Retro68/gcc/libgo/go/runtime/mem_gccgo.go
2018-12-28 16:30:48 +01:00

294 lines
9.2 KiB
Go

// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// The gccgo version of mem_*.go.
package runtime
import (
"runtime/internal/sys"
"unsafe"
)
// Functions called by C code.
//go:linkname sysAlloc runtime.sysAlloc
//go:linkname sysFree runtime.sysFree
//extern mmap
func sysMmap(addr unsafe.Pointer, n uintptr, prot, flags, fd int32, off uintptr) unsafe.Pointer
//extern munmap
func munmap(addr unsafe.Pointer, length uintptr) int32
//extern mincore
func mincore(addr unsafe.Pointer, n uintptr, dst *byte) int32
//extern madvise
func madvise(addr unsafe.Pointer, n uintptr, flags int32) int32
var mmapFD = int32(-1)
var devZero = []byte("/dev/zero\x00")
func init() {
if _MAP_ANON == 0 {
mmapFD = open(&devZero[0], 0 /* O_RDONLY */, 0)
if mmapFD < 0 {
println("open /dev/zero: errno=", errno())
exit(2)
}
}
}
func mmap(addr unsafe.Pointer, n uintptr, prot, flags, fd int32, off uintptr) (unsafe.Pointer, int) {
p := sysMmap(addr, n, prot, flags, fd, off)
if uintptr(p) == _MAP_FAILED {
return nil, errno()
}
return p, 0
}
// NOTE: vec must be just 1 byte long here.
// Mincore returns ENOMEM if any of the pages are unmapped,
// but we want to know that all of the pages are unmapped.
// To make these the same, we can only ask about one page
// at a time. See golang.org/issue/7476.
var addrspace_vec [1]byte
func addrspace_free(v unsafe.Pointer, n uintptr) bool {
for off := uintptr(0); off < n; off += physPageSize {
// Use a length of 1 byte, which the kernel will round
// up to one physical page regardless of the true
// physical page size.
errval := 0
if mincore(unsafe.Pointer(uintptr(v)+off), 1, &addrspace_vec[0]) < 0 {
errval = errno()
}
if errval == _ENOSYS {
// mincore is not available on this system.
// Assume the address is available.
return true
}
if errval == _EINVAL {
// Address is not a multiple of the physical
// page size. Shouldn't happen, but just ignore it.
continue
}
// ENOMEM means unmapped, which is what we want.
// Anything else we assume means the pages are mapped.
if errval != _ENOMEM {
return false
}
}
return true
}
func mmap_fixed(v unsafe.Pointer, n uintptr, prot, flags, fd int32, offset uintptr) (unsafe.Pointer, int) {
p, err := mmap(v, n, prot, flags, fd, offset)
// On some systems, mmap ignores v without
// MAP_FIXED, so retry if the address space is free.
if p != v && addrspace_free(v, n) {
if err == 0 {
munmap(p, n)
}
p, err = mmap(v, n, prot, flags|_MAP_FIXED, fd, offset)
}
return p, err
}
// Don't split the stack as this method may be invoked without a valid G, which
// prevents us from allocating more stack.
//go:nosplit
func sysAlloc(n uintptr, sysStat *uint64) unsafe.Pointer {
p, err := mmap(nil, n, _PROT_READ|_PROT_WRITE, _MAP_ANON|_MAP_PRIVATE, mmapFD, 0)
if err != 0 {
if err == _EACCES {
print("runtime: mmap: access denied\n")
exit(2)
}
if err == _EAGAIN {
print("runtime: mmap: too much locked memory (check 'ulimit -l').\n")
exit(2)
}
return nil
}
mSysStatInc(sysStat, n)
return p
}
func sysUnused(v unsafe.Pointer, n uintptr) {
// By default, Linux's "transparent huge page" support will
// merge pages into a huge page if there's even a single
// present regular page, undoing the effects of the DONTNEED
// below. On amd64, that means khugepaged can turn a single
// 4KB page to 2MB, bloating the process's RSS by as much as
// 512X. (See issue #8832 and Linux kernel bug
// https://bugzilla.kernel.org/show_bug.cgi?id=93111)
//
// To work around this, we explicitly disable transparent huge
// pages when we release pages of the heap. However, we have
// to do this carefully because changing this flag tends to
// split the VMA (memory mapping) containing v in to three
// VMAs in order to track the different values of the
// MADV_NOHUGEPAGE flag in the different regions. There's a
// default limit of 65530 VMAs per address space (sysctl
// vm.max_map_count), so we must be careful not to create too
// many VMAs (see issue #12233).
