mirror of
https://github.com/autc04/Retro68.git
synced 2024-11-24 07:31:32 +00:00
6081 lines
181 KiB
C
6081 lines
181 KiB
C
/* RTL simplification functions for GNU compiler.
|
||
Copyright (C) 1987-2015 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "rtl.h"
|
||
#include "hash-set.h"
|
||
#include "machmode.h"
|
||
#include "vec.h"
|
||
#include "double-int.h"
|
||
#include "input.h"
|
||
#include "alias.h"
|
||
#include "symtab.h"
|
||
#include "wide-int.h"
|
||
#include "inchash.h"
|
||
#include "tree.h"
|
||
#include "fold-const.h"
|
||
#include "varasm.h"
|
||
#include "tm_p.h"
|
||
#include "regs.h"
|
||
#include "hard-reg-set.h"
|
||
#include "flags.h"
|
||
#include "insn-config.h"
|
||
#include "recog.h"
|
||
#include "function.h"
|
||
#include "insn-codes.h"
|
||
#include "optabs.h"
|
||
#include "hashtab.h"
|
||
#include "statistics.h"
|
||
#include "real.h"
|
||
#include "fixed-value.h"
|
||
#include "expmed.h"
|
||
#include "dojump.h"
|
||
#include "explow.h"
|
||
#include "calls.h"
|
||
#include "emit-rtl.h"
|
||
#include "stmt.h"
|
||
#include "expr.h"
|
||
#include "diagnostic-core.h"
|
||
#include "ggc.h"
|
||
#include "target.h"
|
||
#include "predict.h"
|
||
|
||
/* Simplification and canonicalization of RTL. */
|
||
|
||
/* Much code operates on (low, high) pairs; the low value is an
|
||
unsigned wide int, the high value a signed wide int. We
|
||
occasionally need to sign extend from low to high as if low were a
|
||
signed wide int. */
|
||
#define HWI_SIGN_EXTEND(low) \
|
||
((((HOST_WIDE_INT) low) < 0) ? ((HOST_WIDE_INT) -1) : ((HOST_WIDE_INT) 0))
|
||
|
||
static rtx neg_const_int (machine_mode, const_rtx);
|
||
static bool plus_minus_operand_p (const_rtx);
|
||
static bool simplify_plus_minus_op_data_cmp (rtx, rtx);
|
||
static rtx simplify_plus_minus (enum rtx_code, machine_mode, rtx, rtx);
|
||
static rtx simplify_immed_subreg (machine_mode, rtx, machine_mode,
|
||
unsigned int);
|
||
static rtx simplify_associative_operation (enum rtx_code, machine_mode,
|
||
rtx, rtx);
|
||
static rtx simplify_relational_operation_1 (enum rtx_code, machine_mode,
|
||
machine_mode, rtx, rtx);
|
||
static rtx simplify_unary_operation_1 (enum rtx_code, machine_mode, rtx);
|
||
static rtx simplify_binary_operation_1 (enum rtx_code, machine_mode,
|
||
rtx, rtx, rtx, rtx);
|
||
|
||
/* Negate a CONST_INT rtx, truncating (because a conversion from a
|
||
maximally negative number can overflow). */
|
||
static rtx
|
||
neg_const_int (machine_mode mode, const_rtx i)
|
||
{
|
||
return gen_int_mode (-(unsigned HOST_WIDE_INT) INTVAL (i), mode);
|
||
}
|
||
|
||
/* Test whether expression, X, is an immediate constant that represents
|
||
the most significant bit of machine mode MODE. */
|
||
|
||
bool
|
||
mode_signbit_p (machine_mode mode, const_rtx x)
|
||
{
|
||
unsigned HOST_WIDE_INT val;
|
||
unsigned int width;
|
||
|
||
if (GET_MODE_CLASS (mode) != MODE_INT)
|
||
return false;
|
||
|
||
width = GET_MODE_PRECISION (mode);
|
||
if (width == 0)
|
||
return false;
|
||
|
||
if (width <= HOST_BITS_PER_WIDE_INT
|
||
&& CONST_INT_P (x))
|
||
val = INTVAL (x);
|
||
#if TARGET_SUPPORTS_WIDE_INT
|
||
else if (CONST_WIDE_INT_P (x))
|
||
{
|
||
unsigned int i;
|
||
unsigned int elts = CONST_WIDE_INT_NUNITS (x);
|
||
if (elts != (width + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT)
|
||
return false;
|
||
for (i = 0; i < elts - 1; i++)
|
||
if (CONST_WIDE_INT_ELT (x, i) != 0)
|
||
return false;
|
||
val = CONST_WIDE_INT_ELT (x, elts - 1);
|
||
width %= HOST_BITS_PER_WIDE_INT;
|
||
if (width == 0)
|
||
width = HOST_BITS_PER_WIDE_INT;
|
||
}
|
||
#else
|
||
else if (width <= HOST_BITS_PER_DOUBLE_INT
|
||
&& CONST_DOUBLE_AS_INT_P (x)
|
||
&& CONST_DOUBLE_LOW (x) == 0)
|
||
{
|
||
val = CONST_DOUBLE_HIGH (x);
|
||
width -= HOST_BITS_PER_WIDE_INT;
|
||
}
|
||
#endif
|
||
else
|
||
/* X is not an integer constant. */
|
||
return false;
|
||
|
||
if (width < HOST_BITS_PER_WIDE_INT)
|
||
val &= ((unsigned HOST_WIDE_INT) 1 << width) - 1;
|
||
return val == ((unsigned HOST_WIDE_INT) 1 << (width - 1));
|
||
}
|
||
|
||
/* Test whether VAL is equal to the most significant bit of mode MODE
|
||
(after masking with the mode mask of MODE). Returns false if the
|
||
precision of MODE is too large to handle. */
|
||
|
||
bool
|
||
val_signbit_p (machine_mode mode, unsigned HOST_WIDE_INT val)
|
||
{
|
||
unsigned int width;
|
||
|
||
if (GET_MODE_CLASS (mode) != MODE_INT)
|
||
return false;
|
||
|
||
width = GET_MODE_PRECISION (mode);
|
||
if (width == 0 || width > HOST_BITS_PER_WIDE_INT)
|
||
return false;
|
||
|
||
val &= GET_MODE_MASK (mode);
|
||
return val == ((unsigned HOST_WIDE_INT) 1 << (width - 1));
|
||
}
|
||
|
||
/* Test whether the most significant bit of mode MODE is set in VAL.
|
||
Returns false if the precision of MODE is too large to handle. */
|
||
bool
|
||
val_signbit_known_set_p (machine_mode mode, unsigned HOST_WIDE_INT val)
|
||
{
|
||
unsigned int width;
|
||
|
||
if (GET_MODE_CLASS (mode) != MODE_INT)
|
||
return false;
|
||
|
||
width = GET_MODE_PRECISION (mode);
|
||
if (width == 0 || width > HOST_BITS_PER_WIDE_INT)
|
||
return false;
|
||
|
||
val &= (unsigned HOST_WIDE_INT) 1 << (width - 1);
|
||
return val != 0;
|
||
}
|
||
|
||
/* Test whether the most significant bit of mode MODE is clear in VAL.
|
||
Returns false if the precision of MODE is too large to handle. */
|
||
bool
|
||
val_signbit_known_clear_p (machine_mode mode, unsigned HOST_WIDE_INT val)
|
||
{
|
||
unsigned int width;
|
||
|
||
if (GET_MODE_CLASS (mode) != MODE_INT)
|
||
return false;
|
||
|
||
width = GET_MODE_PRECISION (mode);
|
||
if (width == 0 || width > HOST_BITS_PER_WIDE_INT)
|
||
return false;
|
||
|
||
val &= (unsigned HOST_WIDE_INT) 1 << (width - 1);
|
||
return val == 0;
|
||
}
|
||
|
||
/* Make a binary operation by properly ordering the operands and
|
||
seeing if the expression folds. */
|
||
|
||
rtx
|
||
simplify_gen_binary (enum rtx_code code, machine_mode mode, rtx op0,
|
||
rtx op1)
|
||
{
|
||
rtx tem;
|
||
|
||
/* If this simplifies, do it. */
|
||
tem = simplify_binary_operation (code, mode, op0, op1);
|
||
if (tem)
|
||
return tem;
|
||
|
||
/* Put complex operands first and constants second if commutative. */
|
||
if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
|
||
&& swap_commutative_operands_p (op0, op1))
|
||
tem = op0, op0 = op1, op1 = tem;
|
||
|
||
return gen_rtx_fmt_ee (code, mode, op0, op1);
|
||
}
|
||
|
||
/* If X is a MEM referencing the constant pool, return the real value.
|
||
Otherwise return X. */
|
||
rtx
|
||
avoid_constant_pool_reference (rtx x)
|
||
{
|
||
rtx c, tmp, addr;
|
||
machine_mode cmode;
|
||
HOST_WIDE_INT offset = 0;
|
||
|
||
switch (GET_CODE (x))
|
||
{
|
||
case MEM:
|
||
break;
|
||
|
||
case FLOAT_EXTEND:
|
||
/* Handle float extensions of constant pool references. */
|
||
tmp = XEXP (x, 0);
|
||
c = avoid_constant_pool_reference (tmp);
|
||
if (c != tmp && CONST_DOUBLE_AS_FLOAT_P (c))
|
||
{
|
||
REAL_VALUE_TYPE d;
|
||
|
||
REAL_VALUE_FROM_CONST_DOUBLE (d, c);
|
||
return CONST_DOUBLE_FROM_REAL_VALUE (d, GET_MODE (x));
|
||
}
|
||
return x;
|
||
|
||
default:
|
||
return x;
|
||
}
|
||
|
||
if (GET_MODE (x) == BLKmode)
|
||
return x;
|
||
|
||
addr = XEXP (x, 0);
|
||
|
||
/* Call target hook to avoid the effects of -fpic etc.... */
|
||
addr = targetm.delegitimize_address (addr);
|
||
|
||
/* Split the address into a base and integer offset. */
|
||
if (GET_CODE (addr) == CONST
|
||
&& GET_CODE (XEXP (addr, 0)) == PLUS
|
||
&& CONST_INT_P (XEXP (XEXP (addr, 0), 1)))
|
||
{
|
||
offset = INTVAL (XEXP (XEXP (addr, 0), 1));
|
||
addr = XEXP (XEXP (addr, 0), 0);
|
||
}
|
||
|
||
if (GET_CODE (addr) == LO_SUM)
|
||
addr = XEXP (addr, 1);
|
||
|
||
/* If this is a constant pool reference, we can turn it into its
|
||
constant and hope that simplifications happen. */
|
||
if (GET_CODE (addr) == SYMBOL_REF
|
||
&& CONSTANT_POOL_ADDRESS_P (addr))
|
||
{
|
||
c = get_pool_constant (addr);
|
||
cmode = get_pool_mode (addr);
|
||
|
||
/* If we're accessing the constant in a different mode than it was
|
||
originally stored, attempt to fix that up via subreg simplifications.
|
||
If that fails we have no choice but to return the original memory. */
|
||
if ((offset != 0 || cmode != GET_MODE (x))
|
||
&& offset >= 0 && offset < GET_MODE_SIZE (cmode))
|
||
{
|
||
rtx tem = simplify_subreg (GET_MODE (x), c, cmode, offset);
|
||
if (tem && CONSTANT_P (tem))
|
||
return tem;
|
||
}
|
||
else
|
||
return c;
|
||
}
|
||
|
||
return x;
|
||
}
|
||
|
||
/* Simplify a MEM based on its attributes. This is the default
|
||
delegitimize_address target hook, and it's recommended that every
|
||
overrider call it. */
|
||
|
||
rtx
|
||
delegitimize_mem_from_attrs (rtx x)
|
||
{
|
||
/* MEMs without MEM_OFFSETs may have been offset, so we can't just
|
||
use their base addresses as equivalent. */
|
||
if (MEM_P (x)
|
||
&& MEM_EXPR (x)
|
||
&& MEM_OFFSET_KNOWN_P (x))
|
||
{
|
||
tree decl = MEM_EXPR (x);
|
||
machine_mode mode = GET_MODE (x);
|
||
HOST_WIDE_INT offset = 0;
|
||
|
||
switch (TREE_CODE (decl))
|
||
{
|
||
default:
|
||
decl = NULL;
|
||
break;
|
||
|
||
case VAR_DECL:
|
||
break;
|
||
|
||
case ARRAY_REF:
|
||
case ARRAY_RANGE_REF:
|
||
case COMPONENT_REF:
|
||
case BIT_FIELD_REF:
|
||
case REALPART_EXPR:
|
||
case IMAGPART_EXPR:
|
||
case VIEW_CONVERT_EXPR:
|
||
{
|
||
HOST_WIDE_INT bitsize, bitpos;
|
||
tree toffset;
|
||
int unsignedp, volatilep = 0;
|
||
|
||
decl = get_inner_reference (decl, &bitsize, &bitpos, &toffset,
|
||
&mode, &unsignedp, &volatilep, false);
|
||
if (bitsize != GET_MODE_BITSIZE (mode)
|
||
|| (bitpos % BITS_PER_UNIT)
|
||
|| (toffset && !tree_fits_shwi_p (toffset)))
|
||
decl = NULL;
|
||
else
|
||
{
|
||
offset += bitpos / BITS_PER_UNIT;
|
||
if (toffset)
|
||
offset += tree_to_shwi (toffset);
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (decl
|
||
&& mode == GET_MODE (x)
|
||
&& TREE_CODE (decl) == VAR_DECL
|
||
&& (TREE_STATIC (decl)
|
||
|| DECL_THREAD_LOCAL_P (decl))
|
||
&& DECL_RTL_SET_P (decl)
|
||
&& MEM_P (DECL_RTL (decl)))
|
||
{
|
||
rtx newx;
|
||
|
||
offset += MEM_OFFSET (x);
|
||
|
||
newx = DECL_RTL (decl);
|
||
|
||
if (MEM_P (newx))
|
||
{
|
||
rtx n = XEXP (newx, 0), o = XEXP (x, 0);
|
||
|
||
/* Avoid creating a new MEM needlessly if we already had
|
||
the same address. We do if there's no OFFSET and the
|
||
old address X is identical to NEWX, or if X is of the
|
||
form (plus NEWX OFFSET), or the NEWX is of the form
|
||
(plus Y (const_int Z)) and X is that with the offset
|
||
added: (plus Y (const_int Z+OFFSET)). */
|
||
if (!((offset == 0
|
||
|| (GET_CODE (o) == PLUS
|
||
&& GET_CODE (XEXP (o, 1)) == CONST_INT
|
||
&& (offset == INTVAL (XEXP (o, 1))
|
||
|| (GET_CODE (n) == PLUS
|
||
&& GET_CODE (XEXP (n, 1)) == CONST_INT
|
||
&& (INTVAL (XEXP (n, 1)) + offset
|
||
== INTVAL (XEXP (o, 1)))
|
||
&& (n = XEXP (n, 0))))
|
||
&& (o = XEXP (o, 0))))
|
||
&& rtx_equal_p (o, n)))
|
||
x = adjust_address_nv (newx, mode, offset);
|
||
}
|
||
else if (GET_MODE (x) == GET_MODE (newx)
|
||
&& offset == 0)
|
||
x = newx;
|
||
}
|
||
}
|
||
|
||
return x;
|
||
}
|
||
|
||
/* Make a unary operation by first seeing if it folds and otherwise making
|
||
the specified operation. */
|
||
|
||
rtx
|
||
simplify_gen_unary (enum rtx_code code, machine_mode mode, rtx op,
|
||
machine_mode op_mode)
|
||
{
|
||
rtx tem;
|
||
|
||
/* If this simplifies, use it. */
|
||
if ((tem = simplify_unary_operation (code, mode, op, op_mode)) != 0)
|
||
return tem;
|
||
|
||
return gen_rtx_fmt_e (code, mode, op);
|
||
}
|
||
|
||
/* Likewise for ternary operations. */
|
||
|
||
rtx
|
||
simplify_gen_ternary (enum rtx_code code, machine_mode mode,
|
||
machine_mode op0_mode, rtx op0, rtx op1, rtx op2)
|
||
{
|
||
rtx tem;
|
||
|
||
/* If this simplifies, use it. */
|
||
if (0 != (tem = simplify_ternary_operation (code, mode, op0_mode,
|
||
op0, op1, op2)))
|
||
return tem;
|
||
|
||
return gen_rtx_fmt_eee (code, mode, op0, op1, op2);
|
||
}
|
||
|
||
/* Likewise, for relational operations.
|
||
CMP_MODE specifies mode comparison is done in. */
|
||
|
||
rtx
|
||
simplify_gen_relational (enum rtx_code code, machine_mode mode,
|
||
machine_mode cmp_mode, rtx op0, rtx op1)
|
||
{
|
||
rtx tem;
|
||
|
||
if (0 != (tem = simplify_relational_operation (code, mode, cmp_mode,
|
||
op0, op1)))
|
||
return tem;
|
||
|
||
return gen_rtx_fmt_ee (code, mode, op0, op1);
|
||
}
|
||
|
||
/* If FN is NULL, replace all occurrences of OLD_RTX in X with copy_rtx (DATA)
|
||
and simplify the result. If FN is non-NULL, call this callback on each
|
||
X, if it returns non-NULL, replace X with its return value and simplify the
|
||
result. */
|
||
|
||
rtx
|
||
simplify_replace_fn_rtx (rtx x, const_rtx old_rtx,
|
||
rtx (*fn) (rtx, const_rtx, void *), void *data)
|
||
{
|
||
enum rtx_code code = GET_CODE (x);
|
||
machine_mode mode = GET_MODE (x);
|
||
machine_mode op_mode;
|
||
const char *fmt;
|
||
rtx op0, op1, op2, newx, op;
|
||
rtvec vec, newvec;
|
||
int i, j;
|
||
|
||
if (__builtin_expect (fn != NULL, 0))
|
||
{
|
||
newx = fn (x, old_rtx, data);
|
||
if (newx)
|
||
return newx;
|
||
}
|
||
else if (rtx_equal_p (x, old_rtx))
|
||
return copy_rtx ((rtx) data);
|
||
|
||
switch (GET_RTX_CLASS (code))
|
||
{
|
||
case RTX_UNARY:
|
||
op0 = XEXP (x, 0);
|
||
op_mode = GET_MODE (op0);
|
||
op0 = simplify_replace_fn_rtx (op0, old_rtx, fn, data);
|
||
if (op0 == XEXP (x, 0))
|
||
return x;
|
||
return simplify_gen_unary (code, mode, op0, op_mode);
|
||
|
||
case RTX_BIN_ARITH:
|
||
case RTX_COMM_ARITH:
|
||
op0 = simplify_replace_fn_rtx (XEXP (x, 0), old_rtx, fn, data);
|
||
op1 = simplify_replace_fn_rtx (XEXP (x, 1), old_rtx, fn, data);
|
||
if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
|
||
return x;
|
||
return simplify_gen_binary (code, mode, op0, op1);
|
||
|
||
case RTX_COMPARE:
|
||
case RTX_COMM_COMPARE:
|
||
op0 = XEXP (x, 0);
|
||
op1 = XEXP (x, 1);
|
||
op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
|
||
op0 = simplify_replace_fn_rtx (op0, old_rtx, fn, data);
|
||
op1 = simplify_replace_fn_rtx (op1, old_rtx, fn, data);
|
||
if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
|
||
return x;
|
||
return simplify_gen_relational (code, mode, op_mode, op0, op1);
|
||
|
||
case RTX_TERNARY:
|
||
case RTX_BITFIELD_OPS:
|
||
op0 = XEXP (x, 0);
|
||
op_mode = GET_MODE (op0);
|
||
op0 = simplify_replace_fn_rtx (op0, old_rtx, fn, data);
|
||
op1 = simplify_replace_fn_rtx (XEXP (x, 1), old_rtx, fn, data);
|
||
op2 = simplify_replace_fn_rtx (XEXP (x, 2), old_rtx, fn, data);
|
||
if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
|
||
return x;
|
||
if (op_mode == VOIDmode)
|
||
op_mode = GET_MODE (op0);
|
||
return simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
|
||
|
||
case RTX_EXTRA:
|
||
if (code == SUBREG)
|
||
{
|
||
op0 = simplify_replace_fn_rtx (SUBREG_REG (x), old_rtx, fn, data);
|
||
if (op0 == SUBREG_REG (x))
|
||
return x;
|
||
op0 = simplify_gen_subreg (GET_MODE (x), op0,
|
||
GET_MODE (SUBREG_REG (x)),
|
||
SUBREG_BYTE (x));
|
||
return op0 ? op0 : x;
|
||
}
|
||
break;
|
||
|
||
case RTX_OBJ:
|
||
if (code == MEM)
|
||
{
|
||
op0 = simplify_replace_fn_rtx (XEXP (x, 0), old_rtx, fn, data);
|
||
if (op0 == XEXP (x, 0))
|
||
return x;
|
||
return replace_equiv_address_nv (x, op0);
|
||
}
|
||
else if (code == LO_SUM)
|
||
{
|
||
op0 = simplify_replace_fn_rtx (XEXP (x, 0), old_rtx, fn, data);
|
||
op1 = simplify_replace_fn_rtx (XEXP (x, 1), old_rtx, fn, data);
|
||
|
||
/* (lo_sum (high x) y) -> y where x and y have the same base. */
|
||
if (GET_CODE (op0) == HIGH)
|
||
{
|
||
rtx base0, base1, offset0, offset1;
|
||
split_const (XEXP (op0, 0), &base0, &offset0);
|
||
split_const (op1, &base1, &offset1);
|
||
if (rtx_equal_p (base0, base1))
|
||
return op1;
|
||
}
|
||
|
||
if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
|
||
return x;
|
||
return gen_rtx_LO_SUM (mode, op0, op1);
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
newx = x;
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = 0; fmt[i]; i++)
|
||
switch (fmt[i])
|
||
{
|
||
case 'E':
|
||
vec = XVEC (x, i);
|
||
newvec = XVEC (newx, i);
|
||
for (j = 0; j < GET_NUM_ELEM (vec); j++)
|
||
{
|
||
op = simplify_replace_fn_rtx (RTVEC_ELT (vec, j),
|
||
old_rtx, fn, data);
|
||
if (op != RTVEC_ELT (vec, j))
|
||
{
|
||
if (newvec == vec)
|
||
{
|
||
newvec = shallow_copy_rtvec (vec);
|
||
if (x == newx)
|
||
newx = shallow_copy_rtx (x);
|
||
XVEC (newx, i) = newvec;
|
||
}
|
||
RTVEC_ELT (newvec, j) = op;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case 'e':
|
||
if (XEXP (x, i))
|
||
{
|
||
op = simplify_replace_fn_rtx (XEXP (x, i), old_rtx, fn, data);
|
||
if (op != XEXP (x, i))
|
||
{
|
||
if (x == newx)
|
||
newx = shallow_copy_rtx (x);
|
||
XEXP (newx, i) = op;
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
return newx;
|
||
}
|
||
|
||
/* Replace all occurrences of OLD_RTX in X with NEW_RTX and try to simplify the
|
||
resulting RTX. Return a new RTX which is as simplified as possible. */
|
||
|
||
rtx
|
||
simplify_replace_rtx (rtx x, const_rtx old_rtx, rtx new_rtx)
|
||
{
|
||
return simplify_replace_fn_rtx (x, old_rtx, 0, new_rtx);
|
||
}
|
||
|
||
/* Try to simplify a MODE truncation of OP, which has OP_MODE.
|
||
Only handle cases where the truncated value is inherently an rvalue.
|
||
|
||
RTL provides two ways of truncating a value:
|
||
|
||
1. a lowpart subreg. This form is only a truncation when both
|
||
the outer and inner modes (here MODE and OP_MODE respectively)
|
||
are scalar integers, and only then when the subreg is used as
|
||
an rvalue.
|
||
|
||
It is only valid to form such truncating subregs if the
|
||
truncation requires no action by the target. The onus for
|
||
proving this is on the creator of the subreg -- e.g. the
|
||
caller to simplify_subreg or simplify_gen_subreg -- and typically
|
||
involves either TRULY_NOOP_TRUNCATION_MODES_P or truncated_to_mode.
|
||
|
||
2. a TRUNCATE. This form handles both scalar and compound integers.
|
||
|
||
The first form is preferred where valid. However, the TRUNCATE
|
||
handling in simplify_unary_operation turns the second form into the
|
||
first form when TRULY_NOOP_TRUNCATION_MODES_P or truncated_to_mode allow,
|
||
so it is generally safe to form rvalue truncations using:
|
||
|
||
simplify_gen_unary (TRUNCATE, ...)
|
||
|
||
and leave simplify_unary_operation to work out which representation
|
||
should be used.
|
||
|
||
Because of the proof requirements on (1), simplify_truncation must
|
||
also use simplify_gen_unary (TRUNCATE, ...) to truncate parts of OP,
|
||
regardless of whether the outer truncation came from a SUBREG or a
|
||
TRUNCATE. For example, if the caller has proven that an SImode
|
||
truncation of:
|
||
|
||
(and:DI X Y)
|
||
|
||
is a no-op and can be represented as a subreg, it does not follow
|
||
that SImode truncations of X and Y are also no-ops. On a target
|
||
like 64-bit MIPS that requires SImode values to be stored in
|
||
sign-extended form, an SImode truncation of:
|
||
|
||
(and:DI (reg:DI X) (const_int 63))
|
||
|
||
is trivially a no-op because only the lower 6 bits can be set.
|
||
However, X is still an arbitrary 64-bit number and so we cannot
|
||
assume that truncating it too is a no-op. */
|
||
|
||
static rtx
|
||
simplify_truncation (machine_mode mode, rtx op,
|
||
machine_mode op_mode)
|
||
{
|
||
unsigned int precision = GET_MODE_UNIT_PRECISION (mode);
|
||
unsigned int op_precision = GET_MODE_UNIT_PRECISION (op_mode);
|
||
gcc_assert (precision <= op_precision);
|
||
|
||
/* Optimize truncations of zero and sign extended values. */
|
||
if (GET_CODE (op) == ZERO_EXTEND
|
||
|| GET_CODE (op) == SIGN_EXTEND)
|
||
{
|
||
/* There are three possibilities. If MODE is the same as the
|
||
origmode, we can omit both the extension and the subreg.
