
_Hash __hf = _Hash(),
_BinaryPredicate __pred = _BinaryPredicate());
template<typename _RandomAccessIterator2>
pair<_RandomAccessIterator2, _RandomAccessIterator2>
operator()(_RandomAccessIterator2 __first,
_RandomAccessIterator2 __last) const;
private:
bool
_M_is_prefix(_RAIter __word, __diff_type __len,
__diff_type __pos)
{
const auto& __pred = this->_M_pred();
__diff_type __suffixlen = __len - __pos;
for (__diff_type __i = 0; __i < __suffixlen; ++__i)
if (!__pred(__word[__i], __word[__pos + __i]))
return false;
return true;
}
__diff_type
_M_suffix_length(_RAIter __word, __diff_type __len,
__diff_type __pos)
{
const auto& __pred = this->_M_pred();
__diff_type __i = 0;
while (__pred(__word[__pos - __i], __word[__len - 1 - __i])
&& __i < __pos)
{
++__i;
}
return __i;
}
template<typename _Tp>
__diff_type
_M_bad_char_shift(_Tp __c) const
{ return this->_M_lookup(__c, _M_pat_end - _M_pat); }
_RAIter _M_pat;
_RAIter _M_pat_end;
_GLIBCXX_STD_C::vector<__diff_type> _M_good_suffix;
};
template<typename _RAIter, typename _Hash
= hash<typename iterator_traits<_RAIter>::value_type>,
typename _BinaryPredicate = equal_to<>>
class boyer_moore_horspool_searcher
: __boyer_moore_base_t<_RAIter, _Hash, _BinaryPredicate>
{
using _Base = __boyer_moore_base_t<_RAIter, _Hash, _BinaryPredicate>;
using typename _Base::__diff_type;
public:
boyer_moore_horspool_searcher(_RAIter __pat,
_RAIter __pat_end,
_Hash __hf = _Hash(),
_BinaryPredicate __pred
= _BinaryPredicate())
: _Base(__pat, __pat_end - __pat, std::move(__hf), std::move(__pred)),
_M_pat(__pat), _M_pat_end(__pat_end)
{ }
template<typename _RandomAccessIterator2>
pair<_RandomAccessIterator2, _RandomAccessIterator2>
operator()(_RandomAccessIterator2 __first,
_RandomAccessIterator2 __last) const
{
const auto& __pred = this->_M_pred();
auto __patlen = _M_pat_end - _M_pat;
if (__patlen == 0)
return std::make_pair(__first, __first);
auto __len = __last - __first;
while (__len >= __patlen)
{
for (auto __scan = __patlen - 1;
__pred(__first[__scan], _M_pat[__scan]); --__scan)
if (__scan == 0)
return std::make_pair(__first, __first + __patlen);
auto __shift = _M_bad_char_shift(__first[__patlen - 1]);
__len -= __shift;
__first += __shift;
}
return std::make_pair(__last, __last);
}
private:
template<typename _Tp>
__diff_type
_M_bad_char_shift(_Tp __c) const
{ return this->_M_lookup(__c, _M_pat_end - _M_pat); }
_RAIter _M_pat;
_RAIter _M_pat_end;
};
template<typename _RAIter, typename _Hash, typename _BinaryPredicate>
boyer_moore_searcher<_RAIter, _Hash, _BinaryPredicate>::
boyer_moore_searcher(_RAIter __pat, _RAIter __pat_end,
_Hash __hf, _BinaryPredicate __pred)
: _Base(__pat, __pat_end - __pat, std::move(__hf), std::move(__pred)),
_M_pat(__pat), _M_pat_end(__pat_end), _M_good_suffix(__pat_end - __pat)
{
auto __patlen = __pat_end - __pat;
if (__patlen == 0)
return;
__diff_type __last_prefix = __patlen - 1;
for (__diff_type __p = __patlen - 1; __p >= 0; --__p)
{
if (_M_is_prefix(__pat, __patlen, __p + 1))
__last_prefix = __p + 1;
_M_good_suffix[__p] = __last_prefix + (__patlen - 1 - __p);
}
for (__diff_type __p = 0; __p < __patlen - 1; ++__p)
{
auto __slen = _M_suffix_length(__pat, __patlen, __p);
auto __pos = __patlen - 1 - __slen;
if (!__pred(__pat[__p - __slen], __pat[__pos]))
_M_good_suffix[__pos] = __patlen - 1 - __p + __slen;
}
}
template<typename _RAIter, typename _Hash, typename _BinaryPredicate>
template<typename _RandomAccessIterator2>
pair<_RandomAccessIterator2, _RandomAccessIterator2>
boyer_moore_searcher<_RAIter, _Hash, _BinaryPredicate>::
operator()(_RandomAccessIterator2 __first,
_RandomAccessIterator2 __last) const
{
auto __patlen = _M_pat_end - _M_pat;
if (__patlen == 0)
return std::make_pair(__first, __first);
const auto& __pred = this->_M_pred();
__diff_type __i = __patlen - 1;
auto __stringlen = __last - __first;
while (__i < __stringlen)
{
__diff_type __j = __patlen - 1;
while (__j >= 0 && __pred(__first[__i], _M_pat[__j]))
{
--__i;
--__j;
}
if (__j < 0)
{
const auto __match = __first + __i + 1;
return std::make_pair(__match, __match + __patlen);
}
__i += std::max(_M_bad_char_shift(__first[__i]),
_M_good_suffix[__j]);
}
return std::make_pair(__last, __last);
}
#endif // C++17
#endif // C++14
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std
#endif // C++11
#endif // _GLIBCXX_FUNCTIONAL