//
// Since huge pages are huge, there's little use in adjusting
// the MADV_NOHUGEPAGE flag on a fine granularity, so we avoid
// exploding the number of VMAs by only adjusting the
// MADV_NOHUGEPAGE flag on a large granularity. This still
// gets most of the benefit of huge pages while keeping the
// number of VMAs under control. With hugePageSize = 2MB, even
// a pessimal heap can reach 128GB before running out of VMAs.
if sys.HugePageSize != 0 && _MADV_NOHUGEPAGE != 0 {
var s uintptr = sys.HugePageSize // division by constant 0 is a compile-time error :(
// If it's a large allocation, we want to leave huge
// pages enabled. Hence, we only adjust the huge page
// flag on the huge pages containing v and v+n-1, and
// only if those aren't aligned.
var head, tail uintptr
if uintptr(v)%s != 0 {
// Compute huge page containing v.
head = uintptr(v) &^ (s - 1)
}
if (uintptr(v)+n)%s != 0 {
// Compute huge page containing v+n-1.
tail = (uintptr(v) + n - 1) &^ (s - 1)
}
// Note that madvise will return EINVAL if the flag is
// already set, which is quite likely. We ignore
// errors.
if head != 0 && head+sys.HugePageSize == tail {
// head and tail are different but adjacent,
// so do this in one call.
madvise(unsafe.Pointer(head), 2*sys.HugePageSize, _MADV_NOHUGEPAGE)
} else {
// Advise the huge pages containing v and v+n-1.
if head != 0 {
madvise(unsafe.Pointer(head), sys.HugePageSize, _MADV_NOHUGEPAGE)
}
if tail != 0 && tail != head {
madvise(unsafe.Pointer(tail), sys.HugePageSize, _MADV_NOHUGEPAGE)
}
}
}
if uintptr(v)&(physPageSize-1) != 0 || n&(physPageSize-1) != 0 {
// madvise will round this to any physical page
// *covered* by this range, so an unaligned madvise
// will release more memory than intended.
throw("unaligned sysUnused")
}
if _MADV_DONTNEED != 0 {
madvise(v, n, _MADV_DONTNEED)
} else if _MADV_FREE != 0 {
madvise(v, n, _MADV_FREE)
}
}
func sysUsed(v unsafe.Pointer, n uintptr) {
if sys.HugePageSize != 0 && _MADV_HUGEPAGE != 0 {
// Partially undo the NOHUGEPAGE marks from sysUnused
// for whole huge pages between v and v+n. This may
// leave huge pages off at the end points v and v+n
// even though allocations may cover these entire huge
// pages. We could detect this and undo NOHUGEPAGE on
// the end points as well, but it's probably not worth
// the cost because when neighboring allocations are
// freed sysUnused will just set NOHUGEPAGE again.
var s uintptr = sys.HugePageSize
// Round v up to a huge page boundary.
beg := (uintptr(v) + (s - 1)) &^ (s - 1)
// Round v+n down to a huge page boundary.
end := (uintptr(v) + n) &^ (s - 1)
if beg < end {
madvise(unsafe.Pointer(beg), end-beg, _MADV_HUGEPAGE)
}
}
}
// Don't split the stack as this function may be invoked without a valid G,
// which prevents us from allocating more stack.
//go:nosplit
func sysFree(v unsafe.Pointer, n uintptr, sysStat *uint64) {
mSysStatDec(sysStat, n)
munmap(v, n)
}
func sysFault(v unsafe.Pointer, n uintptr) {
mmap(v, n, _PROT_NONE, _MAP_ANON|_MAP_PRIVATE|_MAP_FIXED, mmapFD, 0)
}
func sysReserve(v unsafe.Pointer, n uintptr, reserved *bool) unsafe.Pointer {
// On 64-bit, people with ulimit -v set complain if we reserve too
// much address space. Instead, assume that the reservation is okay
// if we can reserve at least 64K and check the assumption in SysMap.
// Only user-mode Linux (UML) rejects these requests.
if sys.PtrSize == 8 && uint64(n) > 1<<32 {
p, err := mmap_fixed(v, 64<<10, _PROT_NONE, _MAP_ANON|_MAP_PRIVATE, mmapFD, 0)
if p != v || err != 0 {
if err == 0 {
munmap(p, 64<<10)
}
return nil
}
munmap(p, 64<<10)
*reserved = false
return v
}
p, err := mmap(v, n, _PROT_NONE, _MAP_ANON|_MAP_PRIVATE, mmapFD, 0)
if err != 0 {
return nil
}
*reserved = true
return p
}
func sysMap(v unsafe.Pointer, n uintptr, reserved bool, sysStat *uint64) {
mSysStatInc(sysStat, n)
// On 64-bit, we don't actually have v reserved, so tread carefully.
if !reserved {
flags := int32(_MAP_ANON | _MAP_PRIVATE)
if GOOS == "dragonfly" {
// TODO(jsing): For some reason DragonFly seems to return
// memory at a different address than we requested, even when
// there should be no reason for it to do so. This can be
// avoided by using MAP_FIXED, but I'm not sure we should need
// to do this - we do not on other platforms.
flags |= _MAP_FIXED
}
p, err := mmap_fixed(v, n, _PROT_READ|_PROT_WRITE, flags, mmapFD, 0)
if err == _ENOMEM {
throw("runtime: out of memory")
}
if p != v || err != 0 {
print("runtime: address space conflict: map(", v, ") = ", p, " (err ", err, ")\n")
throw("runtime: address space conflict")
}
return
}
if GOOS == "aix" {
// AIX does not allow mapping a range that is already mapped.
// So always unmap first even if it is already unmapped.
munmap(v, n)
}
p, err := mmap(v, n, _PROT_READ|_PROT_WRITE, _MAP_ANON|_MAP_FIXED|_MAP_PRIVATE, mmapFD, 0)
if err == _ENOMEM {
throw("runtime: out of memory")
}
if p != v || err != 0 {
throw("runtime: cannot map pages in arena address space")
}
}