|
||
If MODE is not larger than the origmode, we can apply the
|
||
truncation without the extension. Finally, if the outermode
|
||
is larger than the origmode, we can just extend to the appropriate
|
||
mode. */
|
||
machine_mode origmode = GET_MODE (XEXP (op, 0));
|
||
if (mode == origmode)
|
||
return XEXP (op, 0);
|
||
else if (precision <= GET_MODE_UNIT_PRECISION (origmode))
|
||
return simplify_gen_unary (TRUNCATE, mode,
|
||
XEXP (op, 0), origmode);
|
||
else
|
||
return simplify_gen_unary (GET_CODE (op), mode,
|
||
XEXP (op, 0), origmode);
|
||
}
|
||
|
||
/* If the machine can perform operations in the truncated mode, distribute
|
||
the truncation, i.e. simplify (truncate:QI (op:SI (x:SI) (y:SI))) into
|
||
(op:QI (truncate:QI (x:SI)) (truncate:QI (y:SI))). */
|
||
if (1
|
||
#ifdef WORD_REGISTER_OPERATIONS
|
||
&& precision >= BITS_PER_WORD
|
||
#endif
|
||
&& (GET_CODE (op) == PLUS
|
||
|| GET_CODE (op) == MINUS
|
||
|| GET_CODE (op) == MULT))
|
||
{
|
||
rtx op0 = simplify_gen_unary (TRUNCATE, mode, XEXP (op, 0), op_mode);
|
||
if (op0)
|
||
{
|
||
rtx op1 = simplify_gen_unary (TRUNCATE, mode, XEXP (op, 1), op_mode);
|
||
if (op1)
|
||
return simplify_gen_binary (GET_CODE (op), mode, op0, op1);
|
||
}
|
||
}
|
||
|
||
/* Simplify (truncate:QI (lshiftrt:SI (sign_extend:SI (x:QI)) C)) into
|
||
to (ashiftrt:QI (x:QI) C), where C is a suitable small constant and
|
||
the outer subreg is effectively a truncation to the original mode. */
|
||
if ((GET_CODE (op) == LSHIFTRT
|
||
|| GET_CODE (op) == ASHIFTRT)
|
||
/* Ensure that OP_MODE is at least twice as wide as MODE
|
||
to avoid the possibility that an outer LSHIFTRT shifts by more
|
||
than the sign extension's sign_bit_copies and introduces zeros
|
||
into the high bits of the result. */
|
||
&& 2 * precision <= op_precision
|
||
&& CONST_INT_P (XEXP (op, 1))
|
||
&& GET_CODE (XEXP (op, 0)) == SIGN_EXTEND
|
||
&& GET_MODE (XEXP (XEXP (op, 0), 0)) == mode
|
||
&& UINTVAL (XEXP (op, 1)) < precision)
|
||
return simplify_gen_binary (ASHIFTRT, mode,
|
||
XEXP (XEXP (op, 0), 0), XEXP (op, 1));
|
||
|
||
/* Likewise (truncate:QI (lshiftrt:SI (zero_extend:SI (x:QI)) C)) into
|
||
to (lshiftrt:QI (x:QI) C), where C is a suitable small constant and
|
||
the outer subreg is effectively a truncation to the original mode. */
|
||
if ((GET_CODE (op) == LSHIFTRT
|
||
|| GET_CODE (op) == ASHIFTRT)
|
||
&& CONST_INT_P (XEXP (op, 1))
|
||
&& GET_CODE (XEXP (op, 0)) == ZERO_EXTEND
|
||
&& GET_MODE (XEXP (XEXP (op, 0), 0)) == mode
|
||
&& UINTVAL (XEXP (op, 1)) < precision)
|
||
return simplify_gen_binary (LSHIFTRT, mode,
|
||
XEXP (XEXP (op, 0), 0), XEXP (op, 1));
|
||
|
||
/* Likewise (truncate:QI (ashift:SI (zero_extend:SI (x:QI)) C)) into
|
||
to (ashift:QI (x:QI) C), where C is a suitable small constant and
|
||
the outer subreg is effectively a truncation to the original mode. */
|
||
if (GET_CODE (op) == ASHIFT
|
||
&& CONST_INT_P (XEXP (op, 1))
|
||
&& (GET_CODE (XEXP (op, 0)) == ZERO_EXTEND
|
||
|| GET_CODE (XEXP (op, 0)) == SIGN_EXTEND)
|
||
&& GET_MODE (XEXP (XEXP (op, 0), 0)) == mode
|
||
&& UINTVAL (XEXP (op, 1)) < precision)
|
||
return simplify_gen_binary (ASHIFT, mode,
|
||
XEXP (XEXP (op, 0), 0), XEXP (op, 1));
|
||
|
||
/* Recognize a word extraction from a multi-word subreg. */
|
||
if ((GET_CODE (op) == LSHIFTRT
|
||
|| GET_CODE (op) == ASHIFTRT)
|
||
&& SCALAR_INT_MODE_P (mode)
|
||
&& SCALAR_INT_MODE_P (op_mode)
|
||
&& precision >= BITS_PER_WORD
|
||
&& 2 * precision <= op_precision
|
||
&& CONST_INT_P (XEXP (op, 1))
|
||
&& (INTVAL (XEXP (op, 1)) & (precision - 1)) == 0
|
||
&& UINTVAL (XEXP (op, 1)) < op_precision)
|
||
{
|
||
int byte = subreg_lowpart_offset (mode, op_mode);
|
||
int shifted_bytes = INTVAL (XEXP (op, 1)) / BITS_PER_UNIT;
|
||
return simplify_gen_subreg (mode, XEXP (op, 0), op_mode,
|
||
(WORDS_BIG_ENDIAN
|
||
? byte - shifted_bytes
|
||
: byte + shifted_bytes));
|
||
}
|
||
|
||
/* If we have a TRUNCATE of a right shift of MEM, make a new MEM
|
||
and try replacing the TRUNCATE and shift with it. Don't do this
|
||
if the MEM has a mode-dependent address. */
|
||
if ((GET_CODE (op) == LSHIFTRT
|
||
|| GET_CODE (op) == ASHIFTRT)
|
||
&& SCALAR_INT_MODE_P (op_mode)
|
||
&& MEM_P (XEXP (op, 0))
|
||
&& CONST_INT_P (XEXP (op, 1))
|
||
&& (INTVAL (XEXP (op, 1)) % GET_MODE_BITSIZE (mode)) == 0
|
||
&& INTVAL (XEXP (op, 1)) > 0
|
||
&& INTVAL (XEXP (op, 1)) < GET_MODE_BITSIZE (op_mode)
|
||
&& ! mode_dependent_address_p (XEXP (XEXP (op, 0), 0),
|
||
MEM_ADDR_SPACE (XEXP (op, 0)))
|
||
&& ! MEM_VOLATILE_P (XEXP (op, 0))
|
||
&& (GET_MODE_SIZE (mode) >= UNITS_PER_WORD
|
||
|| WORDS_BIG_ENDIAN == BYTES_BIG_ENDIAN))
|
||
{
|
||
int byte = subreg_lowpart_offset (mode, op_mode);
|
||
int shifted_bytes = INTVAL (XEXP (op, 1)) / BITS_PER_UNIT;
|
||
return adjust_address_nv (XEXP (op, 0), mode,
|
||
(WORDS_BIG_ENDIAN
|
||
? byte - shifted_bytes
|
||
: byte + shifted_bytes));
|
||
}
|
||
|
||
/* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
|
||
(OP:SI foo:SI) if OP is NEG or ABS. */
|
||
if ((GET_CODE (op) == ABS
|
||
|| GET_CODE (op) == NEG)
|
||
&& (GET_CODE (XEXP (op, 0)) == SIGN_EXTEND
|
||
|| GET_CODE (XEXP (op, 0)) == ZERO_EXTEND)
|
||
&& GET_MODE (XEXP (XEXP (op, 0), 0)) == mode)
|
||
return simplify_gen_unary (GET_CODE (op), mode,
|
||
XEXP (XEXP (op, 0), 0), mode);
|
||
|
||
/* (truncate:A (subreg:B (truncate:C X) 0)) is
|
||
(truncate:A X). */
|
||
if (GET_CODE (op) == SUBREG
|
||
&& SCALAR_INT_MODE_P (mode)
|
||
&& SCALAR_INT_MODE_P (op_mode)
|
||
&& SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (op)))
|
||
&& GET_CODE (SUBREG_REG (op)) == TRUNCATE
|
||
&& subreg_lowpart_p (op))
|
||
{
|
||
rtx inner = XEXP (SUBREG_REG (op), 0);
|
||
if (GET_MODE_PRECISION (mode)
|
||
<= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op))))
|
||
return simplify_gen_unary (TRUNCATE, mode, inner, GET_MODE (inner));
|
||
else
|
||
/* If subreg above is paradoxical and C is narrower
|
||
than A, return (subreg:A (truncate:C X) 0). */
|
||
return simplify_gen_subreg (mode, SUBREG_REG (op),
|
||
GET_MODE (SUBREG_REG (op)), 0);
|
||
}
|
||
|
||
/* (truncate:A (truncate:B X)) is (truncate:A X). */
|
||
if (GET_CODE (op) == TRUNCATE)
|
||
return simplify_gen_unary (TRUNCATE, mode, XEXP (op, 0),
|
||
GET_MODE (XEXP (op, 0)));
|
||
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* Try to simplify a unary operation CODE whose output mode is to be
|
||
MODE with input operand OP whose mode was originally OP_MODE.
|
||
Return zero if no simplification can be made. */
|
||
rtx
|
||
simplify_unary_operation (enum rtx_code code, machine_mode mode,
|
||
rtx op, machine_mode op_mode)
|
||
{
|
||
rtx trueop, tem;
|
||
|
||
trueop = avoid_constant_pool_reference (op);
|
||
|
||
tem = simplify_const_unary_operation (code, mode, trueop, op_mode);
|
||
if (tem)
|
||
return tem;
|
||
|
||
return simplify_unary_operation_1 (code, mode, op);
|
||
}
|
||
|
||
/* Perform some simplifications we can do even if the operands
|
||
aren't constant. */
|
||
static rtx
|
||
simplify_unary_operation_1 (enum rtx_code code, machine_mode mode, rtx op)
|
||
{
|
||
enum rtx_code reversed;
|
||
rtx temp;
|
||
|
||
switch (code)
|
||
{
|
||
case NOT:
|
||
/* (not (not X)) == X. */
|
||
if (GET_CODE (op) == NOT)
|
||
return XEXP (op, 0);
|
||
|
||
/* (not (eq X Y)) == (ne X Y), etc. if BImode or the result of the
|
||
comparison is all ones. */
|
||
if (COMPARISON_P (op)
|
||
&& (mode == BImode || STORE_FLAG_VALUE == -1)
|
||
&& ((reversed = reversed_comparison_code (op, NULL_RTX)) != UNKNOWN))
|
||
return simplify_gen_relational (reversed, mode, VOIDmode,
|
||
XEXP (op, 0), XEXP (op, 1));
|
||
|
||
/* (not (plus X -1)) can become (neg X). */
|
||
if (GET_CODE (op) == PLUS
|
||
&& XEXP (op, 1) == constm1_rtx)
|
||
return simplify_gen_unary (NEG, mode, XEXP (op, 0), mode);
|
||
|
||
/* Similarly, (not (neg X)) is (plus X -1). */
|
||
if (GET_CODE (op) == NEG)
|
||
return simplify_gen_binary (PLUS, mode, XEXP (op, 0),
|
||
CONSTM1_RTX (mode));
|
||
|
||
/* (not (xor X C)) for C constant is (xor X D) with D = ~C. */
|
||
if (GET_CODE (op) == XOR
|
||
&& CONST_INT_P (XEXP (op, 1))
|
||
&& (temp = simplify_unary_operation (NOT, mode,
|
||
XEXP (op, 1), mode)) != 0)
|
||
return simplify_gen_binary (XOR, mode, XEXP (op, 0), temp);
|
||
|
||
/* (not (plus X C)) for signbit C is (xor X D) with D = ~C. */
|
||
if (GET_CODE (op) == PLUS
|
||
&& CONST_INT_P (XEXP (op, 1))
|
||
&& mode_signbit_p (mode, XEXP (op, 1))
|
||
&& (temp = simplify_unary_operation (NOT, mode,
|
||
XEXP (op, 1), mode)) != 0)
|
||
return simplify_gen_binary (XOR, mode, XEXP (op, 0), temp);
|
||
|
||
|
||
/* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for
|
||
operands other than 1, but that is not valid. We could do a
|
||
similar simplification for (not (lshiftrt C X)) where C is
|
||
just the sign bit, but this doesn't seem common enough to
|
||
bother with. */
|
||
if (GET_CODE (op) == ASHIFT
|
||
&& XEXP (op, 0) == const1_rtx)
|
||
{
|
||
temp = simplify_gen_unary (NOT, mode, const1_rtx, mode);
|
||
return simplify_gen_binary (ROTATE, mode, temp, XEXP (op, 1));
|
||
}
|
||
|
||
/* (not (ashiftrt foo C)) where C is the number of bits in FOO
|
||
minus 1 is (ge foo (const_int 0)) if STORE_FLAG_VALUE is -1,
|
||
so we can perform the above simplification. */
|
||
if (STORE_FLAG_VALUE == -1
|
||
&& GET_CODE (op) == ASHIFTRT
|
||
&& CONST_INT_P (XEXP (op, 1))
|
||
&& INTVAL (XEXP (op, 1)) == GET_MODE_PRECISION (mode) - 1)
|
||
return simplify_gen_relational (GE, mode, VOIDmode,
|
||
XEXP (op, 0), const0_rtx);
|
||
|
||
|
||
if (GET_CODE (op) == SUBREG
|
||
&& subreg_lowpart_p (op)
|
||
&& (GET_MODE_SIZE (GET_MODE (op))
|
||
< GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))))
|
||
&& GET_CODE (SUBREG_REG (op)) == ASHIFT
|
||
&& XEXP (SUBREG_REG (op), 0) == const1_rtx)
|
||
{
|
||
machine_mode inner_mode = GET_MODE (SUBREG_REG (op));
|
||
rtx x;
|
||
|
||
x = gen_rtx_ROTATE (inner_mode,
|
||
simplify_gen_unary (NOT, inner_mode, const1_rtx,
|
||
inner_mode),
|
||
XEXP (SUBREG_REG (op), 1));
|
||
temp = rtl_hooks.gen_lowpart_no_emit (mode, x);
|
||
if (temp)
|
||
return temp;
|
||
}
|
||
|
||
/* Apply De Morgan's laws to reduce number of patterns for machines
|
||
with negating logical insns (and-not, nand, etc.). If result has
|
||
only one NOT, put it first, since that is how the patterns are
|
||
coded. */
|
||
if (GET_CODE (op) == IOR || GET_CODE (op) == AND)
|
||
{
|
||
rtx in1 = XEXP (op, 0), in2 = XEXP (op, 1);
|
||
machine_mode op_mode;
|
||
|
||
op_mode = GET_MODE (in1);
|
||
in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
|
||
|
||
op_mode = GET_MODE (in2);
|
||
if (op_mode == VOIDmode)
|
||
op_mode = mode;
|
||
in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
|
||
|
||
if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
|
||
{
|
||
rtx tem = in2;
|
||
in2 = in1; in1 = tem;
|
||
}
|
||
|
||
return gen_rtx_fmt_ee (GET_CODE (op) == IOR ? AND : IOR,
|
||
mode, in1, in2);
|
||
}
|
||
|
||
/* (not (bswap x)) -> (bswap (not x)). */
|
||
if (GET_CODE (op) == BSWAP)
|
||
{
|
||
rtx x = simplify_gen_unary (NOT, mode, XEXP (op, 0), mode);
|
||
return simplify_gen_unary (BSWAP, mode, x, mode);
|
||
}
|
||
break;
|
||
|
||
case NEG:
|
||
/* (neg (neg X)) == X. */
|
||
if (GET_CODE (op) == NEG)
|
||
return XEXP (op, 0);
|
||
|
||
/* (neg (plus X 1)) can become (not X). */
|
||
if (GET_CODE (op) == PLUS
|
||
&& XEXP (op, 1) == const1_rtx)
|
||
return simplify_gen_unary (NOT, mode, XEXP (op, 0), mode);
|
||
|
||
/* Similarly, (neg (not X)) is (plus X 1). */
|
||
if (GET_CODE (op) == NOT)
|
||
return simplify_gen_binary (PLUS, mode, XEXP (op, 0),
|
||
CONST1_RTX (mode));
|
||
|
||
/* (neg (minus X Y)) can become (minus Y X). This transformation
|
||
isn't safe for modes with signed zeros, since if X and Y are
|
||
both +0, (minus Y X) is the same as (minus X Y). If the
|
||
rounding mode is towards +infinity (or -infinity) then the two
|
||
expressions will be rounded differently. */
|
||
if (GET_CODE (op) == MINUS
|
||
&& !HONOR_SIGNED_ZEROS (mode)
|
||
&& !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
|
||
return simplify_gen_binary (MINUS, mode, XEXP (op, 1), XEXP (op, 0));
|
||
|
||
if (GET_CODE (op) == PLUS
|
||
&& !HONOR_SIGNED_ZEROS (mode)
|
||
&& !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
|
||
{
|
||
/* (neg (plus A C)) is simplified to (minus -C A). */
|
||
if (CONST_SCALAR_INT_P (XEXP (op, 1))
|
||
|| CONST_DOUBLE_AS_FLOAT_P (XEXP (op, 1)))
|
||
{
|
||
temp = simplify_unary_operation (NEG, mode, XEXP (op, 1), mode);
|
||
if (temp)
|
||
return simplify_gen_binary (MINUS, mode, temp, XEXP (op, 0));
|
||
}
|
||
|
||
/* (neg (plus A B)) is canonicalized to (minus (neg A) B). */
|
||
temp = simplify_gen_unary (NEG, mode, XEXP (op, 0), mode);
|
||
return simplify_gen_binary (MINUS, mode, temp, XEXP (op, 1));
|
||
}
|
||
|
||
/* (neg (mult A B)) becomes (mult A (neg B)).
|
||
This works even for floating-point values. */
|
||
if (GET_CODE (op) == MULT
|
||
&& !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
|
||
{
|
||
temp = simplify_gen_unary (NEG, mode, XEXP (op, 1), mode);
|
||
return simplify_gen_binary (MULT, mode, XEXP (op, 0), temp);
|
||
}
|
||
|
||
/* NEG commutes with ASHIFT since it is multiplication. Only do
|
||
this if we can then eliminate the NEG (e.g., if the operand
|
||
is a constant). */
|
||
if (GET_CODE (op) == ASHIFT)
|
||
{
|
||
temp = simplify_unary_operation (NEG, mode, XEXP (op, 0), mode);
|
||
if (temp)
|
||
return simplify_gen_binary (ASHIFT, mode, temp, XEXP (op, 1));
|
||
}
|
||
|
||
/* (neg (ashiftrt X C)) can be replaced by (lshiftrt X C) when
|
||
C is equal to the width of MODE minus 1. */
|
||
if (GET_CODE (op) == ASHIFTRT
|
||
&& CONST_INT_P (XEXP (op, 1))
|
||
&& INTVAL (XEXP (op, 1)) == GET_MODE_PRECISION (mode) - 1)
|
||
return simplify_gen_binary (LSHIFTRT, mode,
|
||
XEXP (op, 0), XEXP (op, 1));
|
||
|
||
/* (neg (lshiftrt X C)) can be replaced by (ashiftrt X C) when
|
||
C is equal to the width of MODE minus 1. */
|
||
if (GET_CODE (op) == LSHIFTRT
|
||
&& CONST_INT_P (XEXP (op, 1))
|
||
&& INTVAL (XEXP (op, 1)) == GET_MODE_PRECISION (mode) - 1)
|
||
return simplify_gen_binary (ASHIFTRT, mode,
|
||
XEXP (op, 0), XEXP (op, 1));
|
||
|
||
/* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
|
||
if (GET_CODE (op) == XOR
|
||
&& XEXP (op, 1) == const1_rtx
|
||
&& nonzero_bits (XEXP (op, 0), mode) == 1)
|
||
return plus_constant (mode, XEXP (op, 0), -1);
|
||
|
||
/* (neg (lt x 0)) is (ashiftrt X C) if STORE_FLAG_VALUE is 1. */
|
||
/* (neg (lt x 0)) is (lshiftrt X C) if STORE_FLAG_VALUE is -1. */
|
||
if (GET_CODE (op) == LT
|
||
&& XEXP (op, 1) == const0_rtx
|
||
&& SCALAR_INT_MODE_P (GET_MODE (XEXP (op, 0))))
|
||
{
|
||
machine_mode inner = GET_MODE (XEXP (op, 0));
|
||
int isize = GET_MODE_PRECISION (inner);
|
||
if (STORE_FLAG_VALUE == 1)
|
||
{
|
||
temp = simplify_gen_binary (ASHIFTRT, inner, XEXP (op, 0),
|
||
GEN_INT (isize - 1));
|
||
if (mode == inner)
|
||
return temp;
|
||
if (GET_MODE_PRECISION (mode) > isize)
|
||
return simplify_gen_unary (SIGN_EXTEND, mode, temp, inner);
|
||
return simplify_gen_unary (TRUNCATE, mode, temp, inner);
|
||
}
|
||
else if (STORE_FLAG_VALUE == -1)
|
||
{
|
||
temp = simplify_gen_binary (LSHIFTRT, inner, XEXP (op, 0),
|
||
GEN_INT (isize - 1));
|
||
if (mode == inner)
|
||
return temp;
|
||
if (GET_MODE_PRECISION (mode) > isize)
|
||
return simplify_gen_unary (ZERO_EXTEND, mode, temp, inner);
|
||
return simplify_gen_unary (TRUNCATE, mode, temp, inner);
|
||
}
|
||
}
|
||
break;
|
||
|
||
case TRUNCATE:
|
||
/* Don't optimize (lshiftrt (mult ...)) as it would interfere
|
||
with the umulXi3_highpart patterns. */
|
||
if (GET_CODE (op) == LSHIFTRT
|
||
&& GET_CODE (XEXP (op, 0)) == MULT)
|
||
break;
|
||
|
||
if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
|
||
{
|
||
if (TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (op)))
|
||
{
|
||
temp = rtl_hooks.gen_lowpart_no_emit (mode, op);
|
||
if (temp)
|
||
return temp;
|
||
}
|
||
/* We can't handle truncation to a partial integer mode here
|
||
because we don't know the real bitsize of the partial
|
||
integer mode. */
|
||
break;
|
||
}
|
||
|
||
if (GET_MODE (op) != VOIDmode)
|
||
{
|
||
temp = simplify_truncation (mode, op, GET_MODE (op));
|
||
if (temp)
|
||
return temp;
|
||
}
|
||
|
||
/* If we know that the value is already truncated, we can
|
||
replace the TRUNCATE with a SUBREG. */
|
||
if (GET_MODE_NUNITS (mode) == 1
|
||
&& (TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (op))
|
||
|| truncated_to_mode (mode, op)))
|
||
{
|
||
temp = rtl_hooks.gen_lowpart_no_emit (mode, op);
|
||
if (temp)
|
||
return temp;
|
||
}
|
||
|
||
/* A truncate of a comparison can be replaced with a subreg if
|
||
STORE_FLAG_VALUE permits. This is like the previous test,
|
||
but it works even if the comparison is done in a mode larger
|
||
than HOST_BITS_PER_WIDE_INT. */
|
||
if (HWI_COMPUTABLE_MODE_P (mode)
|
||
&& COMPARISON_P (op)
|
||
&& (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
|
||
{
|
||
temp = rtl_hooks.gen_lowpart_no_emit (mode, op);
|
||
if (temp)
|
||
return temp;
|
||
}
|
||
|
||
/* A truncate of a memory is just loading the low part of the memory
|
||
if we are not changing the meaning of the address. */
|
||
if (GET_CODE (op) == MEM
|
||
&& !VECTOR_MODE_P (mode)
|
||
&& !MEM_VOLATILE_P (op)
|
||
&& !mode_dependent_address_p (XEXP (op, 0), MEM_ADDR_SPACE (op)))
|
||
{
|
||
temp = rtl_hooks.gen_lowpart_no_emit (mode, op);
|
||
if (temp)
|
||
return temp;
|
||
}
|
||
|
||
break;
|
||
|
||
case FLOAT_TRUNCATE:
|
||
if (DECIMAL_FLOAT_MODE_P (mode))
|
||
break;
|
||
|
||
/* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
|
||
if (GET_CODE (op) == FLOAT_EXTEND
|
||
&& GET_MODE (XEXP (op, 0)) == mode)
|
||
return XEXP (op, 0);
|
||
|
||
/* (float_truncate:SF (float_truncate:DF foo:XF))
|
||
= (float_truncate:SF foo:XF).
|
||
This may eliminate double rounding, so it is unsafe.
|
||
|
||
(float_truncate:SF (float_extend:XF foo:DF))
|
||
= (float_truncate:SF foo:DF).
|
||
|
||
(float_truncate:DF (float_extend:XF foo:SF))
|
||
= (float_extend:SF foo:DF). */
|
||
if ((GET_CODE (op) == FLOAT_TRUNCATE
|
||
&& flag_unsafe_math_optimizations)
|
||
|| GET_CODE (op) == FLOAT_EXTEND)
|
||
return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (op,
|
||
0)))
|
||
> GET_MODE_SIZE (mode)
|
||
? FLOAT_TRUNCATE : FLOAT_EXTEND,
|
||
mode,
|
||
XEXP (op, 0), mode);
|
||
|
||
/* (float_truncate (float x)) is (float x) */
|
||
if (GET_CODE (op) == FLOAT
|
||
&& (flag_unsafe_math_optimizations
|
||
|| (SCALAR_FLOAT_MODE_P (GET_MODE (op))
|
||
&& ((unsigned)significand_size (GET_MODE (op))
|
||
>= (GET_MODE_PRECISION (GET_MODE (XEXP (op, 0)))
|
||
- num_sign_bit_copies (XEXP (op, 0),
|
||
GET_MODE (XEXP (op, 0))))))))
|
||
return simplify_gen_unary (FLOAT, mode,
|
||
XEXP (op, 0),
|
||
GET_MODE (XEXP (op, 0)));
|
||
|
||
/* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
|
||
(OP:SF foo:SF) if OP is NEG or ABS. */
|
||
if ((GET_CODE (op) == ABS
|
||
|| GET_CODE (op) == NEG)
|
||
&& GET_CODE (XEXP (op, 0)) == FLOAT_EXTEND
|
||
&& GET_MODE (XEXP (XEXP (op, 0), 0)) == mode)
|
||
return simplify_gen_unary (GET_CODE (op), mode,
|
||
XEXP (XEXP (op, 0), 0), mode);
|
||
|
||
/* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
|
||
is (float_truncate:SF x). */
|
||
if (GET_CODE (op) == SUBREG
|
||
&& subreg_lowpart_p (op)
|
||
&& GET_CODE (SUBREG_REG (op)) == FLOAT_TRUNCATE)
|
||
return SUBREG_REG (op);
|
||
break;
|
||
|
||
case FLOAT_EXTEND:
|
||
if (DECIMAL_FLOAT_MODE_P (mode))
|
||
break;
|
||
|
||
/* (float_extend (float_extend x)) is (float_extend x)
|
||
|
||
(float_extend (float x)) is (float x) assuming that double
|
||
rounding can't happen.
|
||
*/
|
||
if (GET_CODE (op) == FLOAT_EXTEND
|
||
|| (GET_CODE (op) == FLOAT
|
||
&& SCALAR_FLOAT_MODE_P (GET_MODE (op))
|
||
&& ((unsigned)significand_size (GET_MODE (op))
|
||
>= (GET_MODE_PRECISION (GET_MODE (XEXP (op, 0)))
|
||
- num_sign_bit_copies (XEXP (op, 0),
|
||
GET_MODE (XEXP (op, 0)))))))
|
||
return simplify_gen_unary (GET_CODE (op), mode,
|
||
XEXP (op, 0),
|
||
GET_MODE (XEXP (op, 0)));
|
||
|
||
break;
|
||
|
||
case ABS:
|
||
/* (abs (neg <foo>)) -> (abs <foo>) */
|
||
if (GET_CODE (op) == NEG)
|
||
return simplify_gen_unary (ABS, mode, XEXP (op, 0),
|
||
GET_MODE (XEXP (op, 0)));
|
||
|
||
/* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
|
||
do nothing. */
|
||
if (GET_MODE (op) == VOIDmode)
|
||
break;
|
||
|
||
/* If operand is something known to be positive, ignore the ABS. */
|
||
if (GET_CODE (op) == FFS || GET_CODE (op) == ABS
|
||
|| val_signbit_known_clear_p (GET_MODE (op),
|
||
nonzero_bits (op, GET_MODE (op))))
|
||
return op;
|
||
|
||
/* If operand is known to be only -1 or 0, convert ABS to NEG. */
|
||
if (num_sign_bit_copies (op, mode) == GET_MODE_PRECISION (mode))
|
||
return gen_rtx_NEG (mode, op);
|
||
|
||
break;
|
||
|
||
case FFS:
|
||
/* (ffs (*_extend <X>)) = (ffs <X>) */
|
||
if (GET_CODE (op) == SIGN_EXTEND
|
||
|| GET_CODE (op) == ZERO_EXTEND)
|
||
return simplify_gen_unary (FFS, mode, XEXP (op, 0),
|
||
GET_MODE (XEXP (op, 0)));
|
||
break;
|
||
|
||
case POPCOUNT:
|
||
switch (GET_CODE (op))
|
||
{
|
||
case BSWAP:
|
||
case ZERO_EXTEND:
|
||
/* (popcount (zero_extend <X>)) = (popcount <X>) */
|
||
return simplify_gen_unary (POPCOUNT, mode, XEXP (op, 0),
|
||
GET_MODE (XEXP (op, 0)));
|
||
|
||
case ROTATE:
|
||
case ROTATERT:
|
||
/* Rotations don't affect popcount. */
|
||
if (!side_effects_p (XEXP (op, 1)))
|
||
return simplify_gen_unary (POPCOUNT, mode, XEXP (op, 0),
|
||
GET_MODE (XEXP (op, 0)));
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
break;
|
||
|
||
case PARITY:
|
||
switch (GET_CODE (op))
|
||
{
|
||
case NOT:
|
||
case BSWAP:
|
||
case ZERO_EXTEND:
|
||
case SIGN_EXTEND:
|
||
return simplify_gen_unary (PARITY, mode, XEXP (op, 0),
|
||
GET_MODE (XEXP (op, 0)));
|
||
|
||
case ROTATE:
|
||
case ROTATERT:
|
||
/* Rotations don't affect parity. */
|
||
if (!side_effects_p (XEXP (op, 1)))
|
||
return simplify_gen_unary (PARITY, mode, XEXP (op, 0),
|
||
GET_MODE (XEXP (op, 0)));
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
break;
|
||
|
||
case BSWAP:
|
||
/* (bswap (bswap x)) -> x. */
|
||
if (GET_CODE (op) == BSWAP)
|
||
return XEXP (op, 0);
|
||
break;
|
||
|
||
case FLOAT:
|
||
/* (float (sign_extend <X>)) = (float <X>). */
|
||
if (GET_CODE (op) == SIGN_EXTEND)
|
||
return simplify_gen_unary (FLOAT, mode, XEXP (op, 0),
|
||
GET_MODE (XEXP (op, 0)));
|
||
break;
|
||
|
||
case SIGN_EXTEND:
|
||
/* (sign_extend (truncate (minus (label_ref L1) (label_ref L2))))
|
||
becomes just the MINUS if its mode is MODE. This allows
|
||
folding switch statements on machines using casesi (such as
|
||
the VAX). */
|
||
if (GET_CODE (op) == TRUNCATE
|
||
&& GET_MODE (XEXP (op, 0)) == mode
|
||
&& GET_CODE (XEXP (op, 0)) == MINUS
|
||
&& GET_CODE (XEXP (XEXP (op, 0), 0)) == LABEL_REF
|
||
&& GET_CODE (XEXP (XEXP (op, 0), 1)) == LABEL_REF)
|
||
return XEXP (op, 0);
|
||
|
||
/* Extending a widening multiplication should be canonicalized to
|
||
a wider widening multiplication. */
|
||
if (GET_CODE (op) == MULT)
|
||
{
|
||
rtx lhs = XEXP (op, 0);
|
||
rtx rhs = XEXP (op, 1);
|
||
enum rtx_code lcode = GET_CODE (lhs);
|
||
enum rtx_code rcode = GET_CODE (rhs);
|
||
|
||
/* Widening multiplies usually extend both operands, but sometimes
|
||
they use a shift to extract a portion of a register. */
|
||
if ((lcode == SIGN_EXTEND
|
||
|| (lcode == ASHIFTRT && CONST_INT_P (XEXP (lhs, 1))))
|
||
&& (rcode == SIGN_EXTEND
|
||
|| (rcode == ASHIFTRT && CONST_INT_P (XEXP (rhs, 1)))))
|
||
{
|
||
machine_mode lmode = GET_MODE (lhs);
|
||
machine_mode rmode = GET_MODE (rhs);
|
||
int bits;
|
||
|
||
if (lcode == ASHIFTRT)
|
||
/* Number of bits not shifted off the end. */
|
||
bits = GET_MODE_PRECISION (lmode) - INTVAL (XEXP (lhs, 1));
|
||
else /* lcode == SIGN_EXTEND */
|
||
/* Size of inner mode. */
|
||
bits = GET_MODE_PRECISION (GET_MODE (XEXP (lhs, 0)));
|
||
|
||
if (rcode == ASHIFTRT)
|
||
bits += GET_MODE_PRECISION (rmode) - INTVAL (XEXP (rhs, 1));
|
||
else /* rcode == SIGN_EXTEND */
|
||
bits += GET_MODE_PRECISION (GET_MODE (XEXP (rhs, 0)));
|
||
|
||
/* We can only widen multiplies if the result is mathematiclly
|
||
equivalent. I.e. if overflow was impossible. */
|
||
if (bits <= GET_MODE_PRECISION (GET_MODE (op)))
|
||
return simplify_gen_binary
|
||
(MULT, mode,
|
||
simplify_gen_unary (SIGN_EXTEND, mode, lhs, lmode),
|
||
simplify_gen_unary (SIGN_EXTEND, mode, rhs, rmode));
|
||
}
|
||
}
|
||
|
||
/* Check for a sign extension of a subreg of a promoted
|
||
variable, where the promotion is sign-extended, and the
|
||
target mode is the same as the variable's promotion. */
|
||
if (GET_CODE (op) == SUBREG
|
||
&& SUBREG_PROMOTED_VAR_P (op)
|
||
&& SUBREG_PROMOTED_SIGNED_P (op)
|
||
&& GET_MODE_SIZE (mode) <= GET_MODE_SIZE (GET_MODE (XEXP (op, 0))))
|
||
{
|
||
temp = rtl_hooks.gen_lowpart_no_emit (mode, op);
|
||
if (temp)
|
||
return temp;
|
||
}
|
||
|
||
/* (sign_extend:M (sign_extend:N <X>)) is (sign_extend:M <X>).
|
||
(sign_extend:M (zero_extend:N <X>)) is (zero_extend:M <X>). */
|
||
if (GET_CODE (op) == SIGN_EXTEND || GET_CODE (op) == ZERO_EXTEND)
|
||
{
|
||
gcc_assert (GET_MODE_PRECISION (mode)
|
||
> GET_MODE_PRECISION (GET_MODE (op)));
|
||
return simplify_gen_unary (GET_CODE (op), mode, XEXP (op, 0),
|
||
GET_MODE (XEXP (op, 0)));
|
||
}
|
||
|
||
/* (sign_extend:M (ashiftrt:N (ashift <X> (const_int I)) (const_int I)))
|
||
is (sign_extend:M (subreg:O <X>)) if there is mode with
|
||
GET_MODE_BITSIZE (N) - I bits.
|
||
(sign_extend:M (lshiftrt:N (ashift <X> (const_int I)) (const_int I)))
|
||
is similarly (zero_extend:M (subreg:O <X>)). */
|
||
if ((GET_CODE (op) == ASHIFTRT || GET_CODE (op) == LSHIFTRT)
|
||
&& GET_CODE (XEXP (op, 0)) == ASHIFT
|
||
&& CONST_INT_P (XEXP (op, 1))
|
||
&& XEXP (XEXP (op, 0), 1) == XEXP (op, 1)
|
||
&& GET_MODE_BITSIZE (GET_MODE (op)) > INTVAL (XEXP (op, 1)))
|
||
{
|
||
machine_mode tmode
|
||
= mode_for_size (GET_MODE_BITSIZE (GET_MODE (op))
|
||
- INTVAL (XEXP (op, 1)), MODE_INT, 1);
|
||
gcc_assert (GET_MODE_BITSIZE (mode)
|
||
> GET_MODE_BITSIZE (GET_MODE (op)));
|
||
if (tmode != BLKmode)
|
||
{
|
||
rtx inner =
|
||
rtl_hooks.gen_lowpart_no_emit (tmode, XEXP (XEXP (op, 0), 0));
|
||
if (inner)
|
||
return simplify_gen_unary (GET_CODE (op) == ASHIFTRT
|
||
? SIGN_EXTEND : ZERO_EXTEND,
|
||
mode, inner, tmode);
|
||
}
|
||
}
|
||
|
||
#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
|
||
/* As we do not know which address space the pointer is referring to,
|
||
we can do this only if the target does not support different pointer
|
||
or address modes depending on the address space. */
|
||
if (target_default_pointer_address_modes_p ()
|
||
&& ! POINTERS_EXTEND_UNSIGNED
|
||
&& mode == Pmode && GET_MODE (op) == ptr_mode
|
||
&& (CONSTANT_P (op)
|
||
|| (GET_CODE (op) == SUBREG
|
||
&& REG_P (SUBREG_REG (op))
|
||
&& REG_POINTER (SUBREG_REG (op))
|
||
&& GET_MODE (SUBREG_REG (op)) == Pmode)))
|
||
return convert_memory_address (Pmode, op);
|
||
#endif
|
||
break;
|
||
|
||
case ZERO_EXTEND:
|
||
/* Check for a zero extension of a subreg of a promoted
|
||
variable, where the promotion is zero-extended, and the
|
||
target mode is the same as the variable's promotion. */
|
||
if (GET_CODE (op) == SUBREG
|
||
&& SUBREG_PROMOTED_VAR_P (op)
|
||
&& SUBREG_PROMOTED_UNSIGNED_P (op)
|
||
&& GET_MODE_SIZE (mode) <= GET_MODE_SIZE (GET_MODE (XEXP (op, 0))))
|
||
{
|
||
temp = rtl_hooks.gen_lowpart_no_emit (mode, op);
|
||
if (temp)
|
||
return temp;
|
||
}
|
||
|
||
/* Extending a widening multiplication should be canonicalized to
|
||
a wider widening multiplication. */
|
||
if (GET_CODE (op) == MULT)
|
||
{
|
||
rtx lhs = XEXP (op, 0);
|
||
rtx rhs = XEXP (op, 1);
|
||
enum rtx_code lcode = GET_CODE (lhs);
|
||
enum rtx_code rcode = GET_CODE (rhs);
|
||
|
||
/* Widening multiplies usually extend both operands, but sometimes
|
||
they use a shift to extract a portion of a register. */
|
||
if ((lcode == ZERO_EXTEND
|
||
|| (lcode == LSHIFTRT && CONST_INT_P (XEXP (lhs, 1))))
|
||
&& (rcode == ZERO_EXTEND
|
||
|| (rcode == LSHIFTRT && CONST_INT_P (XEXP (rhs, 1)))))
|
||
{
|
||
machine_mode lmode = GET_MODE (lhs);
|
||
machine_mode rmode = GET_MODE (rhs);
|
||
int bits;
|
||
|
||
if (lcode == LSHIFTRT)
|
||
/* Number of bits not shifted off the end. */
|
||
bits = GET_MODE_PRECISION (lmode) - INTVAL (XEXP (lhs, 1));
|
||
else /* lcode == ZERO_EXTEND */
|
||
/* Size of inner mode. */
|
||
bits = GET_MODE_PRECISION (GET_MODE (XEXP (lhs, 0)));
|
||
|
||
if (rcode == LSHIFTRT)
|
||
bits += GET_MODE_PRECISION (rmode) - INTVAL (XEXP (rhs, 1));
|
||
else /* rcode == ZERO_EXTEND */
|
||
bits += GET_MODE_PRECISION (GET_MODE (XEXP (rhs, 0)));
|
||
|
||
/* We can only widen multiplies if the result is mathematiclly
|
||
equivalent. I.e. if overflow was impossible. */
|
||
if (bits <= GET_MODE_PRECISION (GET_MODE (op)))
|
||
return simplify_gen_binary
|
||
(MULT, mode,
|
||
simplify_gen_unary (ZERO_EXTEND, mode, lhs, lmode),
|
||
simplify_gen_unary (ZERO_EXTEND, mode, rhs, rmode));
|
||
}
|
||
}
|
||
|
||
/* (zero_extend:M (zero_extend:N <X>)) is (zero_extend:M <X>). */
|
||
if (GET_CODE (op) == ZERO_EXTEND)
|
||
return simplify_gen_unary (ZERO_EXTEND, mode, XEXP (op, 0),
|
||
GET_MODE (XEXP (op, 0)));
|
||
|
||
/* (zero_extend:M (lshiftrt:N (ashift <X> (const_int I)) (const_int I)))
|
||
is (zero_extend:M (subreg:O <X>)) if there is mode with
|
||
GET_MODE_PRECISION (N) - I bits. */
|
||
if (GET_CODE (op) == LSHIFTRT
|
||
&& GET_CODE (XEXP (op, 0)) == ASHIFT
|
||
&& CONST_INT_P (XEXP (op, 1))
|
||
&& XEXP (XEXP (op, 0), 1) == XEXP (op, 1)
|
||
&& GET_MODE_PRECISION (GET_MODE (op)) > INTVAL (XEXP (op, 1)))
|
||
{
|
||
machine_mode tmode
|
||
= mode_for_size (GET_MODE_PRECISION (GET_MODE (op))
|
||
- INTVAL (XEXP (op, 1)), MODE_INT, 1);
|
||
if (tmode != BLKmode)
|
||
{
|
||
rtx inner =
|
||
rtl_hooks.gen_lowpart_no_emit (tmode, XEXP (XEXP (op, 0), 0));
|
||
if (inner)
|
||
return simplify_gen_unary (ZERO_EXTEND, mode, inner, tmode);
|
||
}
|
||
}
|
||
|
||
/* (zero_extend:M (subreg:N <X:O>)) is <X:O> (for M == O) or
|
||
(zero_extend:M <X:O>), if X doesn't have any non-zero bits outside
|
||
of mode N. E.g.
|
||
(zero_extend:SI (subreg:QI (and:SI (reg:SI) (const_int 63)) 0)) is
|
||
(and:SI (reg:SI) (const_int 63)). */
|
||
if (GET_CODE (op) == SUBREG
|
||
&& GET_MODE_PRECISION (GET_MODE (op))
|
||
< GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op)))
|
||
&& GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op)))
|
||
<= HOST_BITS_PER_WIDE_INT
|
||
&& GET_MODE_PRECISION (mode)
|
||
>= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op)))
|
||
&& subreg_lowpart_p (op)
|
||
&& (nonzero_bits (SUBREG_REG (op), GET_MODE (SUBREG_REG (op)))
|
||
& ~GET_MODE_MASK (GET_MODE (op))) == 0)
|
||
{
|
||
if (GET_MODE_PRECISION (mode)
|
||
== GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op))))
|
||
return SUBREG_REG (op);
|
||
return simplify_gen_unary (ZERO_EXTEND, mode, SUBREG_REG (op),
|
||
GET_MODE (SUBREG_REG (op)));
|
||
}
|
||
|
||
#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
|
||
/* As we do not know which address space the pointer is referring to,
|
||
we can do this only if the target does not support different pointer
|
||
or address modes depending on the address space. */
|
||
if (target_default_pointer_address_modes_p ()
|
||
&& POINTERS_EXTEND_UNSIGNED > 0
|
||
&& mode == Pmode && GET_MODE (op) == ptr_mode
|
||
&& (CONSTANT_P (op)
|
||
|| (GET_CODE (op) == SUBREG
|
||
&& REG_P (SUBREG_REG (op))
|
||
&& REG_POINTER (SUBREG_REG (op))
|
||
&& GET_MODE (SUBREG_REG (op)) == Pmode)))
|
||
return convert_memory_address (Pmode, op);
|
||
#endif
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Try to compute the value of a unary operation CODE whose output mode is to
|
||
be MODE with input operand OP whose mode was originally OP_MODE.
|
||
Return zero if the value cannot be computed. */
|
||
rtx
|
||
simplify_const_unary_operation (enum rtx_code code, machine_mode mode,
|
||
rtx op, machine_mode op_mode)
|
||
{
|
||
unsigned int width = GET_MODE_PRECISION (mode);
|
||
|
||
if (code == VEC_DUPLICATE)
|
||
{
|
||
gcc_assert (VECTOR_MODE_P (mode));
|
||
if (GET_MODE (op) != VOIDmode)
|
||
{
|
||
if (!VECTOR_MODE_P (GET_MODE (op)))
|
||
gcc_assert (GET_MODE_INNER (mode) == GET_MODE (op));
|
||
else
|
||
gcc_assert (GET_MODE_INNER (mode) == GET_MODE_INNER
|
||
(GET_MODE (op)));
|
||
}
|
||
if (CONST_SCALAR_INT_P (op) || CONST_DOUBLE_AS_FLOAT_P (op)
|
||
|| GET_CODE (op) == CONST_VECTOR)
|
||
{
|
||
int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
|
||
unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
|
||
rtvec v = rtvec_alloc (n_elts);
|
||
unsigned int i;
|
||
|
||
if (GET_CODE (op) != CONST_VECTOR)
|
||
for (i = 0; i < n_elts; i++)
|
||
RTVEC_ELT (v, i) = op;
|
||
else
|
||
{
|
||
machine_mode inmode = GET_MODE (op);
|
||
int in_elt_size = GET_MODE_SIZE (GET_MODE_INNER (inmode));
|
||
unsigned in_n_elts = (GET_MODE_SIZE (inmode) / in_elt_size);
|
||
|
||
gcc_assert (in_n_elts < n_elts);
|
||
gcc_assert ((n_elts % in_n_elts) == 0);
|
||
for (i = 0; i < n_elts; i++)
|
||
RTVEC_ELT (v, i) = CONST_VECTOR_ELT (op, i % in_n_elts);
|
||
}
|
||
return gen_rtx_CONST_VECTOR (mode, v);
|
||
}
|
||
}
|
||
|
||
if (VECTOR_MODE_P (mode) && GET_CODE (op) == CONST_VECTOR)
|
||
{
|
||
int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
|
||
unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
|
||
machine_mode opmode = GET_MODE (op);
|
||
int op_elt_size = GET_MODE_SIZE (GET_MODE_INNER (opmode));
|
||
unsigned op_n_elts = (GET_MODE_SIZE (opmode) / op_elt_size);
|
||
rtvec v = rtvec_alloc (n_elts);
|
||
unsigned int i;
|
||
|
||
gcc_assert (op_n_elts == n_elts);
|
||
for (i = 0; i < n_elts; i++)
|
||
{
|
||
rtx x = simplify_unary_operation (code, GET_MODE_INNER (mode),
|
||
CONST_VECTOR_ELT (op, i),
|
||
GET_MODE_INNER (opmode));
|
||
if (!x)
|
||
return 0;
|
||
RTVEC_ELT (v, i) = x;
|
||
}
|
||
return gen_rtx_CONST_VECTOR (mode, v);
|
||
}
|
||
|
||
/* The order of these tests is critical so that, for example, we don't
|
||
check the wrong mode (input vs. output) for a conversion operation,
|
||
such as FIX. At some point, this should be simplified. */
|
||
|
||
if (code == FLOAT && CONST_SCALAR_INT_P (op))
|
||
{
|
||
REAL_VALUE_TYPE d;
|
||
|
||
if (op_mode == VOIDmode)
|
||
{
|
||
/* CONST_INT have VOIDmode as the mode. We assume that all
|
||
the bits of the constant are significant, though, this is
|
||
a dangerous assumption as many times CONST_INTs are
|
||
created and used with garbage in the bits outside of the
|
||
precision of the implied mode of the const_int. */
|
||
op_mode = MAX_MODE_INT;
|
||
}
|
||
|
||
real_from_integer (&d, mode, std::make_pair (op, op_mode), SIGNED);
|
||
d = real_value_truncate (mode, d);
|
||
return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
|
||
}
|
||
else if (code == UNSIGNED_FLOAT && CONST_SCALAR_INT_P (op))
|
||
{
|
||
REAL_VALUE_TYPE d;
|
||
|
||
if (op_mode == VOIDmode)
|
||
{
|
||
/* CONST_INT have VOIDmode as the mode. We assume that all
|
||
the bits of the constant are significant, though, this is
|
||
a dangerous assumption as many times CONST_INTs are
|
||
created and used with garbage in the bits outside of the
|
||
precision of the implied mode of the const_int. */
|
||
op_mode = MAX_MODE_INT;
|
||
}
|
||
|
||
real_from_integer (&d, mode, std::make_pair (op, op_mode), UNSIGNED);
|
||
d = real_value_truncate (mode, d);
|
||
return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
|
||
}
|
||
|
||
if (CONST_SCALAR_INT_P (op) && width > 0)
|
||
{
|
||
wide_int result;
|
||
machine_mode imode = op_mode == VOIDmode ? mode : op_mode;
|
||
rtx_mode_t op0 = std::make_pair (op, imode);
|
||
int int_value;
|
||
|
||
#if TARGET_SUPPORTS_WIDE_INT == 0
|
||
/* This assert keeps the simplification from producing a result
|
||
that cannot be represented in a CONST_DOUBLE but a lot of
|
||
upstream callers expect that this function never fails to
|
||
simplify something and so you if you added this to the test
|
||
above the code would die later anyway. If this assert
|
||
happens, you just need to make the port support wide int. */
|
||
gcc_assert (width <= HOST_BITS_PER_DOUBLE_INT);
|
||
#endif
|
||
|
||
switch (code)
|
||
{
|
||
case NOT:
|
||
result = wi::bit_not (op0);
|
||
break;
|
||
|
||
case NEG:
|
||
result = wi::neg (op0);
|
||
break;
|
||
|
||
case ABS:
|
||
result = wi::abs (op0);
|
||
break;
|
||
|
||
case FFS:
|
||
result = wi::shwi (wi::ffs (op0), mode);
|
||
break;
|
||
|
||
case CLZ:
|
||
if (wi::ne_p (op0, 0))
|
||
int_value = wi::clz (op0);
|
||
else if (! CLZ_DEFINED_VALUE_AT_ZERO (mode, int_value))
|
||
int_value = GET_MODE_PRECISION (mode);
|
||
result = wi::shwi (int_value, mode);
|
||
break;
|
||
|
||
case CLRSB:
|
||
result = wi::shwi (wi::clrsb (op0), mode);
|
||
break;
|
||
|
||
case CTZ:
|
||
if (wi::ne_p (op0, 0))
|
||
int_value = wi::ctz (op0);
|
||
else if (! CTZ_DEFINED_VALUE_AT_ZERO (mode, int_value))
|
||
int_value = GET_MODE_PRECISION (mode);
|
||
result = wi::shwi (int_value, mode);
|
||
break;
|
||
|
||
case POPCOUNT:
|
||
result = wi::shwi (wi::popcount (op0), mode);
|
||
break;
|
||
|
||
case PARITY:
|
||
result = wi::shwi (wi::parity (op0), mode);
|
||
break;
|
||
|
||
case BSWAP:
|
||
result = wide_int (op0).bswap ();
|
||
break;
|
||
|
||
case TRUNCATE:
|
||
case ZERO_EXTEND:
|
||
result = wide_int::from (op0, width, UNSIGNED);
|
||
break;
|
||
|
||
case SIGN_EXTEND:
|
||
result = wide_int::from (op0, width, SIGNED);
|
||
break;
|
||
|
||
case SQRT:
|
||
default:
|
||
return 0;
|
||
}
|
||
|
||
return immed_wide_int_const (result, mode);
|
||
}
|
||
|
||
else if (CONST_DOUBLE_AS_FLOAT_P (op)
|
||
&& SCALAR_FLOAT_MODE_P (mode)
|
||
&& SCALAR_FLOAT_MODE_P (GET_MODE (op)))
|
||
{
|
||
REAL_VALUE_TYPE d;
|
||
REAL_VALUE_FROM_CONST_DOUBLE (d, op);
|
||
|
||
switch (code)
|
||
{
|
||
case SQRT:
|
||
return 0;
|
||
case ABS:
|
||
d = real_value_abs (&d);
|
||
break;
|
||
case NEG:
|
||
d = real_value_negate (&d);
|
||
break;
|
||
case FLOAT_TRUNCATE:
|
||
d = real_value_truncate (mode, d);
|
||
break;
|
||
case FLOAT_EXTEND:
|
||
/* All this does is change the mode, unless changing
|
||
mode class. */
|
||
if (GET_MODE_CLASS (mode) != GET_MODE_CLASS (GET_MODE (op)))
|
||
real_convert (&d, mode, &d);
|
||
break;
|
||
case FIX:
|
||
real_arithmetic (&d, FIX_TRUNC_EXPR, &d, NULL);
|
||
break;
|
||
case NOT:
|
||
{
|
||
long tmp[4];
|
||
int i;
|
||
|
||
real_to_target (tmp, &d, GET_MODE (op));
|
||
for (i = 0; i < 4; i++)
|
||
tmp[i] = ~tmp[i];
|
||
real_from_target (&d, tmp, mode);
|
||
break;
|
||
}
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
|
||
}
|
||
else if (CONST_DOUBLE_AS_FLOAT_P (op)
|
||
&& SCALAR_FLOAT_MODE_P (GET_MODE (op))
|
||
&& GET_MODE_CLASS (mode) == MODE_INT
|
||
&& width > 0)
|
||
{
|
||
/* Although the overflow semantics of RTL's FIX and UNSIGNED_FIX
|
||
operators are intentionally left unspecified (to ease implementation
|
||
by target backends), for consistency, this routine implements the
|
||
same semantics for constant folding as used by the middle-end. */
|
||
|
||
/* This was formerly used only for non-IEEE float.
|
||
eggert@twinsun.com says it is safe for IEEE also. */
|
||
REAL_VALUE_TYPE x, t;
|
||
REAL_VALUE_FROM_CONST_DOUBLE (x, op);
|
||
wide_int wmax, wmin;
|
||
/* This is part of the abi to real_to_integer, but we check
|
||
things before making this call. */
|
||
bool fail;
|
||
|
||
switch (code)
|
||
{
|
||
case FIX:
|
||
if (REAL_VALUE_ISNAN (x))
|
||
return const0_rtx;
|
||
|
||
/* Test against the signed upper bound. */
|
||
wmax = wi::max_value (width, SIGNED);
|
||
real_from_integer (&t, VOIDmode, wmax, SIGNED);
|
||
if (REAL_VALUES_LESS (t, x))
|
||
return immed_wide_int_const (wmax, mode);
|
||
|
||
/* Test against the signed lower bound. */
|
||
wmin = wi::min_value (width, SIGNED);
|
||
real_from_integer (&t, VOIDmode, wmin, SIGNED);
|
||
if (REAL_VALUES_LESS (x, t))
|
||
return immed_wide_int_const (wmin, mode);
|
||
|
||
return immed_wide_int_const (real_to_integer (&x, &fail, width), mode);
|
||
break;
|
||
|
||
case UNSIGNED_FIX:
|
||
if (REAL_VALUE_ISNAN (x) || REAL_VALUE_NEGATIVE (x))
|
||
return const0_rtx;
|
||
|
||
/* Test against the unsigned upper bound. */
|
||
wmax = wi::max_value (width, UNSIGNED);
|
||
real_from_integer (&t, VOIDmode, wmax, UNSIGNED);
|
||
if (REAL_VALUES_LESS (t, x))
|
||
return immed_wide_int_const (wmax, mode);
|
||
|
||
return immed_wide_int_const (real_to_integer (&x, &fail, width),
|
||
mode);
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* Subroutine of simplify_binary_operation to simplify a binary operation
|
||
CODE that can commute with byte swapping, with result mode MODE and
|
||
operating on OP0 and OP1. CODE is currently one of AND, IOR or XOR.
|
||
Return zero if no simplification or canonicalization is possible. */
|
||
|
||
static rtx
|
||
simplify_byte_swapping_operation (enum rtx_code code, machine_mode mode,
|
||
rtx op0, rtx op1)
|
||
{
|
||
rtx tem;
|
||
|
||
/* (op (bswap x) C1)) -> (bswap (op x C2)) with C2 swapped. */
|
||
if (GET_CODE (op0) == BSWAP && CONST_SCALAR_INT_P (op1))
|
||
{
|
||
tem = simplify_gen_binary (code, mode, XEXP (op0, 0),
|
||
simplify_gen_unary (BSWAP, mode, op1, mode));
|
||
return simplify_gen_unary (BSWAP, mode, tem, mode);
|
||
}
|
||
|
||
/* (op (bswap x) (bswap y)) -> (bswap (op x y)). */
|
||
if (GET_CODE (op0) == BSWAP && GET_CODE (op1) == BSWAP)
|
||
{
|
||
tem = simplify_gen_binary (code, mode, XEXP (op0, 0), XEXP (op1, 0));
|
||
return simplify_gen_unary (BSWAP, mode, tem, mode);
|
||
}
|
||
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* Subroutine of simplify_binary_operation to simplify a commutative,
|
||
associative binary operation CODE with result mode MODE, operating
|
||
on OP0 and OP1. CODE is currently one of PLUS, MULT, AND, IOR, XOR,
|
||
SMIN, SMAX, UMIN or UMAX. Return zero if no simplification or
|
||
canonicalization is possible. */
|
||
|
||
static rtx
|
||
simplify_associative_operation (enum rtx_code code, machine_mode mode,
|
||
rtx op0, rtx op1)
|
||
{
|
||
rtx tem;
|
||
|
||
/* Linearize the operator to the left. */
|
||
if (GET_CODE (op1) == code)
|
||
{
|
||
/* "(a op b) op (c op d)" becomes "((a op b) op c) op d)". */
|
||
if (GET_CODE (op0) == code)
|
||
{
|
||
tem = simplify_gen_binary (code, mode, op0, XEXP (op1, 0));
|
||
return simplify_gen_binary (code, mode, tem, XEXP (op1, 1));
|
||
}
|
||
|
||
/* "a op (b op c)" becomes "(b op c) op a". */
|
||
if (! swap_commutative_operands_p (op1, op0))
|
||
return simplify_gen_binary (code, mode, op1, op0);
|
||
|
||
tem = op0;
|
||
op0 = op1;
|
||
op1 = tem;
|
||
}
|
||
|
||
if (GET_CODE (op0) == code)
|
||
{
|
||
/* Canonicalize "(x op c) op y" as "(x op y) op c". */
|
||
if (swap_commutative_operands_p (XEXP (op0, 1), op1))
|
||
{
|
||
tem = simplify_gen_binary (code, mode, XEXP (op0, 0), op1);
|
||
return simplify_gen_binary (code, mode, tem, XEXP (op0, 1));
|
||
}
|
||
|
||
/* Attempt to simplify "(a op b) op c" as "a op (b op c)". */
|
||
tem = simplify_binary_operation (code, mode, XEXP (op0, 1), op1);
|
||
if (tem != 0)
|
||
return simplify_gen_binary (code, mode, XEXP (op0, 0), tem);
|
||
|
||
/* Attempt to simplify "(a op b) op c" as "(a op c) op b". */
|
||
tem = simplify_binary_operation (code, mode, XEXP (op0, 0), op1);
|
||
if (tem != 0)
|
||
return simplify_gen_binary (code, mode, tem, XEXP (op0, 1));
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Simplify a binary operation CODE with result mode MODE, operating on OP0
|
||
and OP1. Return 0 if no simplification is possible.
|
||
|
||
Don't use this for relational operations such as EQ or LT.
|
||
Use simplify_relational_operation instead. */
|
||
rtx
|
||
simplify_binary_operation (enum rtx_code code, machine_mode mode,
|
||
rtx op0, rtx op1)
|
||
{
|
||
rtx trueop0, trueop1;
|
||
rtx tem;
|
||
|
||
/* Relational operations don't work here. We must know the mode
|
||
of the operands in order to do the comparison correctly.
|
||
Assuming a full word can give incorrect results.
|
||
Consider comparing 128 with -128 in QImode. */
|
||
gcc_assert (GET_RTX_CLASS (code) != RTX_COMPARE);
|
||
gcc_assert (GET_RTX_CLASS (code) != RTX_COMM_COMPARE);
|
||
|
||
/* Make sure the constant is second. */
|
||
if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
|
||
&& swap_commutative_operands_p (op0, op1))
|
||
{
|
||
tem = op0, op0 = op1, op1 = tem;
|
||
}
|
||
|
||
trueop0 = avoid_constant_pool_reference (op0);
|
||
trueop1 = avoid_constant_pool_reference (op1);
|
||
|
||
tem = simplify_const_binary_operation (code, mode, trueop0, trueop1);
|
||
if (tem)
|
||
return tem;
|
||
return simplify_binary_operation_1 (code, mode, op0, op1, trueop0, trueop1);
|
||
}
|
||
|
||
/* Subroutine of simplify_binary_operation. Simplify a binary operation
|
||
CODE with result mode MODE, operating on OP0 and OP1. If OP0 and/or
|
||
OP1 are constant pool references, TRUEOP0 and TRUEOP1 represent the
|
||
actual constants. */
|
||
|
||
static rtx
|
||
simplify_binary_operation_1 (enum rtx_code code, machine_mode mode,
|
||
rtx op0, rtx op1, rtx trueop0, rtx trueop1)
|
||
{
|
||
rtx tem, reversed, opleft, opright;
|
||
HOST_WIDE_INT val;
|
||
unsigned int width = GET_MODE_PRECISION (mode);
|
||
|
||
/* Even if we can't compute a constant result,
|
||
there are some cases worth simplifying. */
|
||
|
||
switch (code)
|
||
{
|
||
case PLUS:
|
||
/* Maybe simplify x + 0 to x. The two expressions are equivalent
|
||
when x is NaN, infinite, or finite and nonzero. They aren't
|
||
when x is -0 and the rounding mode is not towards -infinity,
|
||
since (-0) + 0 is then 0. */
|
||
if (!HONOR_SIGNED_ZEROS (mode) && trueop1 == CONST0_RTX (mode))
|
||
return op0;
|
||
|
||
/* ((-a) + b) -> (b - a) and similarly for (a + (-b)). These
|
||
transformations are safe even for IEEE. */
|
||
if (GET_CODE (op0) == NEG)
|
||
return simplify_gen_binary (MINUS, mode, op1, XEXP (op0, 0));
|
||
else if (GET_CODE (op1) == NEG)
|
||
return simplify_gen_binary (MINUS, mode, op0, XEXP (op1, 0));
|
||
|
||
/* (~a) + 1 -> -a */
|
||
if (INTEGRAL_MODE_P (mode)
|
||
&& GET_CODE (op0) == NOT
|
||
&& trueop1 == const1_rtx)
|
||
return simplify_gen_unary (NEG, mode, XEXP (op0, 0), mode);
|
||
|
||
/* Handle both-operands-constant cases. We can only add
|
||
CONST_INTs to constants since the sum of relocatable symbols
|
||
can't be handled by most assemblers. Don't add CONST_INT
|
||
to CONST_INT since overflow won't be computed properly if wider
|
||
than HOST_BITS_PER_WIDE_INT. */
|
||
|
||
if ((GET_CODE (op0) == CONST
|
||
|| GET_CODE (op0) == SYMBOL_REF
|
||
|| GET_CODE (op0) == LABEL_REF)
|
||
&& CONST_INT_P (op1))
|
||
return plus_constant (mode, op0, INTVAL (op1));
|
||
else if ((GET_CODE (op1) == CONST
|
||
|| GET_CODE (op1) == SYMBOL_REF
|
||
|| GET_CODE (op1) == LABEL_REF)
|
||
&& CONST_INT_P (op0))
|
||
return plus_constant (mode, op1, INTVAL (op0));
|
||
|
||
/* See if this is something like X * C - X or vice versa or
|
||
if the multiplication is written as a shift. If so, we can
|
||
distribute and make a new multiply, shift, or maybe just
|
||
have X (if C is 2 in the example above). But don't make
|
||
something more expensive than we had before. */
|
||
|
||
if (SCALAR_INT_MODE_P (mode))
|
||
{
|
||
rtx lhs = op0, rhs = op1;
|
||
|
||
wide_int coeff0 = wi::one (GET_MODE_PRECISION (mode));
|
||
wide_int coeff1 = wi::one (GET_MODE_PRECISION (mode));
|
||
|
||
if (GET_CODE (lhs) == NEG)
|
||
{
|
||
coeff0 = wi::minus_one (GET_MODE_PRECISION (mode));
|
||
lhs = XEXP (lhs, 0);
|
||
}
|
||
else if (GET_CODE (lhs) == MULT
|
||
&& CONST_SCALAR_INT_P (XEXP (lhs, 1)))
|
||
{
|
||
coeff0 = std::make_pair (XEXP (lhs, 1), mode);
|
||
lhs = XEXP (lhs, 0);
|
||
}
|
||
else if (GET_CODE (lhs) == ASHIFT
|
||
&& CONST_INT_P (XEXP (lhs, 1))
|
||
&& INTVAL (XEXP (lhs, 1)) >= 0
|
||
&& INTVAL (XEXP (lhs, 1)) < GET_MODE_PRECISION (mode))
|
||
{
|
||
coeff0 = wi::set_bit_in_zero (INTVAL (XEXP (lhs, 1)),
|
||
GET_MODE_PRECISION (mode));
|
||
lhs = XEXP (lhs, 0);
|
||
}
|
||
|
||
if (GET_CODE (rhs) == NEG)
|
||
{
|
||
coeff1 = wi::minus_one (GET_MODE_PRECISION (mode));
|
||
rhs = XEXP (rhs, 0);
|
||
}
|
||
else if (GET_CODE (rhs) == MULT
|
||
&& CONST_INT_P (XEXP (rhs, 1)))
|
||
{
|
||
coeff1 = std::make_pair (XEXP (rhs, 1), mode);
|
||
rhs = XEXP (rhs, 0);
|
||
}
|
||
else if (GET_CODE (rhs) == ASHIFT
|
||
&& CONST_INT_P (XEXP (rhs, 1))
|
||
&& INTVAL (XEXP (rhs, 1)) >= 0
|
||
&& INTVAL (XEXP (rhs, 1)) < GET_MODE_PRECISION (mode))
|
||
{
|
||
coeff1 = wi::set_bit_in_zero (INTVAL (XEXP (rhs, 1)),
|
||
GET_MODE_PRECISION (mode));
|
||
rhs = XEXP (rhs, 0);
|
||
}
|
||
|
||
if (rtx_equal_p (lhs, rhs))
|
||
{
|
||
rtx orig = gen_rtx_PLUS (mode, op0, op1);
|
||
rtx coeff;
|
||
bool speed = optimize_function_for_speed_p (cfun);
|
||
|
||
coeff = immed_wide_int_const (coeff0 + coeff1, mode);
|
||
|
||
tem = simplify_gen_binary (MULT, mode, lhs, coeff);
|
||
return set_src_cost (tem, speed) <= set_src_cost (orig, speed)
|
||
? tem : 0;
|
||
}
|
||
}
|
||
|
||
/* (plus (xor X C1) C2) is (xor X (C1^C2)) if C2 is signbit. */
|
||
if (CONST_SCALAR_INT_P (op1)
|
||
&& GET_CODE (op0) == XOR
|
||
&& CONST_SCALAR_INT_P (XEXP (op0, 1))
|
||
&& mode_signbit_p (mode, op1))
|
||
return simplify_gen_binary (XOR, mode, XEXP (op0, 0),
|
||
simplify_gen_binary (XOR, mode, op1,
|
||
XEXP (op0, 1)));
|
||
|
||
/* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)). */
|
||
if (!HONOR_SIGN_DEPENDENT_ROUNDING (mode)
|
||
&& GET_CODE (op0) == MULT
|
||
&& GET_CODE (XEXP (op0, 0)) == NEG)
|
||
{
|
||
rtx in1, in2;
|
||
|
||
in1 = XEXP (XEXP (op0, 0), 0);
|
||
in2 = XEXP (op0, 1);
|
||
return simplify_gen_binary (MINUS, mode, op1,
|
||
simplify_gen_binary (MULT, mode,
|
||
in1, in2));
|
||
}
|
||
|
||
/* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
|
||
C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
|
||
is 1. */
|
||
if (COMPARISON_P (op0)
|
||
&& ((STORE_FLAG_VALUE == -1 && trueop1 == const1_rtx)
|
||
|| (STORE_FLAG_VALUE == 1 && trueop1 == constm1_rtx))
|
||
&& (reversed = reversed_comparison (op0, mode)))
|
||
return
|
||
simplify_gen_unary (NEG, mode, reversed, mode);
|
||
|
||
/* If one of the operands is a PLUS or a MINUS, see if we can
|
||
simplify this by the associative law.
|
||
Don't use the associative law for floating point.
|
||
The inaccuracy makes it nonassociative,
|
||
and subtle programs can break if operations are associated. */
|
||
|
||
if (INTEGRAL_MODE_P (mode)
|
||
&& (plus_minus_operand_p (op0)
|
||
|| plus_minus_operand_p (op1))
|
||
&& (tem = simplify_plus_minus (code, mode, op0, op1)) != 0)
|
||
return tem;
|
||
|
||
/* Reassociate floating point addition only when the user
|
||
specifies associative math operations. */
|
||
if (FLOAT_MODE_P (mode)
|
||
&& flag_associative_math)
|
||
{
|
||
tem = simplify_associative_operation (code, mode, op0, op1);
|
||
if (tem)
|
||
return tem;
|
||
}
|
||
break;
|
||
|
||
case COMPARE:
|
||
/* Convert (compare (gt (flags) 0) (lt (flags) 0)) to (flags). */
|
||
if (((GET_CODE (op0) == GT && GET_CODE (op1) == LT)
|
||
|| (GET_CODE (op0) == GTU && GET_CODE (op1) == LTU))
|
||
&& XEXP (op0, 1) == const0_rtx && XEXP (op1, 1) == const0_rtx)
|
||
{
|
||
rtx xop00 = XEXP (op0, 0);
|
||
rtx xop10 = XEXP (op1, 0);
|
||
|
||
#ifdef HAVE_cc0
|
||
if (GET_CODE (xop00) == CC0 && GET_CODE (xop10) == CC0)
|
||
#else
|
||
if (REG_P (xop00) && REG_P (xop10)
|
||
&& GET_MODE (xop00) == GET_MODE (xop10)
|
||
&& REGNO (xop00) == REGNO (xop10)
|
||
&& GET_MODE_CLASS (GET_MODE (xop00)) == MODE_CC
|
||
&& GET_MODE_CLASS (GET_MODE (xop10)) == MODE_CC)
|
||
#endif
|
||
return xop00;
|
||
}
|
||
break;
|
||
|
||
case MINUS:
|
||
/* We can't assume x-x is 0 even with non-IEEE floating point,
|
||
but since it is zero except in very strange circumstances, we
|
||
will treat it as zero with -ffinite-math-only. */
|
||
if (rtx_equal_p (trueop0, trueop1)
|
||
&& ! side_effects_p (op0)
|
||
&& (!FLOAT_MODE_P (mode) || !HONOR_NANS (mode)))
|
||
return CONST0_RTX (mode);
|
||
|
||
/* Change subtraction from zero into negation. (0 - x) is the
|
||
same as -x when x is NaN, infinite, or finite and nonzero.
|
||
But if the mode has signed zeros, and does not round towards
|
||
-infinity, then 0 - 0 is 0, not -0. */
|
||
if (!HONOR_SIGNED_ZEROS (mode) && trueop0 == CONST0_RTX (mode))
|
||
return simplify_gen_unary (NEG, mode, op1, mode);
|
||
|
||
/* (-1 - a) is ~a. */
|
||
if (trueop0 == constm1_rtx)
|
||
return simplify_gen_unary (NOT, mode, op1, mode);
|
||
|
||
/* Subtracting 0 has no effect unless the mode has signed zeros
|
||
and supports rounding towards -infinity. In such a case,
|
||
0 - 0 is -0. */
|
||
if (!(HONOR_SIGNED_ZEROS (mode)
|
||
&& HONOR_SIGN_DEPENDENT_ROUNDING (mode))
|
||
&& trueop1 == CONST0_RTX (mode))
|
||
return op0;
|
||
|
||
/* See if this is something like X * C - X or vice versa or
|
||
if the multiplication is written as a shift. If so, we can
|
||
distribute and make a new multiply, shift, or maybe just
|
||
have X (if C is 2 in the example above). But don't make
|
||
something more expensive than we had before. */
|
||
|
||
if (SCALAR_INT_MODE_P (mode))
|
||
{
|
||
rtx lhs = op0, rhs = op1;
|
||
|
||
wide_int coeff0 = wi::one (GET_MODE_PRECISION (mode));
|
||
wide_int negcoeff1 = wi::minus_one (GET_MODE_PRECISION (mode));
|
||
|
||
if (GET_CODE (lhs) == NEG)
|
||
{
|
||
coeff0 = wi::minus_one (GET_MODE_PRECISION (mode));
|
||
lhs = XEXP (lhs, 0);
|
||
}
|
||
else if (GET_CODE (lhs) == MULT
|
||
&& CONST_SCALAR_INT_P (XEXP (lhs, 1)))
|
||
{
|
||
coeff0 = std::make_pair (XEXP (lhs, 1), mode);
|
||
lhs = XEXP (lhs, 0);
|
||
}
|
||
else if (GET_CODE (lhs) == ASHIFT
|
||
&& CONST_INT_P (XEXP (lhs, 1))
|
||
&& INTVAL (XEXP (lhs, 1)) >= 0
|
||
&& INTVAL (XEXP (lhs, 1)) < GET_MODE_PRECISION (mode))
|
||
{
|
||
coeff0 = wi::set_bit_in_zero (INTVAL (XEXP (lhs, 1)),
|
||
GET_MODE_PRECISION (mode));
|
||
lhs = XEXP (lhs, 0);
|
||
}
|
||
|
||
if (GET_CODE (rhs) == NEG)
|
||
{
|
||
negcoeff1 = wi::one (GET_MODE_PRECISION (mode));
|
||
rhs = XEXP (rhs, 0);
|
||
}
|
||
else if (GET_CODE (rhs) == MULT
|
||
&& CONST_INT_P (XEXP (rhs, 1)))
|
||
{
|
||
negcoeff1 = wi::neg (std::make_pair (XEXP (rhs, 1), mode));
|
||
rhs = XEXP (rhs, 0);
|
||
}
|
||
else if (GET_CODE (rhs) == ASHIFT
|
||
&& CONST_INT_P (XEXP (rhs, 1))
|
||
&& INTVAL (XEXP (rhs, 1)) >= 0
|
||
&& INTVAL (XEXP (rhs, 1)) < GET_MODE_PRECISION (mode))
|
||
{
|
||
negcoeff1 = wi::set_bit_in_zero (INTVAL (XEXP (rhs, 1)),
|
||
GET_MODE_PRECISION (mode));
|
||
negcoeff1 = -negcoeff1;
|
||
rhs = XEXP (rhs, 0);
|
||
}
|
||
|
||
if (rtx_equal_p (lhs, rhs))
|
||
{
|
||
rtx orig = gen_rtx_MINUS (mode, op0, op1);
|
||
rtx coeff;
|
||
bool speed = optimize_function_for_speed_p (cfun);
|
||
|
||
coeff = immed_wide_int_const (coeff0 + negcoeff1, mode);
|
||
|
||
tem = simplify_gen_binary (MULT, mode, lhs, coeff);
|
||
return set_src_cost (tem, speed) <= set_src_cost (orig, speed)
|
||
? tem : 0;
|
||
}
|
||
}
|
||
|
||
/* (a - (-b)) -> (a + b). True even for IEEE. */
|
||
if (GET_CODE (op1) == NEG)
|
||
return simplify_gen_binary (PLUS, mode, op0, XEXP (op1, 0));
|
||
|
||
/* (-x - c) may be simplified as (-c - x). */
|
||
if (GET_CODE (op0) == NEG
|
||
&& (CONST_SCALAR_INT_P (op1) || CONST_DOUBLE_AS_FLOAT_P (op1)))
|
||
{
|
||
tem = simplify_unary_operation (NEG, mode, op1, mode);
|
||
if (tem)
|
||
return simplify_gen_binary (MINUS, mode, tem, XEXP (op0, 0));
|
||
}
|
||
|
||
/* Don't let a relocatable value get a negative coeff. */
|
||
if (CONST_INT_P (op1) && GET_MODE (op0) != VOIDmode)
|
||
return simplify_gen_binary (PLUS, mode,
|
||
op0,
|
||
neg_const_int (mode, op1));
|
||
|
||
/* (x - (x & y)) -> (x & ~y) */
|
||
if (INTEGRAL_MODE_P (mode) && GET_CODE (op1) == AND)
|
||
{
|
||
if (rtx_equal_p (op0, XEXP (op1, 0)))
|
||
{
|
||
tem = simplify_gen_unary (NOT, mode, XEXP (op1, 1),
|
||
GET_MODE (XEXP (op1, 1)));
|
||
return simplify_gen_binary (AND, mode, op0, tem);
|
||
}
|
||
if (rtx_equal_p (op0, XEXP (op1, 1)))
|
||
{
|
||
tem = simplify_gen_unary (NOT, mode, XEXP (op1, 0),
|
||
GET_MODE (XEXP (op1, 0)));
|
||
return simplify_gen_binary (AND, mode, op0, tem);
|
||
}
|
||
}
|
||
|
||
/* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
|
||
by reversing the comparison code if valid. */
|
||
if (STORE_FLAG_VALUE == 1
|
||
&& trueop0 == const1_rtx
|
||
&& COMPARISON_P (op1)
|
||
&& (reversed = reversed_comparison (op1, mode)))
|
||
return reversed;
|
||
|
||
/* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A). */
|
||
if (!HONOR_SIGN_DEPENDENT_ROUNDING (mode)
|
||
&& GET_CODE (op1) == MULT
|
||
&& GET_CODE (XEXP (op1, 0)) == NEG)
|
||
{
|
||
rtx in1, in2;
|
||
|
||
in1 = XEXP (XEXP (op1, 0), 0);
|
||
in2 = XEXP (op1, 1);
|
||
return simplify_gen_binary (PLUS, mode,
|
||
simplify_gen_binary (MULT, mode,
|
||
in1, in2),
|
||
op0);
|
||
}
|
||
|
||
/* Canonicalize (minus (neg A) (mult B C)) to
|
||
(minus (mult (neg B) C) A). */
|
||
if (!HONOR_SIGN_DEPENDENT_ROUNDING (mode)
|
||
&& GET_CODE (op1) == MULT
|
||
&& GET_CODE (op0) == NEG)
|
||
{
|
||
rtx in1, in2;
|
||
|
||
in1 = simplify_gen_unary (NEG, mode, XEXP (op1, 0), mode);
|
||
in2 = XEXP (op1, 1);
|
||
return simplify_gen_binary (MINUS, mode,
|
||
simplify_gen_binary (MULT, mode,
|
||
in1, in2),
|
||
XEXP (op0, 0));
|
||
}
|
||
|
||
/* If one of the operands is a PLUS or a MINUS, see if we can
|
||
simplify this by the associative law. This will, for example,
|
||
canonicalize (minus A (plus B C)) to (minus (minus A B) C).
|
||
Don't use the associative law for floating point.
|
||
The inaccuracy makes it nonassociative,
|
||
and subtle programs can break if operations are associated. */
|
||
|
||
if (INTEGRAL_MODE_P (mode)
|
||
&& (plus_minus_operand_p (op0)
|
||
|| plus_minus_operand_p (op1))
|
||
&& (tem = simplify_plus_minus (code, mode, op0, op1)) != 0)
|
||
return tem;
|
||
break;
|
||
|
||
case MULT:
|
||
if (trueop1 == constm1_rtx)
|
||
return simplify_gen_unary (NEG, mode, op0, mode);
|
||
|
||
if (GET_CODE (op0) == NEG)
|
||
{
|
||
rtx temp = simplify_unary_operation (NEG, mode, op1, mode);
|
||
/* If op1 is a MULT as well and simplify_unary_operation
|
||
just moved the NEG to the second operand, simplify_gen_binary
|
||
below could through simplify_associative_operation move
|
||
the NEG around again and recurse endlessly. */
|
||
if (temp
|
||
&& GET_CODE (op1) == MULT
|
||
&& GET_CODE (temp) == MULT
|
||
&& XEXP (op1, 0) == XEXP (temp, 0)
|
||
&& GET_CODE (XEXP (temp, 1)) == NEG
|
||
&& XEXP (op1, 1) == XEXP (XEXP (temp, 1), 0))
|
||
temp = NULL_RTX;
|
||
if (temp)
|
||
return simplify_gen_binary (MULT, mode, XEXP (op0, 0), temp);
|
||
}
|
||
if (GET_CODE (op1) == NEG)
|
||
{
|
||
rtx temp = simplify_unary_operation (NEG, mode, op0, mode);
|
||
/* If op0 is a MULT as well and simplify_unary_operation
|
||
just moved the NEG to the second operand, simplify_gen_binary
|
||
below could through simplify_associative_operation move
|
||
the NEG around again and recurse endlessly. */
|
||
if (temp
|
||
&& GET_CODE (op0) == MULT
|
||
&& GET_CODE (temp) == MULT
|
||
&& XEXP (op0, 0) == XEXP (temp, 0)
|
||
&& GET_CODE (XEXP (temp, 1)) == NEG
|
||
&& XEXP (op0, 1) == XEXP (XEXP (temp, 1), 0))
|
||
temp = NULL_RTX;
|
||
if (temp)
|
||
return simplify_gen_binary (MULT, mode, temp, XEXP (op1, 0));
|
||
}
|
||
|
||
/* Maybe simplify x * 0 to 0. The reduction is not valid if
|
||
x is NaN, since x * 0 is then also NaN. Nor is it valid
|
||
when the mode has signed zeros, since multiplying a negative
|
||
number by 0 will give -0, not 0. */
|
||
if (!HONOR_NANS (mode)
|
||
&& !HONOR_SIGNED_ZEROS (mode)
|
||
&& trueop1 == CONST0_RTX (mode)
|
||
&& ! side_effects_p (op0))
|
||
return op1;
|
||
|
||
/* In IEEE floating point, x*1 is not equivalent to x for
|
||
signalling NaNs. */
|
||
if (!HONOR_SNANS (mode)
|
||
&& trueop1 == CONST1_RTX (mode))
|
||
return op0;
|
||
|
||
/* Convert multiply by constant power of two into shift. */
|
||
if (CONST_SCALAR_INT_P (trueop1))
|
||
{
|
||
val = wi::exact_log2 (std::make_pair (trueop1, mode));
|
||
if (val >= 0)
|
||
return simplify_gen_binary (ASHIFT, mode, op0, GEN_INT (val));
|
||
}
|
||
|
||
/* x*2 is x+x and x*(-1) is -x */
|
||
if (CONST_DOUBLE_AS_FLOAT_P (trueop1)
|
||
&& SCALAR_FLOAT_MODE_P (GET_MODE (trueop1))
|
||
&& !DECIMAL_FLOAT_MODE_P (GET_MODE (trueop1))
|
||
&& GET_MODE (op0) == mode)
|
||
{
|
||
REAL_VALUE_TYPE d;
|
||
REAL_VALUE_FROM_CONST_DOUBLE (d, trueop1);
|
||
|
||
if (REAL_VALUES_EQUAL (d, dconst2))
|
||
return simplify_gen_binary (PLUS, mode, op0, copy_rtx (op0));
|
||
|
||
if (!HONOR_SNANS (mode)
|
||
&& REAL_VALUES_EQUAL (d, dconstm1))
|
||
return simplify_gen_unary (NEG, mode, op0, mode);
|
||
}
|
||
|
||
/* Optimize -x * -x as x * x. */
|
||
if (FLOAT_MODE_P (mode)
|
||
&& GET_CODE (op0) == NEG
|
||
&& GET_CODE (op1) == NEG
|
||
&& rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
|
||
&& !side_effects_p (XEXP (op0, 0)))
|
||
return simplify_gen_binary (MULT, mode, XEXP (op0, 0), XEXP (op1, 0));
|
||
|
||
/* Likewise, optimize abs(x) * abs(x) as x * x. */
|
||
if (SCALAR_FLOAT_MODE_P (mode)
|
||
&& GET_CODE (op0) == ABS
|
||
&& GET_CODE (op1) == ABS
|
||
&& rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
|
||
&& !side_effects_p (XEXP (op0, 0)))
|
||
return simplify_gen_binary (MULT, mode, XEXP (op0, 0), XEXP (op1, 0));
|
||
|
||
/* Reassociate multiplication, but for floating point MULTs
|
||
only when the user specifies unsafe math optimizations. */
|
||
if (! FLOAT_MODE_P (mode)
|
||
|| flag_unsafe_math_optimizations)
|
||
{
|
||
tem = simplify_associative_operation (code, mode, op0, op1);
|
||
if (tem)
|
||
return tem;
|
||
}
|
||
break;
|
||
|
||
case IOR:
|
||
if (trueop1 == CONST0_RTX (mode))
|
||
return op0;
|
||
if (INTEGRAL_MODE_P (mode)
|
||
&& trueop1 == CONSTM1_RTX (mode)
|
||
&& !side_effects_p (op0))
|
||
return op1;
|
||
if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
|
||
return op0;
|
||
/* A | (~A) -> -1 */
|
||
if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
|
||
|| (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
|
||
&& ! side_effects_p (op0)
|
||
&& SCALAR_INT_MODE_P (mode))
|
||
return constm1_rtx;
|
||
|
||
/* (ior A C) is C if all bits of A that might be nonzero are on in C. */
|
||
if (CONST_INT_P (op1)
|
||
&& HWI_COMPUTABLE_MODE_P (mode)
|
||
&& (nonzero_bits (op0, mode) & ~UINTVAL (op1)) == 0
|
||
&& !side_effects_p (op0))
|
||
return op1;
|
||
|
||
/* Canonicalize (X & C1) | C2. */
|
||
if (GET_CODE (op0) == AND
|
||
&& CONST_INT_P (trueop1)
|
||
&& CONST_INT_P (XEXP (op0, 1)))
|
||
{
|
||
HOST_WIDE_INT mask = GET_MODE_MASK (mode);
|
||
HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
|
||
HOST_WIDE_INT c2 = INTVAL (trueop1);
|
||
|
||
/* If (C1&C2) == C1, then (X&C1)|C2 becomes X. */
|
||
if ((c1 & c2) == c1
|
||
&& !side_effects_p (XEXP (op0, 0)))
|
||
return trueop1;
|
||
|
||
/* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
|
||
if (((c1|c2) & mask) == mask)
|
||
return simplify_gen_binary (IOR, mode, XEXP (op0, 0), op1);
|
||
|
||
/* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2. */
|
||
if (((c1 & ~c2) & mask) != (c1 & mask))
|
||
{
|
||
tem = simplify_gen_binary (AND, mode, XEXP (op0, 0),
|
||
gen_int_mode (c1 & ~c2, mode));
|
||
return simplify_gen_binary (IOR, mode, tem, op1);
|
||
}
|
||
}
|
||
|
||
/* Convert (A & B) | A to A. */
|
||
if (GET_CODE (op0) == AND
|
||
&& (rtx_equal_p (XEXP (op0, 0), op1)
|
||
|| rtx_equal_p (XEXP (op0, 1), op1))
|
||
&& ! side_effects_p (XEXP (op0, 0))
|
||
&& ! side_effects_p (XEXP (op0, 1)))
|
||
return op1;
|
||
|
||
/* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
|
||
mode size to (rotate A CX). */
|
||
|
||
if (GET_CODE (op1) == ASHIFT
|
||
|| GET_CODE (op1) == SUBREG)
|
||
{
|
||
opleft = op1;
|
||
opright = op0;
|
||
}
|
||
else
|
||
{
|
||
opright = op1;
|
||
opleft = op0;
|
||
}
|
||
|
||
if (GET_CODE (opleft) == ASHIFT && GET_CODE (opright) == LSHIFTRT
|
||
&& rtx_equal_p (XEXP (opleft, 0), XEXP (opright, 0))
|
||
&& CONST_INT_P (XEXP (opleft, 1))
|
||
&& CONST_INT_P (XEXP (opright, 1))
|
||
&& (INTVAL (XEXP (opleft, 1)) + INTVAL (XEXP (opright, 1))
|
||
== GET_MODE_PRECISION (mode)))
|
||
return gen_rtx_ROTATE (mode, XEXP (opright, 0), XEXP (opleft, 1));
|
||
|
||
/* Same, but for ashift that has been "simplified" to a wider mode
|
||
by simplify_shift_const. */
|
||
|
||
if (GET_CODE (opleft) == SUBREG
|
||
&& GET_CODE (SUBREG_REG (opleft)) == ASHIFT
|
||
&& GET_CODE (opright) == LSHIFTRT
|
||
&& GET_CODE (XEXP (opright, 0)) == SUBREG
|
||
&& GET_MODE (opleft) == GET_MODE (XEXP (opright, 0))
|
||
&& SUBREG_BYTE (opleft) == SUBREG_BYTE (XEXP (opright, 0))
|
||
&& (GET_MODE_SIZE (GET_MODE (opleft))
|
||
< GET_MODE_SIZE (GET_MODE (SUBREG_REG (opleft))))
|
||
&& rtx_equal_p (XEXP (SUBREG_REG (opleft), 0),
|
||
SUBREG_REG (XEXP (opright, 0)))
|
||
&& CONST_INT_P (XEXP (SUBREG_REG (opleft), 1))
|
||
&& CONST_INT_P (XEXP (opright, 1))
|
||
&& (INTVAL (XEXP (SUBREG_REG (opleft), 1)) + INTVAL (XEXP (opright, 1))
|
||
== GET_MODE_PRECISION (mode)))
|
||
return gen_rtx_ROTATE (mode, XEXP (opright, 0),
|
||
XEXP (SUBREG_REG (opleft), 1));
|
||
|
||
/* If we have (ior (and (X C1) C2)), simplify this by making
|
||
C1 as small as possible if C1 actually changes. */
|
||
if (CONST_INT_P (op1)
|
||
&& (HWI_COMPUTABLE_MODE_P (mode)
|
||
|| INTVAL (op1) > 0)
|
||
&& GET_CODE (op0) == AND
|
||
&& CONST_INT_P (XEXP (op0, 1))
|
||
&& CONST_INT_P (op1)
|
||
&& (UINTVAL (XEXP (op0, 1)) & UINTVAL (op1)) != 0)
|
||
{
|
||
rtx tmp = simplify_gen_binary (AND, mode, XEXP (op0, 0),
|
||
gen_int_mode (UINTVAL (XEXP (op0, 1))
|
||
& ~UINTVAL (op1),
|
||
mode));
|
||
return simplify_gen_binary (IOR, mode, tmp, op1);
|
||
}
|
||
|
||
/* If OP0 is (ashiftrt (plus ...) C), it might actually be
|
||
a (sign_extend (plus ...)). Then check if OP1 is a CONST_INT and
|
||
the PLUS does not affect any of the bits in OP1: then we can do
|
||
the IOR as a PLUS and we can associate. This is valid if OP1
|
||
can be safely shifted left C bits. */
|
||
if (CONST_INT_P (trueop1) && GET_CODE (op0) == ASHIFTRT
|
||
&& GET_CODE (XEXP (op0, 0)) == PLUS
|
||
&& CONST_INT_P (XEXP (XEXP (op0, 0), 1))
|
||
&& CONST_INT_P (XEXP (op0, 1))
|
||
&& INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
int count = INTVAL (XEXP (op0, 1));
|
||
HOST_WIDE_INT mask = INTVAL (trueop1) << count;
|
||
|
||
if (mask >> count == INTVAL (trueop1)
|
||
&& trunc_int_for_mode (mask, mode) == mask
|
||
&& (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
|
||
return simplify_gen_binary (ASHIFTRT, mode,
|
||
plus_constant (mode, XEXP (op0, 0),
|
||
mask),
|
||
XEXP (op0, 1));
|
||
}
|
||
|
||
tem = simplify_byte_swapping_operation (code, mode, op0, op1);
|
||
if (tem)
|
||
return tem;
|
||
|
||
tem = simplify_associative_operation (code, mode, op0, op1);
|
||
if (tem)
|
||
return tem;
|
||
break;
|
||
|
||
case XOR:
|
||
if (trueop1 == CONST0_RTX (mode))
|
||
return op0;
|
||
if (INTEGRAL_MODE_P (mode) && trueop1 == CONSTM1_RTX (mode))
|
||
return simplify_gen_unary (NOT, mode, op0, mode);
|
||
if (rtx_equal_p (trueop0, trueop1)
|
||
&& ! side_effects_p (op0)
|
||
&& GET_MODE_CLASS (mode) != MODE_CC)
|
||
return CONST0_RTX (mode);
|
||
|
||
/* Canonicalize XOR of the most significant bit to PLUS. */
|
||
if (CONST_SCALAR_INT_P (op1)
|
||
&& mode_signbit_p (mode, op1))
|
||
return simplify_gen_binary (PLUS, mode, op0, op1);
|
||
/* (xor (plus X C1) C2) is (xor X (C1^C2)) if C1 is signbit. */
|
||
if (CONST_SCALAR_INT_P (op1)
|
||
&& GET_CODE (op0) == PLUS
|
||
&& CONST_SCALAR_INT_P (XEXP (op0, 1))
|
||
&& mode_signbit_p (mode, XEXP (op0, 1)))
|
||
return simplify_gen_binary (XOR, mode, XEXP (op0, 0),
|
||
simplify_gen_binary (XOR, mode, op1,
|
||
XEXP (op0, 1)));
|
||
|
||
/* If we are XORing two things that have no bits in common,
|
||
convert them into an IOR. This helps to detect rotation encoded
|
||
using those methods and possibly other simplifications. */
|
||
|
||
if (HWI_COMPUTABLE_MODE_P (mode)
|
||
&& (nonzero_bits (op0, mode)
|
||
& nonzero_bits (op1, mode)) == 0)
|
||
return (simplify_gen_binary (IOR, mode, op0, op1));
|
||
|
||
/* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
|
||
Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
|
||
(NOT y). */
|
||
{
|
||
int num_negated = 0;
|
||
|
||
if (GET_CODE (op0) == NOT)
|
||
num_negated++, op0 = XEXP (op0, 0);
|
||
if (GET_CODE (op1) == NOT)
|
||
num_negated++, op1 = XEXP (op1, 0);
|
||
|
||
if (num_negated == 2)
|
||
return simplify_gen_binary (XOR, mode, op0, op1);
|
||
else if (num_negated == 1)
|
||
return simplify_gen_unary (NOT, mode,
|
||
simplify_gen_binary (XOR, mode, op0, op1),
|
||
mode);
|
||
}
|
||
|
||
/* Convert (xor (and A B) B) to (and (not A) B). The latter may
|
||
correspond to a machine insn or result in further simplifications
|
||
if B is a constant. */
|
||
|
||
if (GET_CODE (op0) == AND
|
||
&& rtx_equal_p (XEXP (op0, 1), op1)
|
||
&& ! side_effects_p (op1))
|
||
return simplify_gen_binary (AND, mode,
|
||
simplify_gen_unary (NOT, mode,
|
||
XEXP (op0, 0), mode),
|
||
op1);
|
||
|
||
else if (GET_CODE (op0) == AND
|
||
&& rtx_equal_p (XEXP (op0, 0), op1)
|
||
&& ! side_effects_p (op1))
|
||
return simplify_gen_binary (AND, mode,
|
||
simplify_gen_unary (NOT, mode,
|
||
XEXP (op0, 1), mode),
|
||
op1);
|
||
|
||
/* Given (xor (ior (xor A B) C) D), where B, C and D are
|
||
constants, simplify to (xor (ior A C) (B&~C)^D), canceling
|
||
out bits inverted twice and not set by C. Similarly, given
|
||
(xor (and (xor A B) C) D), simplify without inverting C in
|
||
the xor operand: (xor (and A C) (B&C)^D).
|
||
*/
|
||
else if ((GET_CODE (op0) == IOR || GET_CODE (op0) == AND)
|
||
&& GET_CODE (XEXP (op0, 0)) == XOR
|
||
&& CONST_INT_P (op1)
|
||
&& CONST_INT_P (XEXP (op0, 1))
|
||
&& CONST_INT_P (XEXP (XEXP (op0, 0), 1)))
|
||
{
|
||
enum rtx_code op = GET_CODE (op0);
|
||
rtx a = XEXP (XEXP (op0, 0), 0);
|
||
rtx b = XEXP (XEXP (op0, 0), 1);
|
||
rtx c = XEXP (op0, 1);
|
||
rtx d = op1;
|
||
HOST_WIDE_INT bval = INTVAL (b);
|
||
HOST_WIDE_INT cval = INTVAL (c);
|
||
HOST_WIDE_INT dval = INTVAL (d);
|
||
HOST_WIDE_INT xcval;
|
||
|
||
if (op == IOR)
|
||
xcval = ~cval;
|
||
else
|
||
xcval = cval;
|
||
|
||
return simplify_gen_binary (XOR, mode,
|
||
simplify_gen_binary (op, mode, a, c),
|
||
gen_int_mode ((bval & xcval) ^ dval,
|
||
mode));
|
||
}
|
||
|
||
/* Given (xor (and A B) C), using P^Q == (~P&Q) | (~Q&P),
|
||
we can transform like this:
|
||
(A&B)^C == ~(A&B)&C | ~C&(A&B)
|
||
== (~A|~B)&C | ~C&(A&B) * DeMorgan's Law
|
||
== ~A&C | ~B&C | A&(~C&B) * Distribute and re-order
|
||
Attempt a few simplifications when B and C are both constants. */
|
||
if (GET_CODE (op0) == AND
|
||
&& CONST_INT_P (op1)
|
||
&& CONST_INT_P (XEXP (op0, 1)))
|
||
{
|
||
rtx a = XEXP (op0, 0);
|
||
rtx b = XEXP (op0, 1);
|
||
rtx c = op1;
|
||
HOST_WIDE_INT bval = INTVAL (b);
|
||
HOST_WIDE_INT cval = INTVAL (c);
|
||
|
||
/* Instead of computing ~A&C, we compute its negated value,
|
||
~(A|~C). If it yields -1, ~A&C is zero, so we can
|
||
optimize for sure. If it does not simplify, we still try
|
||
to compute ~A&C below, but since that always allocates
|
||
RTL, we don't try that before committing to returning a
|
||
simplified expression. */
|
||
rtx n_na_c = simplify_binary_operation (IOR, mode, a,
|
||
GEN_INT (~cval));
|
||
|
||
if ((~cval & bval) == 0)
|
||
{
|
||
rtx na_c = NULL_RTX;
|
||
if (n_na_c)
|
||
na_c = simplify_gen_unary (NOT, mode, n_na_c, mode);
|
||
else
|
||
{
|
||
/* If ~A does not simplify, don't bother: we don't
|
||
want to simplify 2 operations into 3, and if na_c
|
||
were to simplify with na, n_na_c would have
|
||
simplified as well. */
|
||
rtx na = simplify_unary_operation (NOT, mode, a, mode);
|
||
if (na)
|
||
na_c = simplify_gen_binary (AND, mode, na, c);
|
||
}
|
||
|
||
/* Try to simplify ~A&C | ~B&C. */
|
||
if (na_c != NULL_RTX)
|
||
return simplify_gen_binary (IOR, mode, na_c,
|
||
gen_int_mode (~bval & cval, mode));
|
||
}
|
||
else
|
||
{
|
||
/* If ~A&C is zero, simplify A&(~C&B) | ~B&C. */
|
||
if (n_na_c == CONSTM1_RTX (mode))
|
||
{
|
||
rtx a_nc_b = simplify_gen_binary (AND, mode, a,
|
||
gen_int_mode (~cval & bval,
|
||
mode));
|
||
return simplify_gen_binary (IOR, mode, a_nc_b,
|
||
gen_int_mode (~bval & cval,
|
||
mode));
|
||
}
|
||
}
|
||
}
|
||
|
||
/* (xor (comparison foo bar) (const_int 1)) can become the reversed
|
||
comparison if STORE_FLAG_VALUE is 1. */
|
||
if (STORE_FLAG_VALUE == 1
|
||
&& trueop1 == const1_rtx
|
||
&& COMPARISON_P (op0)
|
||
&& (reversed = reversed_comparison (op0, mode)))
|
||
return reversed;
|
||
|
||
/* (lshiftrt foo C) where C is the number of bits in FOO minus 1
|
||
is (lt foo (const_int 0)), so we can perform the above
|
||
simplification if STORE_FLAG_VALUE is 1. */
|
||
|
||
if (STORE_FLAG_VALUE == 1
|
||
&& trueop1 == const1_rtx
|
||
&& GET_CODE (op0) == LSHIFTRT
|
||
&& CONST_INT_P (XEXP (op0, 1))
|
||
&& INTVAL (XEXP (op0, 1)) == GET_MODE_PRECISION (mode) - 1)
|
||
return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
|
||
|
||
/* (xor (comparison foo bar) (const_int sign-bit))
|
||
when STORE_FLAG_VALUE is the sign bit. */
|
||
if (val_signbit_p (mode, STORE_FLAG_VALUE)
|
||
&& trueop1 == const_true_rtx
|
||
&& COMPARISON_P (op0)
|
||
&& (reversed = reversed_comparison (op0, mode)))
|
||
return reversed;
|
||
|
||
tem = simplify_byte_swapping_operation (code, mode, op0, op1);
|
||
if (tem)
|
||
return tem;
|
||
|
||
tem = simplify_associative_operation (code, mode, op0, op1);
|
||
if (tem)
|
||
return tem;
|
||
break;
|
||
|
||
case AND:
|
||
if (trueop1 == CONST0_RTX (mode) && ! side_effects_p (op0))
|
||
return trueop1;
|
||
if (INTEGRAL_MODE_P (mode) && trueop1 == CONSTM1_RTX (mode))
|
||
return op0;
|
||
if (HWI_COMPUTABLE_MODE_P (mode))
|
||
{
|
||
HOST_WIDE_INT nzop0 = nonzero_bits (trueop0, mode);
|
||
HOST_WIDE_INT nzop1;
|
||
if (CONST_INT_P (trueop1))
|
||
{
|
||
HOST_WIDE_INT val1 = INTVAL (trueop1);
|
||
/* If we are turning off bits already known off in OP0, we need
|
||
not do an AND. */
|
||
if ((nzop0 & ~val1) == 0)
|
||
return op0;
|
||
}
|
||
nzop1 = nonzero_bits (trueop1, mode);
|
||
/* If we are clearing all the nonzero bits, the result is zero. */
|
||
if ((nzop1 & nzop0) == 0
|
||
&& !side_effects_p (op0) && !side_effects_p (op1))
|
||
return CONST0_RTX (mode);
|
||
}
|
||
if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0)
|
||
&& GET_MODE_CLASS (mode) != MODE_CC)
|
||
return op0;
|
||
/* A & (~A) -> 0 */
|
||
if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
|
||
|| (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
|
||
&& ! side_effects_p (op0)
|
||
&& GET_MODE_CLASS (mode) != MODE_CC)
|
||
return CONST0_RTX (mode);
|
||
|
||
/* Transform (and (extend X) C) into (zero_extend (and X C)) if
|
||
there are no nonzero bits of C outside of X's mode. */
|
||
if ((GET_CODE (op0) == SIGN_EXTEND
|
||
|| GET_CODE (op0) == ZERO_EXTEND)
|
||
&& CONST_INT_P (trueop1)
|
||
&& HWI_COMPUTABLE_MODE_P (mode)
|
||
&& (~GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))
|
||
& UINTVAL (trueop1)) == 0)
|
||
{
|
||
machine_mode imode = GET_MODE (XEXP (op0, 0));
|
||
tem = simplify_gen_binary (AND, imode, XEXP (op0, 0),
|
||
gen_int_mode (INTVAL (trueop1),
|
||
imode));
|
||
return simplify_gen_unary (ZERO_EXTEND, mode, tem, imode);
|
||
}
|
||
|
||
/* Transform (and (truncate X) C) into (truncate (and X C)). This way
|
||
we might be able to further simplify the AND with X and potentially
|
||
remove the truncation altogether. */
|
||
if (GET_CODE (op0) == TRUNCATE && CONST_INT_P (trueop1))
|
||
{
|
||
rtx x = XEXP (op0, 0);
|
||
machine_mode xmode = GET_MODE (x);
|
||
tem = simplify_gen_binary (AND, xmode, x,
|
||
gen_int_mode (INTVAL (trueop1), xmode));
|
||
return simplify_gen_unary (TRUNCATE, mode, tem, xmode);
|
||
}
|
||
|
||
/* Canonicalize (A | C1) & C2 as (A & C2) | (C1 & C2). */
|
||
if (GET_CODE (op0) == IOR
|
||
&& CONST_INT_P (trueop1)
|
||
&& CONST_INT_P (XEXP (op0, 1)))
|
||
{
|
||
HOST_WIDE_INT tmp = INTVAL (trueop1) & INTVAL (XEXP (op0, 1));
|
||
return simplify_gen_binary (IOR, mode,
|
||
simplify_gen_binary (AND, mode,
|
||
XEXP (op0, 0), op1),
|
||
gen_int_mode (tmp, mode));
|
||
}
|
||
|
||
/* Convert (A ^ B) & A to A & (~B) since the latter is often a single
|
||
insn (and may simplify more). */
|
||
if (GET_CODE (op0) == XOR
|
||
&& rtx_equal_p (XEXP (op0, 0), op1)
|
||
&& ! side_effects_p (op1))
|
||
return simplify_gen_binary (AND, mode,
|
||
simplify_gen_unary (NOT, mode,
|
||
XEXP (op0, 1), mode),
|
||
op1);
|
||
|
||
if (GET_CODE (op0) == XOR
|
||
&& rtx_equal_p (XEXP (op0, 1), op1)
|
||
&& ! side_effects_p (op1))
|
||
return simplify_gen_binary (AND, mode,
|
||
simplify_gen_unary (NOT, mode,
|
||
XEXP (op0, 0), mode),
|
||
op1);
|
||
|
||
/* Similarly for (~(A ^ B)) & A. */
|
||
if (GET_CODE (op0) == NOT
|
||
&& GET_CODE (XEXP (op0, 0)) == XOR
|
||
&& rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
|
||
&& ! side_effects_p (op1))
|
||
return simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
|
||
|
||
if (GET_CODE (op0) == NOT
|
||
&& GET_CODE (XEXP (op0, 0)) == XOR
|
||
&& rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
|
||
&& ! side_effects_p (op1))
|
||
return simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
|
||
|
||
/* Convert (A | B) & A to A. */
|
||
if (GET_CODE (op0) == IOR
|
||
&& (rtx_equal_p (XEXP (op0, 0), op1)
|
||
|| rtx_equal_p (XEXP (op0, 1), op1))
|
||
&& ! side_effects_p (XEXP (op0, 0))
|
||
&& ! side_effects_p (XEXP (op0, 1)))
|
||
return op1;
|
||
|
||
/* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
|
||
((A & N) + B) & M -> (A + B) & M
|
||
Similarly if (N & M) == 0,
|
||
((A | N) + B) & M -> (A + B) & M
|
||
and for - instead of + and/or ^ instead of |.
|
||
Also, if (N & M) == 0, then
|
||
(A +- N) & M -> A & M. */
|
||
if (CONST_INT_P (trueop1)
|
||
&& HWI_COMPUTABLE_MODE_P (mode)
|
||
&& ~UINTVAL (trueop1)
|
||
&& (UINTVAL (trueop1) & (UINTVAL (trueop1) + 1)) == 0
|
||
&& (GET_CODE (op0) == PLUS || GET_CODE (op0) == MINUS))
|
||
{
|
||
rtx pmop[2];
|
||
int which;
|
||
|
||
pmop[0] = XEXP (op0, 0);
|
||
pmop[1] = XEXP (op0, 1);
|
||
|
||
if (CONST_INT_P (pmop[1])
|
||
&& (UINTVAL (pmop[1]) & UINTVAL (trueop1)) == 0)
|
||
return simplify_gen_binary (AND, mode, pmop[0], op1);
|
||
|
||
for (which = 0; which < 2; which++)
|
||
{
|
||
tem = pmop[which];
|
||
switch (GET_CODE (tem))
|
||
{
|
||
case AND:
|
||
if (CONST_INT_P (XEXP (tem, 1))
|
||
&& (UINTVAL (XEXP (tem, 1)) & UINTVAL (trueop1))
|
||
== UINTVAL (trueop1))
|
||
pmop[which] = XEXP (tem, 0);
|
||
break;
|
||
case IOR:
|
||
case XOR:
|
||
if (CONST_INT_P (XEXP (tem, 1))
|
||
&& (UINTVAL (XEXP (tem, 1)) & UINTVAL (trueop1)) == 0)
|
||
pmop[which] = XEXP (tem, 0);
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (pmop[0] != XEXP (op0, 0) || pmop[1] != XEXP (op0, 1))
|
||
{
|
||
tem = simplify_gen_binary (GET_CODE (op0), mode,
|
||
pmop[0], pmop[1]);
|
||
return simplify_gen_binary (code, mode, tem, op1);
|
||
}
|
||
}
|
||
|
||
/* (and X (ior (not X) Y) -> (and X Y) */
|
||
if (GET_CODE (op1) == IOR
|
||
&& GET_CODE (XEXP (op1, 0)) == NOT
|
||
&& rtx_equal_p (op0, XEXP (XEXP (op1, 0), 0)))
|
||
return simplify_gen_binary (AND, mode, op0, XEXP (op1, 1));
|
||
|
||
/* (and (ior (not X) Y) X) -> (and X Y) */
|
||
if (GET_CODE (op0) == IOR
|
||
&& GET_CODE (XEXP (op0, 0)) == NOT
|
||
&& rtx_equal_p (op1, XEXP (XEXP (op0, 0), 0)))
|
||
return simplify_gen_binary (AND, mode, op1, XEXP (op0, 1));
|
||
|
||
/* (and X (ior Y (not X)) -> (and X Y) */
|
||
if (GET_CODE (op1) == IOR
|
||
&& GET_CODE (XEXP (op1, 1)) == NOT
|
||
&& rtx_equal_p (op0, XEXP (XEXP (op1, 1), 0)))
|
||
return simplify_gen_binary (AND, mode, op0, XEXP (op1, 0));
|
||
|
||
/* (and (ior Y (not X)) X) -> (and X Y) */
|
||
if (GET_CODE (op0) == IOR
|
||
&& GET_CODE (XEXP (op0, 1)) == NOT
|
||
&& rtx_equal_p (op1, XEXP (XEXP (op0, 1), 0)))
|
||
return simplify_gen_binary (AND, mode, op1, XEXP (op0, 0));
|
||
|
||
tem = simplify_byte_swapping_operation (code, mode, op0, op1);
|
||
if (tem)
|
||
return tem;
|
||
|
||
tem = simplify_associative_operation (code, mode, op0, op1);
|
||
if (tem)
|
||
return tem;
|
||
break;
|
||
|
||
case UDIV:
|
||
/* 0/x is 0 (or x&0 if x has side-effects). */
|
||
if (trueop0 == CONST0_RTX (mode))
|
||
{
|
||
if (side_effects_p (op1))
|
||
return simplify_gen_binary (AND, mode, op1, trueop0);
|
||
return trueop0;
|
||
}
|
||
/* x/1 is x. */
|
||
if (trueop1 == CONST1_RTX (mode))
|
||
{
|
||
tem = rtl_hooks.gen_lowpart_no_emit (mode, op0);
|
||
if (tem)
|
||
return tem;
|
||
}
|
||
/* Convert divide by power of two into shift. */
|
||
if (CONST_INT_P (trueop1)
|
||
&& (val = exact_log2 (UINTVAL (trueop1))) > 0)
|
||
return simplify_gen_binary (LSHIFTRT, mode, op0, GEN_INT (val));
|
||
break;
|
||
|
||
case DIV:
|
||
/* Handle floating point and integers separately. */
|
||
if (SCALAR_FLOAT_MODE_P (mode))
|
||
{
|
||
/* Maybe change 0.0 / x to 0.0. This transformation isn't
|
||
safe for modes with NaNs, since 0.0 / 0.0 will then be
|
||
NaN rather than 0.0. Nor is it safe for modes with signed
|
||
zeros, since dividing 0 by a negative number gives -0.0 */
|
||
if (trueop0 == CONST0_RTX (mode)
|
||
&& !HONOR_NANS (mode)
|
||
&& !HONOR_SIGNED_ZEROS (mode)
|
||
&& ! side_effects_p (op1))
|
||
return op0;
|
||
/* x/1.0 is x. */
|
||
if (trueop1 == CONST1_RTX (mode)
|
||
&& !HONOR_SNANS (mode))
|
||
return op0;
|
||
|
||
if (CONST_DOUBLE_AS_FLOAT_P (trueop1)
|
||
&& trueop1 != CONST0_RTX (mode))
|
||
{
|
||
REAL_VALUE_TYPE d;
|
||
REAL_VALUE_FROM_CONST_DOUBLE (d, trueop1);
|
||
|
||
/* x/-1.0 is -x. */
|
||
if (REAL_VALUES_EQUAL (d, dconstm1)
|
||
&& !HONOR_SNANS (mode))
|
||
return simplify_gen_unary (NEG, mode, op0, mode);
|
||
|
||
/* Change FP division by a constant into multiplication.
|
||
Only do this with -freciprocal-math. */
|
||
if (flag_reciprocal_math
|
||
&& !REAL_VALUES_EQUAL (d, dconst0))
|
||
{
|
||
REAL_ARITHMETIC (d, RDIV_EXPR, dconst1, d);
|
||
tem = CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
|
||
return simplify_gen_binary (MULT, mode, op0, tem);
|
||
}
|
||
}
|
||
}
|
||
else if (SCALAR_INT_MODE_P (mode))
|
||
{
|
||
/* 0/x is 0 (or x&0 if x has side-effects). */
|
||
if (trueop0 == CONST0_RTX (mode)
|
||
&& !cfun->can_throw_non_call_exceptions)
|
||
{
|
||
if (side_effects_p (op1))
|
||
return simplify_gen_binary (AND, mode, op1, trueop0);
|
||
return trueop0;
|
||
}
|
||
/* x/1 is x. */
|
||
if (trueop1 == CONST1_RTX (mode))
|
||
{
|
||
tem = rtl_hooks.gen_lowpart_no_emit (mode, op0);
|
||
if (tem)
|
||
return tem;
|
||
}
|
||
/* x/-1 is -x. */
|
||
if (trueop1 == constm1_rtx)
|
||
{
|
||
rtx x = rtl_hooks.gen_lowpart_no_emit (mode, op0);
|
||
if (x)
|
||
return simplify_gen_unary (NEG, mode, x, mode);
|
||
}
|
||
}
|
||
break;
|
||
|
||
case UMOD:
|
||
/* 0%x is 0 (or x&0 if x has side-effects). */
|
||
if (trueop0 == CONST0_RTX (mode))
|
||
{
|
||
if (side_effects_p (op1))
|
||
return simplify_gen_binary (AND, mode, op1, trueop0);
|
||
return trueop0;
|
||
}
|
||
/* x%1 is 0 (of x&0 if x has side-effects). */
|
||
if (trueop1 == CONST1_RTX (mode))
|
||
{
|
||
if (side_effects_p (op0))
|
||
return simplify_gen_binary (AND, mode, op0, CONST0_RTX (mode));
|
||
return CONST0_RTX (mode);
|
||
}
|
||
/* Implement modulus by power of two as AND. */
|
||
if (CONST_INT_P (trueop1)
|
||
&& exact_log2 (UINTVAL (trueop1)) > 0)
|
||
return simplify_gen_binary (AND, mode, op0,
|
||
gen_int_mode (INTVAL (op1) - 1, mode));
|
||
break;
|
||
|
||
case MOD:
|
||
/* 0%x is 0 (or x&0 if x has side-effects). */
|
||
if (trueop0 == CONST0_RTX (mode))
|
||
{
|
||
if (side_effects_p (op1))
|
||
return simplify_gen_binary (AND, mode, op1, trueop0);
|
||
return trueop0;
|
||
}
|
||
/* x%1 and x%-1 is 0 (or x&0 if x has side-effects). */
|
||
if (trueop1 == CONST1_RTX (mode) || trueop1 == constm1_rtx)
|
||
{
|
||
if (side_effects_p (op0))
|
||
return simplify_gen_binary (AND, mode, op0, CONST0_RTX (mode));
|
||
return CONST0_RTX (mode);
|
||
}
|
||
break;
|
||
|
||
case ROTATERT:
|
||
case ROTATE:
|
||
/* Canonicalize rotates by constant amount. If op1 is bitsize / 2,
|
||
prefer left rotation, if op1 is from bitsize / 2 + 1 to
|
||
bitsize - 1, use other direction of rotate with 1 .. bitsize / 2 - 1
|
||
amount instead. */
|
||
#if defined(HAVE_rotate) && defined(HAVE_rotatert)
|
||
if (CONST_INT_P (trueop1)
|
||
&& IN_RANGE (INTVAL (trueop1),
|
||
GET_MODE_PRECISION (mode) / 2 + (code == ROTATE),
|
||
GET_MODE_PRECISION (mode) - 1))
|
||
return simplify_gen_binary (code == ROTATE ? ROTATERT : ROTATE,
|
||
mode, op0, GEN_INT (GET_MODE_PRECISION (mode)
|
||
- INTVAL (trueop1)));
|
||
#endif
|
||
/* FALLTHRU */
|
||
case ASHIFTRT:
|
||
if (trueop1 == CONST0_RTX (mode))
|
||
return op0;
|
||
if (trueop0 == CONST0_RTX (mode) && ! side_effects_p (op1))
|
||
return op0;
|
||
/* Rotating ~0 always results in ~0. */
|
||
if (CONST_INT_P (trueop0) && width <= HOST_BITS_PER_WIDE_INT
|
||
&& UINTVAL (trueop0) == GET_MODE_MASK (mode)
|
||
&& ! side_effects_p (op1))
|
||
return op0;
|
||
/* Given:
|
||
scalar modes M1, M2
|
||
scalar constants c1, c2
|
||
size (M2) > size (M1)
|
||
c1 == size (M2) - size (M1)
|
||
optimize:
|
||
(ashiftrt:M1 (subreg:M1 (lshiftrt:M2 (reg:M2) (const_int <c1>))
|
||
<low_part>)
|
||
(const_int <c2>))
|
||
to:
|
||
(subreg:M1 (ashiftrt:M2 (reg:M2) (const_int <c1 + c2>))
|
||
<low_part>). */
|
||
if (code == ASHIFTRT
|
||
&& !VECTOR_MODE_P (mode)
|
||
&& SUBREG_P (op0)
|
||
&& CONST_INT_P (op1)
|
||
&& GET_CODE (SUBREG_REG (op0)) == LSHIFTRT
|
||
&& !VECTOR_MODE_P (GET_MODE (SUBREG_REG (op0)))
|
||
&& CONST_INT_P (XEXP (SUBREG_REG (op0), 1))
|
||
&& (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
|
||
> GET_MODE_BITSIZE (mode))
|
||
&& (INTVAL (XEXP (SUBREG_REG (op0), 1))
|
||
== (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
|
||
- GET_MODE_BITSIZE (mode)))
|
||
&& subreg_lowpart_p (op0))
|
||
{
|
||
rtx tmp = GEN_INT (INTVAL (XEXP (SUBREG_REG (op0), 1))
|
||
+ INTVAL (op1));
|
||
machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
|
||
tmp = simplify_gen_binary (ASHIFTRT,
|
||
GET_MODE (SUBREG_REG (op0)),
|
||
XEXP (SUBREG_REG (op0), 0),
|
||
tmp);
|
||
return simplify_gen_subreg (mode, tmp, inner_mode,
|
||
subreg_lowpart_offset (mode,
|
||
inner_mode));
|
||
}
|
||
canonicalize_shift:
|
||
if (SHIFT_COUNT_TRUNCATED && CONST_INT_P (op1))
|
||
{
|
||
val = INTVAL (op1) & (GET_MODE_PRECISION (mode) - 1);
|
||
if (val != INTVAL (op1))
|
||
return simplify_gen_binary (code, mode, op0, GEN_INT (val));
|
||
}
|
||
break;
|
||
|
||
case ASHIFT:
|
||
case SS_ASHIFT:
|
||
case US_ASHIFT:
|
||
if (trueop1 == CONST0_RTX (mode))
|
||
return op0;
|
||
if (trueop0 == CONST0_RTX (mode) && ! side_effects_p (op1))
|
||
return op0;
|
||
goto canonicalize_shift;
|
||
|
||
case LSHIFTRT:
|
||
if (trueop1 == CONST0_RTX (mode))
|
||
return op0;
|
||
if (trueop0 == CONST0_RTX (mode) && ! side_effects_p (op1))
|
||
return op0;
|
||
/* Optimize (lshiftrt (clz X) C) as (eq X 0). */
|
||
if (GET_CODE (op0) == CLZ
|
||
&& CONST_INT_P (trueop1)
|
||
&& STORE_FLAG_VALUE == 1
|
||
&& INTVAL (trueop1) < (HOST_WIDE_INT)width)
|
||
{
|
||
machine_mode imode = GET_MODE (XEXP (op0, 0));
|
||
unsigned HOST_WIDE_INT zero_val = 0;
|
||
|
||
if (CLZ_DEFINED_VALUE_AT_ZERO (imode, zero_val)
|
||
&& zero_val == GET_MODE_PRECISION (imode)
|
||
&& INTVAL (trueop1) == exact_log2 (zero_val))
|
||
return simplify_gen_relational (EQ, mode, imode,
|
||
XEXP (op0, 0), const0_rtx);
|
||
}
|
||
goto canonicalize_shift;
|
||
|
||
case SMIN:
|
||
if (width <= HOST_BITS_PER_WIDE_INT
|
||
&& mode_signbit_p (mode, trueop1)
|
||
&& ! side_effects_p (op0))
|
||
return op1;
|
||
if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
|
||
return op0;
|
||
tem = simplify_associative_operation (code, mode, op0, op1);
|
||
if (tem)
|
||
return tem;
|
||
break;
|
||
|
||
case SMAX:
|
||
if (width <= HOST_BITS_PER_WIDE_INT
|
||
&& CONST_INT_P (trueop1)
|
||
&& (UINTVAL (trueop1) == GET_MODE_MASK (mode) >> 1)
|
||
&& ! side_effects_p (op0))
|
||
return op1;
|
||
if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
|
||
return op0;
|
||
tem = simplify_associative_operation (code, mode, op0, op1);
|
||
if (tem)
|
||
return tem;
|
||
break;
|
||
|
||
case UMIN:
|
||
if (trueop1 == CONST0_RTX (mode) && ! side_effects_p (op0))
|
||
return op1;
|
||
if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
|
||
return op0;
|
||
tem = simplify_associative_operation (code, mode, op0, op1);
|
||
if (tem)
|
||
return tem;
|
||
break;
|
||
|
||
case UMAX:
|
||
if (trueop1 == constm1_rtx && ! side_effects_p (op0))
|
||
return op1;
|
||
if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
|
||
return op0;
|
||
tem = simplify_associative_operation (code, mode, op0, op1);
|
||
if (tem)
|
||
return tem;
|
||
break;
|
||
|
||
case SS_PLUS:
|
||
case US_PLUS:
|
||
case SS_MINUS:
|
||
case US_MINUS:
|
||
case SS_MULT:
|
||
case US_MULT:
|
||
case SS_DIV:
|
||
case US_DIV:
|
||
/* ??? There are simplifications that can be done. */
|
||
return 0;
|
||
|
||
case VEC_SELECT:
|
||
if (!VECTOR_MODE_P (mode))
|
||
{
|
||
gcc_assert (VECTOR_MODE_P (GET_MODE (trueop0)));
|
||
gcc_assert (mode == GET_MODE_INNER (GET_MODE (trueop0)));
|
||
gcc_assert (GET_CODE (trueop1) == PARALLEL);
|
||
gcc_assert (XVECLEN (trueop1, 0) == 1);
|
||
gcc_assert (CONST_INT_P (XVECEXP (trueop1, 0, 0)));
|
||
|
||
if (GET_CODE (trueop0) == CONST_VECTOR)
|
||
return CONST_VECTOR_ELT (trueop0, INTVAL (XVECEXP
|
||
(trueop1, 0, 0)));
|
||
|
||
/* Extract a scalar element from a nested VEC_SELECT expression
|
||
(with optional nested VEC_CONCAT expression). Some targets
|
||
(i386) extract scalar element from a vector using chain of
|
||
nested VEC_SELECT expressions. When input operand is a memory
|
||
operand, this operation can be simplified to a simple scalar
|
||
load from an offseted memory address. */
|
||
if (GET_CODE (trueop0) == VEC_SELECT)
|
||
{
|
||
rtx op0 = XEXP (trueop0, 0);
|
||
rtx op1 = XEXP (trueop0, 1);
|
||
|
||
machine_mode opmode = GET_MODE (op0);
|
||
int elt_size = GET_MODE_SIZE (GET_MODE_INNER (opmode));
|
||
int n_elts = GET_MODE_SIZE (opmode) / elt_size;
|
||
|
||
int i = INTVAL (XVECEXP (trueop1, 0, 0));
|
||
int elem;
|
||
|
||
rtvec vec;
|
||
rtx tmp_op, tmp;
|
||
|
||
gcc_assert (GET_CODE (op1) == PARALLEL);
|
||
gcc_assert (i < n_elts);
|
||
|
||
/* Select element, pointed by nested selector. */
|
||
elem = INTVAL (XVECEXP (op1, 0, i));
|
||
|
||
/* Handle the case when nested VEC_SELECT wraps VEC_CONCAT. */
|
||
if (GET_CODE (op0) == VEC_CONCAT)
|
||
{
|
||
rtx op00 = XEXP (op0, 0);
|
||
rtx op01 = XEXP (op0, 1);
|
||
|
||
machine_mode mode00, mode01;
|
||
int n_elts00, n_elts01;
|
||
|
||
mode00 = GET_MODE (op00);
|
||
mode01 = GET_MODE (op01);
|
||
|
||
/* Find out number of elements of each operand. */
|
||
if (VECTOR_MODE_P (mode00))
|
||
{
|
||
elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode00));
|
||
n_elts00 = GET_MODE_SIZE (mode00) / elt_size;
|
||
}
|
||
else
|
||
n_elts00 = 1;
|
||
|
||
if (VECTOR_MODE_P (mode01))
|
||
{
|
||
elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode01));
|
||
n_elts01 = GET_MODE_SIZE (mode01) / elt_size;
|
||
}
|
||
else
|
||
n_elts01 = 1;
|
||
|
||
gcc_assert (n_elts == n_elts00 + n_elts01);
|
||
|
||
/* Select correct operand of VEC_CONCAT
|
||
and adjust selector. */
|
||
if (elem < n_elts01)
|
||
tmp_op = op00;
|
||
else
|
||
{
|
||
tmp_op = op01;
|
||
elem -= n_elts00;
|
||
}
|
||
}
|
||
else
|
||
tmp_op = op0;
|
||
|
||
vec = rtvec_alloc (1);
|
||
RTVEC_ELT (vec, 0) = GEN_INT (elem);
|
||
|
||
tmp = gen_rtx_fmt_ee (code, mode,
|
||
tmp_op, gen_rtx_PARALLEL (VOIDmode, vec));
|
||
return tmp;
|
||
}
|
||
if (GET_CODE (trueop0) == VEC_DUPLICATE
|
||
&& GET_MODE (XEXP (trueop0, 0)) == mode)
|
||
return XEXP (trueop0, 0);
|
||
}
|
||
else
|
||
{
|
||
gcc_assert (VECTOR_MODE_P (GET_MODE (trueop0)));
|
||
gcc_assert (GET_MODE_INNER (mode)
|
||
== GET_MODE_INNER (GET_MODE (trueop0)));
|
||
gcc_assert (GET_CODE (trueop1) == PARALLEL);
|
||
|
||
if (GET_CODE (trueop0) == CONST_VECTOR)
|
||
{
|
||
int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
|
||
unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
|
||
rtvec v = rtvec_alloc (n_elts);
|
||
unsigned int i;
|
||
|
||
gcc_assert (XVECLEN (trueop1, 0) == (int) n_elts);
|
||
for (i = 0; i < n_elts; i++)
|
||
{
|
||
rtx x = XVECEXP (trueop1, 0, i);
|
||
|
||
gcc_assert (CONST_INT_P (x));
|
||
RTVEC_ELT (v, i) = CONST_VECTOR_ELT (trueop0,
|
||
INTVAL (x));
|
||
}
|
||
|
||
return gen_rtx_CONST_VECTOR (mode, v);
|
||
}
|
||
|
||
/* Recognize the identity. */
|
||
if (GET_MODE (trueop0) == mode)
|
||
{
|
||
bool maybe_ident = true;
|
||
for (int i = 0; i < XVECLEN (trueop1, 0); i++)
|
||
{
|
||
rtx j = XVECEXP (trueop1, 0, i);
|
||
if (!CONST_INT_P (j) || INTVAL (j) != i)
|
||
{
|
||
maybe_ident = false;
|
||
break;
|
||
}
|
||
}
|
||
if (maybe_ident)
|
||
return trueop0;
|
||
}
|
||
|
||
/* If we build {a,b} then permute it, build the result directly. */
|
||
if (XVECLEN (trueop1, 0) == 2
|
||
&& CONST_INT_P (XVECEXP (trueop1, 0, 0))
|
||
&& CONST_INT_P (XVECEXP (trueop1, 0, 1))
|
||
&& GET_CODE (trueop0) == VEC_CONCAT
|
||
&& GET_CODE (XEXP (trueop0, 0)) == VEC_CONCAT
|
||
&& GET_MODE (XEXP (trueop0, 0)) == mode
|
||
&& GET_CODE (XEXP (trueop0, 1)) == VEC_CONCAT
|
||
&& GET_MODE (XEXP (trueop0, 1)) == mode)
|
||
{
|
||
unsigned int i0 = INTVAL (XVECEXP (trueop1, 0, 0));
|
||
unsigned int i1 = INTVAL (XVECEXP (trueop1, 0, 1));
|
||
rtx subop0, subop1;
|
||
|
||
gcc_assert (i0 < 4 && i1 < 4);
|
||
subop0 = XEXP (XEXP (trueop0, i0 / 2), i0 % 2);
|
||
subop1 = XEXP (XEXP (trueop0, i1 / 2), i1 % 2);
|
||
|
||
return simplify_gen_binary (VEC_CONCAT, mode, subop0, subop1);
|
||
}
|
||
|
||
if (XVECLEN (trueop1, 0) == 2
|
||
&& CONST_INT_P (XVECEXP (trueop1, 0, 0))
|
||
&& CONST_INT_P (XVECEXP (trueop1, 0, 1))
|
||
&& GET_CODE (trueop0) == VEC_CONCAT
|
||
&& GET_MODE (trueop0) == mode)
|
||
{
|
||
unsigned int i0 = INTVAL (XVECEXP (trueop1, 0, 0));
|
||
unsigned int i1 = INTVAL (XVECEXP (trueop1, 0, 1));
|
||
rtx subop0, subop1;
|
||
|
||
gcc_assert (i0 < 2 && i1 < 2);
|
||
subop0 = XEXP (trueop0, i0);
|
||
subop1 = XEXP (trueop0, i1);
|
||
|
||
return simplify_gen_binary (VEC_CONCAT, mode, subop0, subop1);
|
||
}
|
||
|
||
/* If we select one half of a vec_concat, return that. */
|
||
if (GET_CODE (trueop0) == VEC_CONCAT
|
||
&& CONST_INT_P (XVECEXP (trueop1, 0, 0)))
|
||
{
|
||
rtx subop0 = XEXP (trueop0, 0);
|
||
rtx subop1 = XEXP (trueop0, 1);
|
||
machine_mode mode0 = GET_MODE (subop0);
|
||
machine_mode mode1 = GET_MODE (subop1);
|
||
int li = GET_MODE_SIZE (GET_MODE_INNER (mode0));
|
||
int l0 = GET_MODE_SIZE (mode0) / li;
|
||
int l1 = GET_MODE_SIZE (mode1) / li;
|
||
int i0 = INTVAL (XVECEXP (trueop1, 0, 0));
|
||
if (i0 == 0 && !side_effects_p (op1) && mode == mode0)
|
||
{
|
||
bool success = true;
|
||
for (int i = 1; i < l0; ++i)
|
||
{
|
||
rtx j = XVECEXP (trueop1, 0, i);
|
||
if (!CONST_INT_P (j) || INTVAL (j) != i)
|
||
{
|
||
success = false;
|
||
break;
|
||
}
|
||
}
|
||
if (success)
|
||
return subop0;
|
||
}
|
||
if (i0 == l0 && !side_effects_p (op0) && mode == mode1)
|
||
{
|
||
bool success = true;
|
||
for (int i = 1; i < l1; ++i)
|
||
{
|
||
rtx j = XVECEXP (trueop1, 0, i);
|
||
if (!CONST_INT_P (j) || INTVAL (j) != i0 + i)
|
||
{
|
||
success = false;
|
||
break;
|
||
}
|
||
}
|
||
if (success)
|
||
return subop1;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (XVECLEN (trueop1, 0) == 1
|
||
&& CONST_INT_P (XVECEXP (trueop1, 0, 0))
|
||
&& GET_CODE (trueop0) == VEC_CONCAT)
|
||
{
|
||
rtx vec = trueop0;
|
||
int offset = INTVAL (XVECEXP (trueop1, 0, 0)) * GET_MODE_SIZE (mode);
|
||
|
||
/* Try to find the element in the VEC_CONCAT. */
|
||
while (GET_MODE (vec) != mode
|
||
&& GET_CODE (vec) == VEC_CONCAT)
|
||
{
|
||
HOST_WIDE_INT vec_size;
|
||
|
||
if (CONST_INT_P (XEXP (vec, 0)))
|
||
{
|
||
/* vec_concat of two const_ints doesn't make sense with
|
||
respect to modes. */
|
||
if (CONST_INT_P (XEXP (vec, 1)))
|
||
return 0;
|
||
|
||
vec_size = GET_MODE_SIZE (GET_MODE (trueop0))
|
||
- GET_MODE_SIZE (GET_MODE (XEXP (vec, 1)));
|
||
}
|
||
else
|
||
vec_size = GET_MODE_SIZE (GET_MODE (XEXP (vec, 0)));
|
||
|
||
if (offset < vec_size)
|
||
vec = XEXP (vec, 0);
|
||
else
|
||
{
|
||
offset -= vec_size;
|
||
vec = XEXP (vec, 1);
|
||
}
|
||
vec = avoid_constant_pool_reference (vec);
|
||
}
|
||
|
||
if (GET_MODE (vec) == mode)
|
||
return vec;
|
||
}
|
||
|
||
/* If we select elements in a vec_merge that all come from the same
|
||
operand, select from that operand directly. */
|
||
if (GET_CODE (op0) == VEC_MERGE)
|
||
{
|
||
rtx trueop02 = avoid_constant_pool_reference (XEXP (op0, 2));
|
||
if (CONST_INT_P (trueop02))
|
||
{
|
||
unsigned HOST_WIDE_INT sel = UINTVAL (trueop02);
|
||
bool all_operand0 = true;
|
||
bool all_operand1 = true;
|
||
for (int i = 0; i < XVECLEN (trueop1, 0); i++)
|
||
{
|
||
rtx j = XVECEXP (trueop1, 0, i);
|
||
if (sel & (1 << UINTVAL (j)))
|
||
all_operand1 = false;
|
||
else
|
||
all_operand0 = false;
|
||
}
|
||
if (all_operand0 && !side_effects_p (XEXP (op0, 1)))
|
||
return simplify_gen_binary (VEC_SELECT, mode, XEXP (op0, 0), op1);
|
||
if (all_operand1 && !side_effects_p (XEXP (op0, 0)))
|
||
return simplify_gen_binary (VEC_SELECT, mode, XEXP (op0, 1), op1);
|
||
}
|
||
}
|
||
|
||
/* If we have two nested selects that are inverses of each
|
||
other, replace them with the source operand. */
|
||
if (GET_CODE (trueop0) == VEC_SELECT
|
||
&& GET_MODE (XEXP (trueop0, 0)) == mode)
|
||
{
|
||
rtx op0_subop1 = XEXP (trueop0, 1);
|
||
gcc_assert (GET_CODE (op0_subop1) == PARALLEL);
|
||
gcc_assert (XVECLEN (trueop1, 0) == GET_MODE_NUNITS (mode));
|
||
|
||
/* Apply the outer ordering vector to the inner one. (The inner
|
||
ordering vector is expressly permitted to be of a different
|
||
length than the outer one.) If the result is { 0, 1, ..., n-1 }
|
||
then the two VEC_SELECTs cancel. */
|
||
for (int i = 0; i < XVECLEN (trueop1, 0); ++i)
|
||
{
|
||
rtx x = XVECEXP (trueop1, 0, i);
|
||
if (!CONST_INT_P (x))
|
||
return 0;
|
||
rtx y = XVECEXP (op0_subop1, 0, INTVAL (x));
|
||
if (!CONST_INT_P (y) || i != INTVAL (y))
|
||
return 0;
|
||
}
|
||
return XEXP (trueop0, 0);
|
||
}
|
||
|
||
return 0;
|
||
case VEC_CONCAT:
|
||
{
|
||
machine_mode op0_mode = (GET_MODE (trueop0) != VOIDmode
|
||
? GET_MODE (trueop0)
|
||
: GET_MODE_INNER (mode));
|
||
machine_mode op1_mode = (GET_MODE (trueop1) != VOIDmode
|
||
? GET_MODE (trueop1)
|
||
: GET_MODE_INNER (mode));
|
||
|
||
gcc_assert (VECTOR_MODE_P (mode));
|
||
gcc_assert (GET_MODE_SIZE (op0_mode) + GET_MODE_SIZE (op1_mode)
|
||
== GET_MODE_SIZE (mode));
|
||
|
||
if (VECTOR_MODE_P (op0_mode))
|
||
gcc_assert (GET_MODE_INNER (mode)
|
||
== GET_MODE_INNER (op0_mode));
|
||
else
|
||
gcc_assert (GET_MODE_INNER (mode) == op0_mode);
|
||
|
||
if (VECTOR_MODE_P (op1_mode))
|
||
gcc_assert (GET_MODE_INNER (mode)
|
||
== GET_MODE_INNER (op1_mode));
|
||
else
|
||
gcc_assert (GET_MODE_INNER (mode) == op1_mode);
|
||
|
||
if ((GET_CODE (trueop0) == CONST_VECTOR
|
||
|| CONST_SCALAR_INT_P (trueop0)
|
||
|| CONST_DOUBLE_AS_FLOAT_P (trueop0))
|
||
&& (GET_CODE (trueop1) == CONST_VECTOR
|
||
|| CONST_SCALAR_INT_P (trueop1)
|
||
|| CONST_DOUBLE_AS_FLOAT_P (trueop1)))
|
||
{
|
||
int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
|
||
unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
|
||
rtvec v = rtvec_alloc (n_elts);
|
||
unsigned int i;
|
||
unsigned in_n_elts = 1;
|
||
|
||
if (VECTOR_MODE_P (op0_mode))
|
||
in_n_elts = (GET_MODE_SIZE (op0_mode) / elt_size);
|
||
for (i = 0; i < n_elts; i++)
|
||
{
|
||
if (i < in_n_elts)
|
||
{
|
||
if (!VECTOR_MODE_P (op0_mode))
|
||
RTVEC_ELT (v, i) = trueop0;
|
||
else
|
||
RTVEC_ELT (v, i) = CONST_VECTOR_ELT (trueop0, i);
|
||
}
|
||
else
|
||
{
|
||
if (!VECTOR_MODE_P (op1_mode))
|
||
RTVEC_ELT (v, i) = trueop1;
|
||
else
|
||
RTVEC_ELT (v, i) = CONST_VECTOR_ELT (trueop1,
|
||
i - in_n_elts);
|
||
}
|
||
}
|
||
|
||
return gen_rtx_CONST_VECTOR (mode, v);
|
||
}
|
||
|
||
/* Try to merge two VEC_SELECTs from the same vector into a single one.
|
||
Restrict the transformation to avoid generating a VEC_SELECT with a
|
||
mode unrelated to its operand. */
|
||
if (GET_CODE (trueop0) == VEC_SELECT
|
||
&& GET_CODE (trueop1) == VEC_SELECT
|
||
&& rtx_equal_p (XEXP (trueop0, 0), XEXP (trueop1, 0))
|
||
&& GET_MODE (XEXP (trueop0, 0)) == mode)
|
||
{
|
||
rtx par0 = XEXP (trueop0, 1);
|
||
rtx par1 = XEXP (trueop1, 1);
|
||
int len0 = XVECLEN (par0, 0);
|
||
int len1 = XVECLEN (par1, 0);
|
||
rtvec vec = rtvec_alloc (len0 + len1);
|
||
for (int i = 0; i < len0; i++)
|
||
RTVEC_ELT (vec, i) = XVECEXP (par0, 0, i);
|
||
for (int i = 0; i < len1; i++)
|
||
RTVEC_ELT (vec, len0 + i) = XVECEXP (par1, 0, i);
|
||
return simplify_gen_binary (VEC_SELECT, mode, XEXP (trueop0, 0),
|
||
gen_rtx_PARALLEL (VOIDmode, vec));
|
||
}
|
||
}
|
||
return 0;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
rtx
|
||
simplify_const_binary_operation (enum rtx_code code, machine_mode mode,
|
||
rtx op0, rtx op1)
|
||
{
|
||
unsigned int width = GET_MODE_PRECISION (mode);
|
||
|
||
if (VECTOR_MODE_P (mode)
|
||
&& code != VEC_CONCAT
|
||
&& GET_CODE (op0) == CONST_VECTOR
|
||
&& GET_CODE (op1) == CONST_VECTOR)
|
||
{
|
||
unsigned n_elts = GET_MODE_NUNITS (mode);
|
||
machine_mode op0mode = GET_MODE (op0);
|
||
unsigned op0_n_elts = GET_MODE_NUNITS (op0mode);
|
||
machine_mode op1mode = GET_MODE (op1);
|
||
unsigned op1_n_elts = GET_MODE_NUNITS (op1mode);
|
||
rtvec v = rtvec_alloc (n_elts);
|
||
unsigned int i;
|
||
|
||
gcc_assert (op0_n_elts == n_elts);
|
||
gcc_assert (op1_n_elts == n_elts);
|
||
for (i = 0; i < n_elts; i++)
|
||
{
|
||
rtx x = simplify_binary_operation (code, GET_MODE_INNER (mode),
|
||
CONST_VECTOR_ELT (op0, i),
|
||
CONST_VECTOR_ELT (op1, i));
|
||
if (!x)
|
||
return 0;
|
||
RTVEC_ELT (v, i) = x;
|
||
}
|
||
|
||
return gen_rtx_CONST_VECTOR (mode, v);
|
||
}
|
||
|
||
if (VECTOR_MODE_P (mode)
|
||
&& code == VEC_CONCAT
|
||
&& (CONST_SCALAR_INT_P (op0)
|
||
|| GET_CODE (op0) == CONST_FIXED
|
||
|| CONST_DOUBLE_AS_FLOAT_P (op0))
|
||
&& (CONST_SCALAR_INT_P (op1)
|
||
|| CONST_DOUBLE_AS_FLOAT_P (op1)
|
||
|| GET_CODE (op1) == CONST_FIXED))
|
||
{
|
||
unsigned n_elts = GET_MODE_NUNITS (mode);
|
||
rtvec v = rtvec_alloc (n_elts);
|
||
|
||
gcc_assert (n_elts >= 2);
|
||
if (n_elts == 2)
|
||
{
|
||
gcc_assert (GET_CODE (op0) != CONST_VECTOR);
|
||
gcc_assert (GET_CODE (op1) != CONST_VECTOR);
|
||
|
||
RTVEC_ELT (v, 0) = op0;
|
||
RTVEC_ELT (v, 1) = op1;
|
||
}
|
||
else
|
||
{
|
||
unsigned op0_n_elts = GET_MODE_NUNITS (GET_MODE (op0));
|
||
unsigned op1_n_elts = GET_MODE_NUNITS (GET_MODE (op1));
|
||
unsigned i;
|
||
|
||
gcc_assert (GET_CODE (op0) == CONST_VECTOR);
|
||
gcc_assert (GET_CODE (op1) == CONST_VECTOR);
|
||
gcc_assert (op0_n_elts + op1_n_elts == n_elts);
|
||
|
||
for (i = 0; i < op0_n_elts; ++i)
|
||
RTVEC_ELT (v, i) = XVECEXP (op0, 0, i);
|
||
for (i = 0; i < op1_n_elts; ++i)
|
||
RTVEC_ELT (v, op0_n_elts+i) = XVECEXP (op1, 0, i);
|
||
}
|
||
|
||
return gen_rtx_CONST_VECTOR (mode, v);
|
||
}
|
||
|
||
if (SCALAR_FLOAT_MODE_P (mode)
|
||
&& CONST_DOUBLE_AS_FLOAT_P (op0)
|
||
&& CONST_DOUBLE_AS_FLOAT_P (op1)
|
||
&& mode == GET_MODE (op0) && mode == GET_MODE (op1))
|
||
{
|
||
if (code == AND
|
||
|| code == IOR
|
||
|| code == XOR)
|
||
{
|
||
long tmp0[4];
|
||
long tmp1[4];
|
||
REAL_VALUE_TYPE r;
|
||
int i;
|
||
|
||
real_to_target (tmp0, CONST_DOUBLE_REAL_VALUE (op0),
|
||
GET_MODE (op0));
|
||
real_to_target (tmp1, CONST_DOUBLE_REAL_VALUE (op1),
|
||
GET_MODE (op1));
|
||
for (i = 0; i < 4; i++)
|
||
{
|
||
switch (code)
|
||
{
|
||
case AND:
|
||
tmp0[i] &= tmp1[i];
|
||
break;
|
||
case IOR:
|
||
tmp0[i] |= tmp1[i];
|
||
break;
|
||
case XOR:
|
||
tmp0[i] ^= tmp1[i];
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
real_from_target (&r, tmp0, mode);
|
||
return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
|
||
}
|
||
else
|
||
{
|
||
REAL_VALUE_TYPE f0, f1, value, result;
|
||
bool inexact;
|
||
|
||
REAL_VALUE_FROM_CONST_DOUBLE (f0, op0);
|
||
REAL_VALUE_FROM_CONST_DOUBLE (f1, op1);
|
||
real_convert (&f0, mode, &f0);
|
||
real_convert (&f1, mode, &f1);
|
||
|
||
if (HONOR_SNANS (mode)
|
||
&& (REAL_VALUE_ISNAN (f0) || REAL_VALUE_ISNAN (f1)))
|
||
return 0;
|
||
|
||
if (code == DIV
|
||
&& REAL_VALUES_EQUAL (f1, dconst0)
|
||
&& (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
|
||
return 0;
|
||
|
||
if (MODE_HAS_INFINITIES (mode) && HONOR_NANS (mode)
|
||
&& flag_trapping_math
|
||
&& REAL_VALUE_ISINF (f0) && REAL_VALUE_ISINF (f1))
|
||
{
|
||
int s0 = REAL_VALUE_NEGATIVE (f0);
|
||
int s1 = REAL_VALUE_NEGATIVE (f1);
|
||
|
||
switch (code)
|
||
{
|
||
case PLUS:
|
||
/* Inf + -Inf = NaN plus exception. */
|
||
if (s0 != s1)
|
||
return 0;
|
||
break;
|
||
case MINUS:
|
||
/* Inf - Inf = NaN plus exception. */
|
||
if (s0 == s1)
|
||
return 0;
|
||
break;
|
||
case DIV:
|
||
/* Inf / Inf = NaN plus exception. */
|
||
return 0;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (code == MULT && MODE_HAS_INFINITIES (mode) && HONOR_NANS (mode)
|
||
&& flag_trapping_math
|
||
&& ((REAL_VALUE_ISINF (f0) && REAL_VALUES_EQUAL (f1, dconst0))
|
||
|| (REAL_VALUE_ISINF (f1)
|
||
&& REAL_VALUES_EQUAL (f0, dconst0))))
|
||
/* Inf * 0 = NaN plus exception. */
|
||
return 0;
|
||
|
||
inexact = real_arithmetic (&value, rtx_to_tree_code (code),
|
||
&f0, &f1);
|
||
real_convert (&result, mode, &value);
|
||
|
||
/* Don't constant fold this floating point operation if
|
||
the result has overflowed and flag_trapping_math. */
|
||
|
||
if (flag_trapping_math
|
||
&& MODE_HAS_INFINITIES (mode)
|
||
&& REAL_VALUE_ISINF (result)
|
||
&& !REAL_VALUE_ISINF (f0)
|
||
&& !REAL_VALUE_ISINF (f1))
|
||
/* Overflow plus exception. */
|
||
return 0;
|
||
|
||
/* Don't constant fold this floating point operation if the
|
||
result may dependent upon the run-time rounding mode and
|
||
flag_rounding_math is set, or if GCC's software emulation
|
||
is unable to accurately represent the result. */
|
||
|
||
if ((flag_rounding_math
|
||
|| (MODE_COMPOSITE_P (mode) && !flag_unsafe_math_optimizations))
|
||
&& (inexact || !real_identical (&result, &value)))
|
||
return NULL_RTX;
|
||
|
||
return CONST_DOUBLE_FROM_REAL_VALUE (result, mode);
|
||
}
|
||
}
|
||
|
||
/* We can fold some multi-word operations. */
|
||
if ((GET_MODE_CLASS (mode) == MODE_INT
|
||
|| GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
|
||
&& CONST_SCALAR_INT_P (op0)
|
||
&& CONST_SCALAR_INT_P (op1))
|
||
{
|
||
wide_int result;
|
||
bool overflow;
|
||
rtx_mode_t pop0 = std::make_pair (op0, mode);
|
||
rtx_mode_t pop1 = std::make_pair (op1, mode);
|
||
|
||
#if TARGET_SUPPORTS_WIDE_INT == 0
|
||
/* This assert keeps the simplification from producing a result
|
||
that cannot be represented in a CONST_DOUBLE but a lot of
|
||
upstream callers expect that this function never fails to
|
||
simplify something and so you if you added this to the test
|
||
above the code would die later anyway. If this assert
|
||
happens, you just need to make the port support wide int. */
|
||
gcc_assert (width <= HOST_BITS_PER_DOUBLE_INT);
|
||
#endif
|
||
switch (code)
|
||
{
|
||
case MINUS:
|
||
result = wi::sub (pop0, pop1);
|
||
break;
|
||
|
||
case PLUS:
|
||
result = wi::add (pop0, pop1);
|
||
break;
|
||
|
||
case MULT:
|
||
result = wi::mul (pop0, pop1);
|
||
break;
|
||
|
||
case DIV:
|
||
result = wi::div_trunc (pop0, pop1, SIGNED, &overflow);
|
||
if (overflow)
|
||
return NULL_RTX;
|
||
break;
|
||
|
||
case MOD:
|
||
result = wi::mod_trunc (pop0, pop1, SIGNED, &overflow);
|
||
if (overflow)
|
||
return NULL_RTX;
|
||
break;
|
||
|
||
case UDIV:
|
||
result = wi::div_trunc (pop0, pop1, UNSIGNED, &overflow);
|
||
if (overflow)
|
||
return NULL_RTX;
|
||
break;
|
||
|
||
case UMOD:
|
||
result = wi::mod_trunc (pop0, pop1, UNSIGNED, &overflow);
|
||
if (overflow)
|
||
return NULL_RTX;
|
||
break;
|
||
|
||
case AND:
|
||
result = wi::bit_and (pop0, pop1);
|
||
break;
|
||
|
||
case IOR:
|
||
result = wi::bit_or (pop0, pop1);
|
||
break;
|
||
|
||
case XOR:
|
||
result = wi::bit_xor (pop0, pop1);
|
||
break;
|
||
|
||
case SMIN:
|
||
result = wi::smin (pop0, pop1);
|
||
break;
|
||
|
||
case SMAX:
|
||
result = wi::smax (pop0, pop1);
|
||
break;
|
||
|
||
case UMIN:
|
||
result = wi::umin (pop0, pop1);
|
||
break;
|
||
|
||
case UMAX:
|
||
result = wi::umax (pop0, pop1);
|
||
break;
|
||
|
||
case LSHIFTRT:
|
||
case ASHIFTRT:
|
||
case ASHIFT:
|
||
{
|
||
wide_int wop1 = pop1;
|
||
if (SHIFT_COUNT_TRUNCATED)
|
||
wop1 = wi::umod_trunc (wop1, width);
|
||
else if (wi::geu_p (wop1, width))
|
||
return NULL_RTX;
|
||
|
||
switch (code)
|
||
{
|
||
case LSHIFTRT:
|
||
result = wi::lrshift (pop0, wop1);
|
||
break;
|
||
|
||
case ASHIFTRT:
|
||
result = wi::arshift (pop0, wop1);
|
||
break;
|
||
|
||
case ASHIFT:
|
||
result = wi::lshift (pop0, wop1);
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
break;
|
||
}
|
||
case ROTATE:
|
||
case ROTATERT:
|
||
{
|
||
if (wi::neg_p (pop1))
|
||
return NULL_RTX;
|
||
|
||
switch (code)
|
||
{
|
||
case ROTATE:
|
||
result = wi::lrotate (pop0, pop1);
|
||
break;
|
||
|
||
case ROTATERT:
|
||
result = wi::rrotate (pop0, pop1);
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
break;
|
||
}
|
||
default:
|
||
return NULL_RTX;
|
||
}
|
||
return immed_wide_int_const (result, mode);
|
||
}
|
||
|
||
return NULL_RTX;
|
||
}
|
||
|
||
|
||
|
||
/* Simplify a PLUS or MINUS, at least one of whose operands may be another
|
||
PLUS or MINUS.
|
||
|
||
Rather than test for specific case, we do this by a brute-force method
|
||
and do all possible simplifications until no more changes occur. Then
|
||
we rebuild the operation. */
|
||
|
||
struct simplify_plus_minus_op_data
|
||
{
|
||
rtx op;
|
||
short neg;
|
||
};
|
||
|
||
static bool
|
||
simplify_plus_minus_op_data_cmp (rtx x, rtx y)
|
||
{
|
||
int result;
|
||
|
||
result = (commutative_operand_precedence (y)
|
||
- commutative_operand_precedence (x));
|
||
if (result)
|
||
return result > 0;
|
||
|
||
/* Group together equal REGs to do more simplification. */
|
||
if (REG_P (x) && REG_P (y))
|
||
return REGNO (x) > REGNO (y);
|
||
else
|
||
return false;
|
||
}
|
||
|
||
static rtx
|
||
simplify_plus_minus (enum rtx_code code, machine_mode mode, rtx op0,
|
||
rtx op1)
|
||
{
|
||
struct simplify_plus_minus_op_data ops[16];
|
||
rtx result, tem;
|
||
int n_ops = 2;
|
||
int changed, n_constants, canonicalized = 0;
|
||
int i, j;
|
||
|
||
memset (ops, 0, sizeof ops);
|
||
|
||
/* Set up the two operands and then expand them until nothing has been
|
||
changed. If we run out of room in our array, give up; this should
|
||
almost never happen. */
|
||
|
||
ops[0].op = op0;
|
||
ops[0].neg = 0;
|
||
ops[1].op = op1;
|
||
ops[1].neg = (code == MINUS);
|
||
|
||
do
|
||
{
|
||
changed = 0;
|
||
n_constants = 0;
|
||
|
||
for (i = 0; i < n_ops; i++)
|
||
{
|
||
rtx this_op = ops[i].op;
|
||
int this_neg = ops[i].neg;
|
||
enum rtx_code this_code = GET_CODE (this_op);
|
||
|
||
switch (this_code)
|
||
{
|
||
case PLUS:
|
||
case MINUS:
|
||
if (n_ops == ARRAY_SIZE (ops))
|
||
return NULL_RTX;
|
||
|
||
ops[n_ops].op = XEXP (this_op, 1);
|
||
ops[n_ops].neg = (this_code == MINUS) ^ this_neg;
|
||
n_ops++;
|
||
|
||
ops[i].op = XEXP (this_op, 0);
|
||
changed = 1;
|
||
canonicalized |= this_neg || i != n_ops - 2;
|
||
break;
|
||
|
||
case NEG:
|
||
ops[i].op = XEXP (this_op, 0);
|
||
ops[i].neg = ! this_neg;
|
||
changed = 1;
|
||
canonicalized = 1;
|
||
break;
|
||
|
||
case CONST:
|
||
if (n_ops != ARRAY_SIZE (ops)
|
||
&& GET_CODE (XEXP (this_op, 0)) == PLUS
|
||
&& CONSTANT_P (XEXP (XEXP (this_op, 0), 0))
|
||
&& CONSTANT_P (XEXP (XEXP (this_op, 0), 1)))
|
||
{
|
||
ops[i].op = XEXP (XEXP (this_op, 0), 0);
|
||
ops[n_ops].op = XEXP (XEXP (this_op, 0), 1);
|
||
ops[n_ops].neg = this_neg;
|
||
n_ops++;
|
||
changed = 1;
|
||
canonicalized = 1;
|
||
}
|
||
break;
|
||
|
||
case NOT:
|
||
/* ~a -> (-a - 1) */
|
||
if (n_ops != ARRAY_SIZE (ops))
|
||
{
|
||
ops[n_ops].op = CONSTM1_RTX (mode);
|
||
ops[n_ops++].neg = this_neg;
|
||
ops[i].op = XEXP (this_op, 0);
|
||
ops[i].neg = !this_neg;
|
||
changed = 1;
|
||
canonicalized = 1;
|
||
}
|
||
break;
|
||
|
||
case CONST_INT:
|
||
n_constants++;
|
||
if (this_neg)
|
||
{
|
||
ops[i].op = neg_const_int (mode, this_op);
|
||
ops[i].neg = 0;
|
||
changed = 1;
|
||
canonicalized = 1;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
while (changed);
|
||
|
||
if (n_constants > 1)
|
||
canonicalized = 1;
|
||
|
||
gcc_assert (n_ops >= 2);
|
||
|
||
/* If we only have two operands, we can avoid the loops. */
|
||
if (n_ops == 2)
|
||
{
|
||
enum rtx_code code = ops[0].neg || ops[1].neg ? MINUS : PLUS;
|
||
rtx lhs, rhs;
|
||
|
||
/* Get the two operands. Be careful with the order, especially for
|
||
the cases where code == MINUS. */
|
||
if (ops[0].neg && ops[1].neg)
|
||
{
|
||
lhs = gen_rtx_NEG (mode, ops[0].op);
|
||
rhs = ops[1].op;
|
||
}
|
||
else if (ops[0].neg)
|
||
{
|
||
lhs = ops[1].op;
|
||
rhs = ops[0].op;
|
||
}
|
||
else
|
||
{
|
||
lhs = ops[0].op;
|
||
rhs = ops[1].op;
|
||
}
|
||
|
||
return simplify_const_binary_operation (code, mode, lhs, rhs);
|
||
}
|
||
|
||
/* Now simplify each pair of operands until nothing changes. */
|
||
do
|
||
{
|
||
/* Insertion sort is good enough for a small array. */
|
||
for (i = 1; i < n_ops; i++)
|
||
{
|
||
struct simplify_plus_minus_op_data save;
|
||
j = i - 1;
|
||
if (!simplify_plus_minus_op_data_cmp (ops[j].op, ops[i].op))
|
||
continue;
|
||
|
||
canonicalized = 1;
|
||
save = ops[i];
|
||
do
|
||
ops[j + 1] = ops[j];
|
||
while (j-- && simplify_plus_minus_op_data_cmp (ops[j].op, save.op));
|
||
ops[j + 1] = save;
|
||
}
|
||
|
||
changed = 0;
|
||
for (i = n_ops - 1; i > 0; i--)
|
||
for (j = i - 1; j >= 0; j--)
|
||
{
|
||
rtx lhs = ops[j].op, rhs = ops[i].op;
|
||
int lneg = ops[j].neg, rneg = ops[i].neg;
|
||
|
||
if (lhs != 0 && rhs != 0)
|
||
{
|
||
enum rtx_code ncode = PLUS;
|
||
|
||
if (lneg != rneg)
|
||
{
|
||
ncode = MINUS;
|
||
if (lneg)
|
||
tem = lhs, lhs = rhs, rhs = tem;
|
||
}
|
||
else if (swap_commutative_operands_p (lhs, rhs))
|
||
tem = lhs, lhs = rhs, rhs = tem;
|
||
|
||
if ((GET_CODE (lhs) == CONST || CONST_INT_P (lhs))
|
||
&& (GET_CODE (rhs) == CONST || CONST_INT_P (rhs)))
|
||
{
|
||
rtx tem_lhs, tem_rhs;
|
||
|
||
tem_lhs = GET_CODE (lhs) == CONST ? XEXP (lhs, 0) : lhs;
|
||
tem_rhs = GET_CODE (rhs) == CONST ? XEXP (rhs, 0) : rhs;
|
||
tem = simplify_binary_operation (ncode, mode, tem_lhs, tem_rhs);
|
||
|
||
if (tem && !CONSTANT_P (tem))
|
||
tem = gen_rtx_CONST (GET_MODE (tem), tem);
|
||
}
|
||
else
|
||
tem = simplify_binary_operation (ncode, mode, lhs, rhs);
|
||
|
||
if (tem)
|
||
{
|
||
/* Reject "simplifications" that just wrap the two
|
||
arguments in a CONST. Failure to do so can result
|
||
in infinite recursion with simplify_binary_operation
|
||
when it calls us to simplify CONST operations.
|
||
Also, if we find such a simplification, don't try
|
||
any more combinations with this rhs: We must have
|
||
something like symbol+offset, ie. one of the
|
||
trivial CONST expressions we handle later. */
|
||
if (GET_CODE (tem) == CONST
|
||
&& GET_CODE (XEXP (tem, 0)) == ncode
|
||
&& XEXP (XEXP (tem, 0), 0) == lhs
|
||
&& XEXP (XEXP (tem, 0), 1) == rhs)
|
||
break;
|
||
lneg &= rneg;
|
||
if (GET_CODE (tem) == NEG)
|
||
tem = XEXP (tem, 0), lneg = !lneg;
|
||
if (CONST_INT_P (tem) && lneg)
|
||
tem = neg_const_int (mode, tem), lneg = 0;
|
||
|
||
ops[i].op = tem;
|
||
ops[i].neg = lneg;
|
||
ops[j].op = NULL_RTX;
|
||
changed = 1;
|
||
canonicalized = 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If nothing changed, fail. */
|
||
if (!canonicalized)
|
||
return NULL_RTX;
|
||
|
||
/* Pack all the operands to the lower-numbered entries. */
|
||
for (i = 0, j = 0; j < n_ops; j++)
|
||
if (ops[j].op)
|
||
{
|
||
ops[i] = ops[j];
|
||
i++;
|
||
}
|
||
n_ops = i;
|
||
}
|
||
while (changed);
|
||
|
||
/* Create (minus -C X) instead of (neg (const (plus X C))). */
|
||
if (n_ops == 2
|
||
&& CONST_INT_P (ops[1].op)
|
||
&& CONSTANT_P (ops[0].op)
|
||
&& ops[0].neg)
|
||
return gen_rtx_fmt_ee (MINUS, mode, ops[1].op, ops[0].op);
|
||
|
||
/* We suppressed creation of trivial CONST expressions in the
|
||
combination loop to avoid recursion. Create one manually now.
|
||
The combination loop should have ensured that there is exactly
|
||
one CONST_INT, and the sort will have ensured that it is last
|
||
in the array and that any other constant will be next-to-last. */
|
||
|
||
if (n_ops > 1
|
||
&& CONST_INT_P (ops[n_ops - 1].op)
|
||
&& CONSTANT_P (ops[n_ops - 2].op))
|
||
{
|
||
rtx value = ops[n_ops - 1].op;
|
||
if (ops[n_ops - 1].neg ^ ops[n_ops - 2].neg)
|
||
value = neg_const_int (mode, value);
|
||
ops[n_ops - 2].op = plus_constant (mode, ops[n_ops - 2].op,
|
||
INTVAL (value));
|
||
n_ops--;
|
||
}
|
||
|
||
/* Put a non-negated operand first, if possible. */
|
||
|
||
for (i = 0; i < n_ops && ops[i].neg; i++)
|
||
continue;
|
||
if (i == n_ops)
|
||
ops[0].op = gen_rtx_NEG (mode, ops[0].op);
|
||
else if (i != 0)
|
||
{
|
||
tem = ops[0].op;
|
||
ops[0] = ops[i];
|
||
ops[i].op = tem;
|
||
ops[i].neg = 1;
|
||
}
|
||
|
||
/* Now make the result by performing the requested operations. */
|
||
result = ops[0].op;
|
||
for (i = 1; i < n_ops; i++)
|
||
result = gen_rtx_fmt_ee (ops[i].neg ? MINUS : PLUS,
|
||
mode, result, ops[i].op);
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Check whether an operand is suitable for calling simplify_plus_minus. */
|
||
static bool
|
||
plus_minus_operand_p (const_rtx x)
|
||
{
|
||
return GET_CODE (x) == PLUS
|
||
|| GET_CODE (x) == MINUS
|
||
|| (GET_CODE (x) == CONST
|
||
&& GET_CODE (XEXP (x, 0)) == PLUS
|
||
&& CONSTANT_P (XEXP (XEXP (x, 0), 0))
|
||
&& CONSTANT_P (XEXP (XEXP (x, 0), 1)));
|
||
}
|
||
|
||
/* Like simplify_binary_operation except used for relational operators.
|
||
MODE is the mode of the result. If MODE is VOIDmode, both operands must
|
||
not also be VOIDmode.
|
||
|
||
CMP_MODE specifies in which mode the comparison is done in, so it is
|
||
the mode of the operands. If CMP_MODE is VOIDmode, it is taken from
|
||
the operands or, if both are VOIDmode, the operands are compared in
|
||
"infinite precision". */
|
||
rtx
|
||
simplify_relational_operation (enum rtx_code code, machine_mode mode,
|
||
machine_mode cmp_mode, rtx op0, rtx op1)
|
||
{
|
||
rtx tem, trueop0, trueop1;
|
||
|
||
if (cmp_mode == VOIDmode)
|
||
cmp_mode = GET_MODE (op0);
|
||
if (cmp_mode == VOIDmode)
|
||
cmp_mode = GET_MODE (op1);
|
||
|
||
tem = simplify_const_relational_operation (code, cmp_mode, op0, op1);
|
||
if (tem)
|
||
{
|
||
if (SCALAR_FLOAT_MODE_P (mode))
|
||
{
|
||
if (tem == const0_rtx)
|
||
return CONST0_RTX (mode);
|
||
#ifdef FLOAT_STORE_FLAG_VALUE
|
||
{
|
||
REAL_VALUE_TYPE val;
|
||
val = FLOAT_STORE_FLAG_VALUE (mode);
|
||
return CONST_DOUBLE_FROM_REAL_VALUE (val, mode);
|
||
}
|
||
#else
|
||
return NULL_RTX;
|
||
#endif
|
||
}
|
||
if (VECTOR_MODE_P (mode))
|
||
{
|
||
if (tem == const0_rtx)
|
||
return CONST0_RTX (mode);
|
||
#ifdef VECTOR_STORE_FLAG_VALUE
|
||
{
|
||
int i, units;
|
||
rtvec v;
|
||
|
||
rtx val = VECTOR_STORE_FLAG_VALUE (mode);
|
||
if (val == NULL_RTX)
|
||
return NULL_RTX;
|
||
if (val == const1_rtx)
|
||
return CONST1_RTX (mode);
|
||
|
||
units = GET_MODE_NUNITS (mode);
|
||
v = rtvec_alloc (units);
|
||
for (i = 0; i < units; i++)
|
||
RTVEC_ELT (v, i) = val;
|
||
return gen_rtx_raw_CONST_VECTOR (mode, v);
|
||
}
|
||
#else
|
||
return NULL_RTX;
|
||
#endif
|
||
}
|
||
|
||
return tem;
|
||
}
|
||
|
||
/* For the following tests, ensure const0_rtx is op1. */
|
||
if (swap_commutative_operands_p (op0, op1)
|
||
|| (op0 == const0_rtx && op1 != const0_rtx))
|
||
tem = op0, op0 = op1, op1 = tem, code = swap_condition (code);
|
||
|
||
/* If op0 is a compare, extract the comparison arguments from it. */
|
||
if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
|
||
return simplify_gen_relational (code, mode, VOIDmode,
|
||
XEXP (op0, 0), XEXP (op0, 1));
|
||
|
||
if (GET_MODE_CLASS (cmp_mode) == MODE_CC
|
||
|| CC0_P (op0))
|
||
return NULL_RTX;
|
||
|
||
trueop0 = avoid_constant_pool_reference (op0);
|
||
trueop1 = avoid_constant_pool_reference (op1);
|
||
return simplify_relational_operation_1 (code, mode, cmp_mode,
|
||
trueop0, trueop1);
|
||
}
|
||
|
||
/* This part of simplify_relational_operation is only used when CMP_MODE
|
||
is not in class MODE_CC (i.e. it is a real comparison).
|
||
|
||
MODE is the mode of the result, while CMP_MODE specifies in which
|
||
mode the comparison is done in, so it is the mode of the operands. */
|
||
|
||
static rtx
|
||
simplify_relational_operation_1 (enum rtx_code code, machine_mode mode,
|
||
machine_mode cmp_mode, rtx op0, rtx op1)
|
||
{
|
||
enum rtx_code op0code = GET_CODE (op0);
|
||
|
||
if (op1 == const0_rtx && COMPARISON_P (op0))
|
||
{
|
||
/* If op0 is a comparison, extract the comparison arguments
|
||
from it. */
|
||
if (code == NE)
|
||
{
|
||
if (GET_MODE (op0) == mode)
|
||
return simplify_rtx (op0);
|
||
else
|
||
return simplify_gen_relational (GET_CODE (op0), mode, VOIDmode,
|
||
XEXP (op0, 0), XEXP (op0, 1));
|
||
}
|
||
else if (code == EQ)
|
||
{
|
||
enum rtx_code new_code = reversed_comparison_code (op0, NULL_RTX);
|
||
if (new_code != UNKNOWN)
|
||
return simplify_gen_relational (new_code, mode, VOIDmode,
|
||
XEXP (op0, 0), XEXP (op0, 1));
|
||
}
|
||
}
|
||
|
||
/* (LTU/GEU (PLUS a C) C), where C is constant, can be simplified to
|
||
(GEU/LTU a -C). Likewise for (LTU/GEU (PLUS a C) a). */
|
||
if ((code == LTU || code == GEU)
|
||
&& GET_CODE (op0) == PLUS
|
||
&& CONST_INT_P (XEXP (op0, 1))
|
||
&& (rtx_equal_p (op1, XEXP (op0, 0))
|
||
|| rtx_equal_p (op1, XEXP (op0, 1)))
|
||
/* (LTU/GEU (PLUS a 0) 0) is not the same as (GEU/LTU a 0). */
|
||
&& XEXP (op0, 1) != const0_rtx)
|
||
{
|
||
rtx new_cmp
|
||
= simplify_gen_unary (NEG, cmp_mode, XEXP (op0, 1), cmp_mode);
|
||
return simplify_gen_relational ((code == LTU ? GEU : LTU), mode,
|
||
cmp_mode, XEXP (op0, 0), new_cmp);
|
||
}
|
||
|
||
/* Canonicalize (LTU/GEU (PLUS a b) b) as (LTU/GEU (PLUS a b) a). */
|
||
if ((code == LTU || code == GEU)
|
||
&& GET_CODE (op0) == PLUS
|
||
&& rtx_equal_p (op1, XEXP (op0, 1))
|
||
/* Don't recurse "infinitely" for (LTU/GEU (PLUS b b) b). */
|
||
&& !rtx_equal_p (op1, XEXP (op0, 0)))
|
||
return simplify_gen_relational (code, mode, cmp_mode, op0,
|
||
copy_rtx (XEXP (op0, 0)));
|
||
|
||
if (op1 == const0_rtx)
|
||
{
|
||
/* Canonicalize (GTU x 0) as (NE x 0). */
|
||
if (code == GTU)
|
||
return simplify_gen_relational (NE, mode, cmp_mode, op0, op1);
|
||
/* Canonicalize (LEU x 0) as (EQ x 0). */
|
||
if (code == LEU)
|
||
return simplify_gen_relational (EQ, mode, cmp_mode, op0, op1);
|
||
}
|
||
else if (op1 == const1_rtx)
|
||
{
|
||
switch (code)
|
||
{
|
||
case GE:
|
||
/* Canonicalize (GE x 1) as (GT x 0). */
|
||
return simplify_gen_relational (GT, mode, cmp_mode,
|
||
op0, const0_rtx);
|
||
case GEU:
|
||
/* Canonicalize (GEU x 1) as (NE x 0). */
|
||
return simplify_gen_relational (NE, mode, cmp_mode,
|
||
op0, const0_rtx);
|
||
case LT:
|
||
/* Canonicalize (LT x 1) as (LE x 0). */
|
||
return simplify_gen_relational (LE, mode, cmp_mode,
|
||
op0, const0_rtx);
|
||
case LTU:
|
||
/* Canonicalize (LTU x 1) as (EQ x 0). */
|
||
return simplify_gen_relational (EQ, mode, cmp_mode,
|
||
op0, const0_rtx);
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
else if (op1 == constm1_rtx)
|
||
{
|
||
/* Canonicalize (LE x -1) as (LT x 0). */
|
||
if (code == LE)
|
||
return simplify_gen_relational (LT, mode, cmp_mode, op0, const0_rtx);
|
||
/* Canonicalize (GT x -1) as (GE x 0). */
|
||
if (code == GT)
|
||
return simplify_gen_relational (GE, mode, cmp_mode, op0, const0_rtx);
|
||
}
|
||
|
||
/* (eq/ne (plus x cst1) cst2) simplifies to (eq/ne x (cst2 - cst1)) */
|
||
if ((code == EQ || code == NE)
|
||
&& (op0code == PLUS || op0code == MINUS)
|
||
&& CONSTANT_P (op1)
|
||
&& CONSTANT_P (XEXP (op0, 1))
|
||
&& (INTEGRAL_MODE_P (cmp_mode) || flag_unsafe_math_optimizations))
|
||
{
|
||
rtx x = XEXP (op0, 0);
|
||
rtx c = XEXP (op0, 1);
|
||
enum rtx_code invcode = op0code == PLUS ? MINUS : PLUS;
|
||
rtx tem = simplify_gen_binary (invcode, cmp_mode, op1, c);
|
||
|
||
/* Detect an infinite recursive condition, where we oscillate at this
|
||
simplification case between:
|
||
A + B == C <---> C - B == A,
|
||
where A, B, and C are all constants with non-simplifiable expressions,
|
||
usually SYMBOL_REFs. */
|
||
if (GET_CODE (tem) == invcode
|
||
&& CONSTANT_P (x)
|
||
&& rtx_equal_p (c, XEXP (tem, 1)))
|
||
return NULL_RTX;
|
||
|
||
return simplify_gen_relational (code, mode, cmp_mode, x, tem);
|
||
}
|
||
|
||
/* (ne:SI (zero_extract:SI FOO (const_int 1) BAR) (const_int 0))) is
|
||
the same as (zero_extract:SI FOO (const_int 1) BAR). */
|
||
if (code == NE
|
||
&& op1 == const0_rtx
|
||
&& GET_MODE_CLASS (mode) == MODE_INT
|
||
&& cmp_mode != VOIDmode
|
||
/* ??? Work-around BImode bugs in the ia64 backend. */
|
||
&& mode != BImode
|
||
&& cmp_mode != BImode
|
||
&& nonzero_bits (op0, cmp_mode) == 1
|
||
&& STORE_FLAG_VALUE == 1)
|
||
return GET_MODE_SIZE (mode) > GET_MODE_SIZE (cmp_mode)
|
||
? simplify_gen_unary (ZERO_EXTEND, mode, op0, cmp_mode)
|
||
: lowpart_subreg (mode, op0, cmp_mode);
|
||
|
||
/* (eq/ne (xor x y) 0) simplifies to (eq/ne x y). */
|
||
if ((code == EQ || code == NE)
|
||
&& op1 == const0_rtx
|
||
&& op0code == XOR)
|
||
return simplify_gen_relational (code, mode, cmp_mode,
|
||
XEXP (op0, 0), XEXP (op0, 1));
|
||
|
||
/* (eq/ne (xor x y) x) simplifies to (eq/ne y 0). */
|
||
if ((code == EQ || code == NE)
|
||
&& op0code == XOR
|
||
&& rtx_equal_p (XEXP (op0, 0), op1)
|
||
&& !side_effects_p (XEXP (op0, 0)))
|
||
return simplify_gen_relational (code, mode, cmp_mode, XEXP (op0, 1),
|
||
CONST0_RTX (mode));
|
||
|
||
/* Likewise (eq/ne (xor x y) y) simplifies to (eq/ne x 0). */
|
||
if ((code == EQ || code == NE)
|
||
&& op0code == XOR
|
||
&& rtx_equal_p (XEXP (op0, 1), op1)
|
||
&& !side_effects_p (XEXP (op0, 1)))
|
||
return simplify_gen_relational (code, mode, cmp_mode, XEXP (op0, 0),
|
||
CONST0_RTX (mode));
|
||
|
||
/* (eq/ne (xor x C1) C2) simplifies to (eq/ne x (C1^C2)). */
|
||
if ((code == EQ || code == NE)
|
||
&& op0code == XOR
|
||
&& CONST_SCALAR_INT_P (op1)
|
||
&& CONST_SCALAR_INT_P (XEXP (op0, 1)))
|
||
return simplify_gen_relational (code, mode, cmp_mode, XEXP (op0, 0),
|
||
simplify_gen_binary (XOR, cmp_mode,
|
||
XEXP (op0, 1), op1));
|
||
|
||
/* (eq/ne (and x y) x) simplifies to (eq/ne (and (not y) x) 0), which
|
||
can be implemented with a BICS instruction on some targets, or
|
||
constant-folded if y is a constant. */
|
||
if ((code == EQ || code == NE)
|
||
&& op0code == AND
|
||
&& rtx_equal_p (XEXP (op0, 0), op1)
|
||
&& !side_effects_p (op1)
|
||
&& op1 != CONST0_RTX (cmp_mode))
|
||
{
|
||
rtx not_y = simplify_gen_unary (NOT, cmp_mode, XEXP (op0, 1), cmp_mode);
|
||
rtx lhs = simplify_gen_binary (AND, cmp_mode, not_y, XEXP (op0, 0));
|
||
|
||
return simplify_gen_relational (code, mode, cmp_mode, lhs,
|
||
CONST0_RTX (cmp_mode));
|
||
}
|
||
|
||
/* Likewise for (eq/ne (and x y) y). */
|
||
if ((code == EQ || code == NE)
|
||
&& op0code == AND
|
||
&& rtx_equal_p (XEXP (op0, 1), op1)
|
||
&& !side_effects_p (op1)
|
||
&& op1 != CONST0_RTX (cmp_mode))
|
||
{
|
||
rtx not_x = simplify_gen_unary (NOT, cmp_mode, XEXP (op0, 0), cmp_mode);
|
||
rtx lhs = simplify_gen_binary (AND, cmp_mode, not_x, XEXP (op0, 1));
|
||
|
||
return simplify_gen_relational (code, mode, cmp_mode, lhs,
|
||
CONST0_RTX (cmp_mode));
|
||
}
|
||
|
||
/* (eq/ne (bswap x) C1) simplifies to (eq/ne x C2) with C2 swapped. */
|
||
if ((code == EQ || code == NE)
|
||
&& GET_CODE (op0) == BSWAP
|
||
&& CONST_SCALAR_INT_P (op1))
|
||
return simplify_gen_relational (code, mode, cmp_mode, XEXP (op0, 0),
|
||
simplify_gen_unary (BSWAP, cmp_mode,
|
||
op1, cmp_mode));
|
||
|
||
/* (eq/ne (bswap x) (bswap y)) simplifies to (eq/ne x y). */
|
||
if ((code == EQ || code == NE)
|
||
&& GET_CODE (op0) == BSWAP
|
||
&& GET_CODE (op1) == BSWAP)
|
||
return simplify_gen_relational (code, mode, cmp_mode,
|
||
XEXP (op0, 0), XEXP (op1, 0));
|
||
|
||
if (op0code == POPCOUNT && op1 == const0_rtx)
|
||
switch (code)
|
||
{
|
||
case EQ:
|
||
case LE:
|
||
case LEU:
|
||
/* (eq (popcount x) (const_int 0)) -> (eq x (const_int 0)). */
|
||
return simplify_gen_relational (EQ, mode, GET_MODE (XEXP (op0, 0)),
|
||
XEXP (op0, 0), const0_rtx);
|
||
|
||
case NE:
|
||
case GT:
|
||
case GTU:
|
||
/* (ne (popcount x) (const_int 0)) -> (ne x (const_int 0)). */
|
||
return simplify_gen_relational (NE, mode, GET_MODE (XEXP (op0, 0)),
|
||
XEXP (op0, 0), const0_rtx);
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return NULL_RTX;
|
||
}
|
||
|
||
enum
|
||
{
|
||
CMP_EQ = 1,
|
||
CMP_LT = 2,
|
||
CMP_GT = 4,
|
||
CMP_LTU = 8,
|
||
CMP_GTU = 16
|
||
};
|
||
|
||
|
||
/* Convert the known results for EQ, LT, GT, LTU, GTU contained in
|
||
KNOWN_RESULT to a CONST_INT, based on the requested comparison CODE
|
||
For KNOWN_RESULT to make sense it should be either CMP_EQ, or the
|
||
logical OR of one of (CMP_LT, CMP_GT) and one of (CMP_LTU, CMP_GTU).
|
||
For floating-point comparisons, assume that the operands were ordered. */
|
||
|
||
static rtx
|
||
comparison_result (enum rtx_code code, int known_results)
|
||
{
|
||
switch (code)
|
||
{
|
||
case EQ:
|
||
case UNEQ:
|
||
return (known_results & CMP_EQ) ? const_true_rtx : const0_rtx;
|
||
case NE:
|
||
case LTGT:
|
||
return (known_results & CMP_EQ) ? const0_rtx : const_true_rtx;
|
||
|
||
case LT:
|
||
case UNLT:
|
||
return (known_results & CMP_LT) ? const_true_rtx : const0_rtx;
|
||
case GE:
|
||
case UNGE:
|
||
return (known_results & CMP_LT) ? const0_rtx : const_true_rtx;
|
||
|
||
case GT:
|
||
case UNGT:
|
||
return (known_results & CMP_GT) ? const_true_rtx : const0_rtx;
|
||
case LE:
|
||
case UNLE:
|
||
return (known_results & CMP_GT) ? const0_rtx : const_true_rtx;
|
||
|
||
case LTU:
|
||
return (known_results & CMP_LTU) ? const_true_rtx : const0_rtx;
|
||
case GEU:
|
||
return (known_results & CMP_LTU) ? const0_rtx : const_true_rtx;
|
||
|
||
case GTU:
|
||
return (known_results & CMP_GTU) ? const_true_rtx : const0_rtx;
|
||
case LEU:
|
||
return (known_results & CMP_GTU) ? const0_rtx : const_true_rtx;
|
||
|
||
case ORDERED:
|
||
return const_true_rtx;
|
||
case UNORDERED:
|
||
return const0_rtx;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Check if the given comparison (done in the given MODE) is actually
|
||
a tautology or a contradiction. If the mode is VOID_mode, the
|
||
comparison is done in "infinite precision". If no simplification
|
||
is possible, this function returns zero. Otherwise, it returns
|
||
either const_true_rtx or const0_rtx. */
|
||
|
||
rtx
|
||
simplify_const_relational_operation (enum rtx_code code,
|
||
machine_mode mode,
|
||
rtx op0, rtx op1)
|
||
{
|
||
rtx tem;
|
||
rtx trueop0;
|
||
rtx trueop1;
|
||
|
||
gcc_assert (mode != VOIDmode
|
||
|| (GET_MODE (op0) == VOIDmode
|
||
&& GET_MODE (op1) == VOIDmode));
|
||
|
||
/* If op0 is a compare, extract the comparison arguments from it. */
|
||
if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
|
||
{
|
||
op1 = XEXP (op0, 1);
|
||
op0 = XEXP (op0, 0);
|
||
|
||
if (GET_MODE (op0) != VOIDmode)
|
||
mode = GET_MODE (op0);
|
||
else if (GET_MODE (op1) != VOIDmode)
|
||
mode = GET_MODE (op1);
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
/* We can't simplify MODE_CC values since we don't know what the
|
||
actual comparison is. */
|
||
if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC || CC0_P (op0))
|
||
return 0;
|
||
|
||
/* Make sure the constant is second. */
|
||
if (swap_commutative_operands_p (op0, op1))
|
||
{
|
||
tem = op0, op0 = op1, op1 = tem;
|
||
code = swap_condition (code);
|
||
}
|
||
|
||
trueop0 = avoid_constant_pool_reference (op0);
|
||
trueop1 = avoid_constant_pool_reference (op1);
|
||
|
||
/* For integer comparisons of A and B maybe we can simplify A - B and can
|
||
then simplify a comparison of that with zero. If A and B are both either
|
||
a register or a CONST_INT, this can't help; testing for these cases will
|
||
prevent infinite recursion here and speed things up.
|
||
|
||
We can only do this for EQ and NE comparisons as otherwise we may
|
||
lose or introduce overflow which we cannot disregard as undefined as
|
||
we do not know the signedness of the operation on either the left or
|
||
the right hand side of the comparison. */
|
||
|
||
if (INTEGRAL_MODE_P (mode) && trueop1 != const0_rtx
|
||
&& (code == EQ || code == NE)
|
||
&& ! ((REG_P (op0) || CONST_INT_P (trueop0))
|
||
&& (REG_P (op1) || CONST_INT_P (trueop1)))
|
||
&& 0 != (tem = simplify_binary_operation (MINUS, mode, op0, op1))
|
||
/* We cannot do this if tem is a nonzero address. */
|
||
&& ! nonzero_address_p (tem))
|
||
return simplify_const_relational_operation (signed_condition (code),
|
||
mode, tem, const0_rtx);
|
||
|
||
if (! HONOR_NANS (mode) && code == ORDERED)
|
||
return const_true_rtx;
|
||
|
||
if (! HONOR_NANS (mode) && code == UNORDERED)
|
||
return const0_rtx;
|
||
|
||
/* For modes without NaNs, if the two operands are equal, we know the
|
||
result except if they have side-effects. Even with NaNs we know
|
||
the result of unordered comparisons and, if signaling NaNs are
|
||
irrelevant, also the result of LT/GT/LTGT. */
|
||
if ((! HONOR_NANS (trueop0)
|
||
|| code == UNEQ || code == UNLE || code == UNGE
|
||
|| ((code == LT || code == GT || code == LTGT)
|
||
&& ! HONOR_SNANS (trueop0)))
|
||
&& rtx_equal_p (trueop0, trueop1)
|
||
&& ! side_effects_p (trueop0))
|
||
return comparison_result (code, CMP_EQ);
|
||
|
||
/* If the operands are floating-point constants, see if we can fold
|
||
the result. */
|
||
if (CONST_DOUBLE_AS_FLOAT_P (trueop0)
|
||
&& CONST_DOUBLE_AS_FLOAT_P (trueop1)
|
||
&& SCALAR_FLOAT_MODE_P (GET_MODE (trueop0)))
|
||
{
|
||
REAL_VALUE_TYPE d0, d1;
|
||
|
||
REAL_VALUE_FROM_CONST_DOUBLE (d0, trueop0);
|
||
REAL_VALUE_FROM_CONST_DOUBLE (d1, trueop1);
|
||
|
||
/* Comparisons are unordered iff at least one of the values is NaN. */
|
||
if (REAL_VALUE_ISNAN (d0) || REAL_VALUE_ISNAN (d1))
|
||
switch (code)
|
||
{
|
||
case UNEQ:
|
||
case UNLT:
|
||
case UNGT:
|
||
case UNLE:
|
||
case UNGE:
|
||
case NE:
|
||
case UNORDERED:
|
||
return const_true_rtx;
|
||
case EQ:
|
||
case LT:
|
||
case GT:
|
||
case LE:
|
||
case GE:
|
||
case LTGT:
|
||
case ORDERED:
|
||
return const0_rtx;
|
||
default:
|
||
return 0;
|
||
}
|
||
|
||
return comparison_result (code,
|
||
(REAL_VALUES_EQUAL (d0, d1) ? CMP_EQ :
|
||
REAL_VALUES_LESS (d0, d1) ? CMP_LT : CMP_GT));
|
||
}
|
||
|
||
/* Otherwise, see if the operands are both integers. */
|
||
if ((GET_MODE_CLASS (mode) == MODE_INT || mode == VOIDmode)
|
||
&& CONST_SCALAR_INT_P (trueop0) && CONST_SCALAR_INT_P (trueop1))
|
||
{
|
||
/* It would be nice if we really had a mode here. However, the
|
||
largest int representable on the target is as good as
|
||
infinite. */
|
||
machine_mode cmode = (mode == VOIDmode) ? MAX_MODE_INT : mode;
|
||
rtx_mode_t ptrueop0 = std::make_pair (trueop0, cmode);
|
||
rtx_mode_t ptrueop1 = std::make_pair (trueop1, cmode);
|
||
|
||
if (wi::eq_p (ptrueop0, ptrueop1))
|
||
return comparison_result (code, CMP_EQ);
|
||
else
|
||
{
|
||
int cr = wi::lts_p (ptrueop0, ptrueop1) ? CMP_LT : CMP_GT;
|
||
cr |= wi::ltu_p (ptrueop0, ptrueop1) ? CMP_LTU : CMP_GTU;
|
||
return comparison_result (code, cr);
|
||
}
|
||
}
|
||
|
||
/* Optimize comparisons with upper and lower bounds. */
|
||
if (HWI_COMPUTABLE_MODE_P (mode)
|
||
&& CONST_INT_P (trueop1)
|
||
&& !side_effects_p (trueop0))
|
||
{
|
||
int sign;
|
||
unsigned HOST_WIDE_INT nonzero = nonzero_bits (trueop0, mode);
|
||
HOST_WIDE_INT val = INTVAL (trueop1);
|
||
HOST_WIDE_INT mmin, mmax;
|
||
|
||
if (code == GEU
|
||
|| code == LEU
|
||
|| code == GTU
|
||
|| code == LTU)
|
||
sign = 0;
|
||
else
|
||
sign = 1;
|
||
|
||
/* Get a reduced range if the sign bit is zero. */
|
||
if (nonzero <= (GET_MODE_MASK (mode) >> 1))
|
||
{
|
||
mmin = 0;
|
||
mmax = nonzero;
|
||
}
|
||
else
|
||
{
|
||
rtx mmin_rtx, mmax_rtx;
|
||
get_mode_bounds (mode, sign, mode, &mmin_rtx, &mmax_rtx);
|
||
|
||
mmin = INTVAL (mmin_rtx);
|
||
mmax = INTVAL (mmax_rtx);
|
||
if (sign)
|
||
{
|
||
unsigned int sign_copies = num_sign_bit_copies (trueop0, mode);
|
||
|
||
mmin >>= (sign_copies - 1);
|
||
mmax >>= (sign_copies - 1);
|
||
}
|
||
}
|
||
|
||
switch (code)
|
||
{
|
||
/* x >= y is always true for y <= mmin, always false for y > mmax. */
|
||
case GEU:
|
||
if ((unsigned HOST_WIDE_INT) val <= (unsigned HOST_WIDE_INT) mmin)
|
||
return const_true_rtx;
|
||
if ((unsigned HOST_WIDE_INT) val > (unsigned HOST_WIDE_INT) mmax)
|
||
return const0_rtx;
|
||
break;
|
||
case GE:
|
||
if (val <= mmin)
|
||
return const_true_rtx;
|
||
if (val > mmax)
|
||
return const0_rtx;
|
||
break;
|
||
|
||
/* x <= y is always true for y >= mmax, always false for y < mmin. */
|
||
case LEU:
|
||
if ((unsigned HOST_WIDE_INT) val >= (unsigned HOST_WIDE_INT) mmax)
|
||
return const_true_rtx;
|
||
if ((unsigned HOST_WIDE_INT) val < (unsigned HOST_WIDE_INT) mmin)
|
||
return const0_rtx;
|
||
break;
|
||
case LE:
|
||
if (val >= mmax)
|
||
return const_true_rtx;
|
||
if (val < mmin)
|
||
return const0_rtx;
|
||
break;
|
||
|
||
case EQ:
|
||
/* x == y is always false for y out of range. */
|
||
if (val < mmin || val > mmax)
|
||
return const0_rtx;
|
||
break;
|
||
|
||
/* x > y is always false for y >= mmax, always true for y < mmin. */
|
||
case GTU:
|
||
if ((unsigned HOST_WIDE_INT) val >= (unsigned HOST_WIDE_INT) mmax)
|
||
return const0_rtx;
|
||
if ((unsigned HOST_WIDE_INT) val < (unsigned HOST_WIDE_INT) mmin)
|
||
return const_true_rtx;
|
||
break;
|
||
case GT:
|
||
if (val >= mmax)
|
||
return const0_rtx;
|
||
if (val < mmin)
|
||
return const_true_rtx;
|
||
break;
|
||
|
||
/* x < y is always false for y <= mmin, always true for y > mmax. */
|
||
case LTU:
|
||
if ((unsigned HOST_WIDE_INT) val <= (unsigned HOST_WIDE_INT) mmin)
|
||
return const0_rtx;
|
||
if ((unsigned HOST_WIDE_INT) val > (unsigned HOST_WIDE_INT) mmax)
|
||
return const_true_rtx;
|
||
break;
|
||
case LT:
|
||
if (val <= mmin)
|
||
return const0_rtx;
|
||
if (val > mmax)
|
||
return const_true_rtx;
|
||
break;
|
||
|
||
case NE:
|
||
/* x != y is always true for y out of range. */
|
||
if (val < mmin || val > mmax)
|
||
return const_true_rtx;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Optimize integer comparisons with zero. */
|
||
if (trueop1 == const0_rtx && !side_effects_p (trueop0))
|
||
{
|
||
/* Some addresses are known to be nonzero. We don't know
|
||
their sign, but equality comparisons are known. */
|
||
if (nonzero_address_p (trueop0))
|
||
{
|
||
if (code == EQ || code == LEU)
|
||
return const0_rtx;
|
||
if (code == NE || code == GTU)
|
||
return const_true_rtx;
|
||
}
|
||
|
||
/* See if the first operand is an IOR with a constant. If so, we
|
||
may be able to determine the result of this comparison. */
|
||
if (GET_CODE (op0) == IOR)
|
||
{
|
||
rtx inner_const = avoid_constant_pool_reference (XEXP (op0, 1));
|
||
if (CONST_INT_P (inner_const) && inner_const != const0_rtx)
|
||
{
|
||
int sign_bitnum = GET_MODE_PRECISION (mode) - 1;
|
||
int has_sign = (HOST_BITS_PER_WIDE_INT >= sign_bitnum
|
||
&& (UINTVAL (inner_const)
|
||
& ((unsigned HOST_WIDE_INT) 1
|
||
<< sign_bitnum)));
|
||
|
||
switch (code)
|
||
{
|
||
case EQ:
|
||
case LEU:
|
||
return const0_rtx;
|
||
case NE:
|
||
case GTU:
|
||
return const_true_rtx;
|
||
case LT:
|
||
case LE:
|
||
if (has_sign)
|
||
return const_true_rtx;
|
||
break;
|
||
case GT:
|
||
case GE:
|
||
if (has_sign)
|
||
return const0_rtx;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Optimize comparison of ABS with zero. */
|
||
if (trueop1 == CONST0_RTX (mode) && !side_effects_p (trueop0)
|
||
&& (GET_CODE (trueop0) == ABS
|
||
|| (GET_CODE (trueop0) == FLOAT_EXTEND
|
||
&& GET_CODE (XEXP (trueop0, 0)) == ABS)))
|
||
{
|
||
switch (code)
|
||
{
|
||
case LT:
|
||
/* Optimize abs(x) < 0.0. */
|
||
if (!HONOR_SNANS (mode)
|
||
&& (!INTEGRAL_MODE_P (mode)
|
||
|| (!flag_wrapv && !flag_trapv && flag_strict_overflow)))
|
||
{
|
||
if (INTEGRAL_MODE_P (mode)
|
||
&& (issue_strict_overflow_warning
|
||
(WARN_STRICT_OVERFLOW_CONDITIONAL)))
|
||
warning (OPT_Wstrict_overflow,
|
||
("assuming signed overflow does not occur when "
|
||
"assuming abs (x) < 0 is false"));
|
||
return const0_rtx;
|
||
}
|
||
break;
|
||
|
||
case GE:
|
||
/* Optimize abs(x) >= 0.0. */
|
||
if (!HONOR_NANS (mode)
|
||
&& (!INTEGRAL_MODE_P (mode)
|
||
|| (!flag_wrapv && !flag_trapv && flag_strict_overflow)))
|
||
{
|
||
if (INTEGRAL_MODE_P (mode)
|
||
&& (issue_strict_overflow_warning
|
||
(WARN_STRICT_OVERFLOW_CONDITIONAL)))
|
||
warning (OPT_Wstrict_overflow,
|
||
("assuming signed overflow does not occur when "
|
||
"assuming abs (x) >= 0 is true"));
|
||
return const_true_rtx;
|
||
}
|
||
break;
|
||
|
||
case UNGE:
|
||
/* Optimize ! (abs(x) < 0.0). */
|
||
return const_true_rtx;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Simplify CODE, an operation with result mode MODE and three operands,
|
||
OP0, OP1, and OP2. OP0_MODE was the mode of OP0 before it became
|
||
a constant. Return 0 if no simplifications is possible. */
|
||
|
||
rtx
|
||
simplify_ternary_operation (enum rtx_code code, machine_mode mode,
|
||
machine_mode op0_mode, rtx op0, rtx op1,
|
||
rtx op2)
|
||
{
|
||
unsigned int width = GET_MODE_PRECISION (mode);
|
||
bool any_change = false;
|
||
rtx tem, trueop2;
|
||
|
||
/* VOIDmode means "infinite" precision. */
|
||
if (width == 0)
|
||
width = HOST_BITS_PER_WIDE_INT;
|
||
|
||
switch (code)
|
||
{
|
||
case FMA:
|
||
/* Simplify negations around the multiplication. */
|
||
/* -a * -b + c => a * b + c. */
|
||
if (GET_CODE (op0) == NEG)
|
||
{
|
||
tem = simplify_unary_operation (NEG, mode, op1, mode);
|
||
if (tem)
|
||
op1 = tem, op0 = XEXP (op0, 0), any_change = true;
|
||
}
|
||
else if (GET_CODE (op1) == NEG)
|
||
{
|
||
tem = simplify_unary_operation (NEG, mode, op0, mode);
|
||
if (tem)
|
||
op0 = tem, op1 = XEXP (op1, 0), any_change = true;
|
||
}
|
||
|
||
/* Canonicalize the two multiplication operands. */
|
||
/* a * -b + c => -b * a + c. */
|
||
if (swap_commutative_operands_p (op0, op1))
|
||
tem = op0, op0 = op1, op1 = tem, any_change = true;
|
||
|
||
if (any_change)
|
||
return gen_rtx_FMA (mode, op0, op1, op2);
|
||
return NULL_RTX;
|
||
|
||
case SIGN_EXTRACT:
|
||
case ZERO_EXTRACT:
|
||
if (CONST_INT_P (op0)
|
||
&& CONST_INT_P (op1)
|
||
&& CONST_INT_P (op2)
|
||
&& ((unsigned) INTVAL (op1) + (unsigned) INTVAL (op2) <= width)
|
||
&& width <= (unsigned) HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
/* Extracting a bit-field from a constant */
|
||
unsigned HOST_WIDE_INT val = UINTVAL (op0);
|
||
HOST_WIDE_INT op1val = INTVAL (op1);
|
||
HOST_WIDE_INT op2val = INTVAL (op2);
|
||
if (BITS_BIG_ENDIAN)
|
||
val >>= GET_MODE_PRECISION (op0_mode) - op2val - op1val;
|
||
else
|
||
val >>= op2val;
|
||
|
||
if (HOST_BITS_PER_WIDE_INT != op1val)
|
||
{
|
||
/* First zero-extend. */
|
||
val &= ((unsigned HOST_WIDE_INT) 1 << op1val) - 1;
|
||
/* If desired, propagate sign bit. */
|
||
if (code == SIGN_EXTRACT
|
||
&& (val & ((unsigned HOST_WIDE_INT) 1 << (op1val - 1)))
|
||
!= 0)
|
||
val |= ~ (((unsigned HOST_WIDE_INT) 1 << op1val) - 1);
|
||
}
|
||
|
||
return gen_int_mode (val, mode);
|
||
}
|
||
break;
|
||
|
||
case IF_THEN_ELSE:
|
||
if (CONST_INT_P (op0))
|
||
return op0 != const0_rtx ? op1 : op2;
|
||
|
||
/* Convert c ? a : a into "a". */
|
||
if (rtx_equal_p (op1, op2) && ! side_effects_p (op0))
|
||
return op1;
|
||
|
||
/* Convert a != b ? a : b into "a". */
|
||
if (GET_CODE (op0) == NE
|
||
&& ! side_effects_p (op0)
|
||
&& ! HONOR_NANS (mode)
|
||
&& ! HONOR_SIGNED_ZEROS (mode)
|
||
&& ((rtx_equal_p (XEXP (op0, 0), op1)
|
||
&& rtx_equal_p (XEXP (op0, 1), op2))
|
||
|| (rtx_equal_p (XEXP (op0, 0), op2)
|
||
&& rtx_equal_p (XEXP (op0, 1), op1))))
|
||
return op1;
|
||
|
||
/* Convert a == b ? a : b into "b". */
|
||
if (GET_CODE (op0) == EQ
|
||
&& ! side_effects_p (op0)
|
||
&& ! HONOR_NANS (mode)
|
||
&& ! HONOR_SIGNED_ZEROS (mode)
|
||
&& ((rtx_equal_p (XEXP (op0, 0), op1)
|
||
&& rtx_equal_p (XEXP (op0, 1), op2))
|
||
|| (rtx_equal_p (XEXP (op0, 0), op2)
|
||
&& rtx_equal_p (XEXP (op0, 1), op1))))
|
||
return op2;
|
||
|
||
if (COMPARISON_P (op0) && ! side_effects_p (op0))
|
||
{
|
||
machine_mode cmp_mode = (GET_MODE (XEXP (op0, 0)) == VOIDmode
|
||
? GET_MODE (XEXP (op0, 1))
|
||
: GET_MODE (XEXP (op0, 0)));
|
||
rtx temp;
|
||
|
||
/* Look for happy constants in op1 and op2. */
|
||
if (CONST_INT_P (op1) && CONST_INT_P (op2))
|
||
{
|
||
HOST_WIDE_INT t = INTVAL (op1);
|
||
HOST_WIDE_INT f = INTVAL (op2);
|
||
|
||
if (t == STORE_FLAG_VALUE && f == 0)
|
||
code = GET_CODE (op0);
|
||
else if (t == 0 && f == STORE_FLAG_VALUE)
|
||
{
|
||
enum rtx_code tmp;
|
||
tmp = reversed_comparison_code (op0, NULL_RTX);
|
||
if (tmp == UNKNOWN)
|
||
break;
|
||
code = tmp;
|
||
}
|
||
else
|
||
break;
|
||
|
||
return simplify_gen_relational (code, mode, cmp_mode,
|
||
XEXP (op0, 0), XEXP (op0, 1));
|
||
}
|
||
|
||
if (cmp_mode == VOIDmode)
|
||
cmp_mode = op0_mode;
|
||
temp = simplify_relational_operation (GET_CODE (op0), op0_mode,
|
||
cmp_mode, XEXP (op0, 0),
|
||
XEXP (op0, 1));
|
||
|
||
/* See if any simplifications were possible. */
|
||
if (temp)
|
||
{
|
||
if (CONST_INT_P (temp))
|
||
return temp == const0_rtx ? op2 : op1;
|
||
else if (temp)
|
||
return gen_rtx_IF_THEN_ELSE (mode, temp, op1, op2);
|
||
}
|
||
}
|
||
break;
|
||
|
||
case VEC_MERGE:
|
||
gcc_assert (GET_MODE (op0) == mode);
|
||
gcc_assert (GET_MODE (op1) == mode);
|
||
gcc_assert (VECTOR_MODE_P (mode));
|
||
trueop2 = avoid_constant_pool_reference (op2);
|
||
if (CONST_INT_P (trueop2))
|
||
{
|
||
int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
|
||
unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
|
||
unsigned HOST_WIDE_INT sel = UINTVAL (trueop2);
|
||
unsigned HOST_WIDE_INT mask;
|
||
if (n_elts == HOST_BITS_PER_WIDE_INT)
|
||
mask = -1;
|
||
else
|
||
mask = ((unsigned HOST_WIDE_INT) 1 << n_elts) - 1;
|
||
|
||
if (!(sel & mask) && !side_effects_p (op0))
|
||
return op1;
|
||
if ((sel & mask) == mask && !side_effects_p (op1))
|
||
return op0;
|
||
|
||
rtx trueop0 = avoid_constant_pool_reference (op0);
|
||
rtx trueop1 = avoid_constant_pool_reference (op1);
|
||
if (GET_CODE (trueop0) == CONST_VECTOR
|
||
&& GET_CODE (trueop1) == CONST_VECTOR)
|
||
{
|
||
rtvec v = rtvec_alloc (n_elts);
|
||
unsigned int i;
|
||
|
||
for (i = 0; i < n_elts; i++)
|
||
RTVEC_ELT (v, i) = ((sel & ((unsigned HOST_WIDE_INT) 1 << i))
|
||
? CONST_VECTOR_ELT (trueop0, i)
|
||
: CONST_VECTOR_ELT (trueop1, i));
|
||
return gen_rtx_CONST_VECTOR (mode, v);
|
||
}
|
||
|
||
/* Replace (vec_merge (vec_merge a b m) c n) with (vec_merge b c n)
|
||
if no element from a appears in the result. */
|
||
if (GET_CODE (op0) == VEC_MERGE)
|
||
{
|
||
tem = avoid_constant_pool_reference (XEXP (op0, 2));
|
||
if (CONST_INT_P (tem))
|
||
{
|
||
unsigned HOST_WIDE_INT sel0 = UINTVAL (tem);
|
||
if (!(sel & sel0 & mask) && !side_effects_p (XEXP (op0, 0)))
|
||
return simplify_gen_ternary (code, mode, mode,
|
||
XEXP (op0, 1), op1, op2);
|
||
if (!(sel & ~sel0 & mask) && !side_effects_p (XEXP (op0, 1)))
|
||
return simplify_gen_ternary (code, mode, mode,
|
||
XEXP (op0, 0), op1, op2);
|
||
}
|
||
}
|
||
if (GET_CODE (op1) == VEC_MERGE)
|
||
{
|
||
tem = avoid_constant_pool_reference (XEXP (op1, 2));
|
||
if (CONST_INT_P (tem))
|
||
{
|
||
unsigned HOST_WIDE_INT sel1 = UINTVAL (tem);
|
||
if (!(~sel & sel1 & mask) && !side_effects_p (XEXP (op1, 0)))
|
||
return simplify_gen_ternary (code, mode, mode,
|
||
op0, XEXP (op1, 1), op2);
|
||
if (!(~sel & ~sel1 & mask) && !side_effects_p (XEXP (op1, 1)))
|
||
return simplify_gen_ternary (code, mode, mode,
|
||
op0, XEXP (op1, 0), op2);
|
||
}
|
||
}
|
||
|
||
/* Replace (vec_merge (vec_duplicate (vec_select a parallel (i))) a 1 << i)
|
||
with a. */
|
||
if (GET_CODE (op0) == VEC_DUPLICATE
|
||
&& GET_CODE (XEXP (op0, 0)) == VEC_SELECT
|
||
&& GET_CODE (XEXP (XEXP (op0, 0), 1)) == PARALLEL
|
||
&& mode_nunits[GET_MODE (XEXP (op0, 0))] == 1)
|
||
{
|
||
tem = XVECEXP ((XEXP (XEXP (op0, 0), 1)), 0, 0);
|
||
if (CONST_INT_P (tem) && CONST_INT_P (op2))
|
||
{
|
||
if (XEXP (XEXP (op0, 0), 0) == op1
|
||
&& UINTVAL (op2) == HOST_WIDE_INT_1U << UINTVAL (tem))
|
||
return op1;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (rtx_equal_p (op0, op1)
|
||
&& !side_effects_p (op2) && !side_effects_p (op1))
|
||
return op0;
|
||
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Evaluate a SUBREG of a CONST_INT or CONST_WIDE_INT or CONST_DOUBLE
|
||
or CONST_FIXED or CONST_VECTOR, returning another CONST_INT or
|
||
CONST_WIDE_INT or CONST_DOUBLE or CONST_FIXED or CONST_VECTOR.
|
||
|
||
Works by unpacking OP into a collection of 8-bit values
|
||
represented as a little-endian array of 'unsigned char', selecting by BYTE,
|
||
and then repacking them again for OUTERMODE. */
|
||
|
||
static rtx
|
||
simplify_immed_subreg (machine_mode outermode, rtx op,
|
||
machine_mode innermode, unsigned int byte)
|
||
{
|
||
enum {
|
||
value_bit = 8,
|
||
value_mask = (1 << value_bit) - 1
|
||
};
|
||
unsigned char value[MAX_BITSIZE_MODE_ANY_MODE / value_bit];
|
||
int value_start;
|
||
int i;
|
||
int elem;
|
||
|
||
int num_elem;
|
||
rtx * elems;
|
||
int elem_bitsize;
|
||
rtx result_s;
|
||
rtvec result_v = NULL;
|
||
enum mode_class outer_class;
|
||
machine_mode outer_submode;
|
||
int max_bitsize;
|
||
|
||
/* Some ports misuse CCmode. */
|
||
if (GET_MODE_CLASS (outermode) == MODE_CC && CONST_INT_P (op))
|
||
return op;
|
||
|
||
/* We have no way to represent a complex constant at the rtl level. */
|
||
if (COMPLEX_MODE_P (outermode))
|
||
return NULL_RTX;
|
||
|
||
/* We support any size mode. */
|
||
max_bitsize = MAX (GET_MODE_BITSIZE (outermode),
|
||
GET_MODE_BITSIZE (innermode));
|
||
|
||
/* Unpack the value. */
|
||
|
||
if (GET_CODE (op) == CONST_VECTOR)
|
||
{
|
||
num_elem = CONST_VECTOR_NUNITS (op);
|
||
elems = &CONST_VECTOR_ELT (op, 0);
|
||
elem_bitsize = GET_MODE_BITSIZE (GET_MODE_INNER (innermode));
|
||
}
|
||
else
|
||
{
|
||
num_elem = 1;
|
||
elems = &op;
|
||
elem_bitsize = max_bitsize;
|
||
}
|
||
/* If this asserts, it is too complicated; reducing value_bit may help. */
|
||
gcc_assert (BITS_PER_UNIT % value_bit == 0);
|
||
/* I don't know how to handle endianness of sub-units. */
|
||
gcc_assert (elem_bitsize % BITS_PER_UNIT == 0);
|
||
|
||
for (elem = 0; elem < num_elem; elem++)
|
||
{
|
||
unsigned char * vp;
|
||
rtx el = elems[elem];
|
||
|
||
/* Vectors are kept in target memory order. (This is probably
|
||
a mistake.) */
|
||
{
|
||
unsigned byte = (elem * elem_bitsize) / BITS_PER_UNIT;
|
||
unsigned ibyte = (((num_elem - 1 - elem) * elem_bitsize)
|
||
/ BITS_PER_UNIT);
|
||
unsigned word_byte = WORDS_BIG_ENDIAN ? ibyte : byte;
|
||
unsigned subword_byte = BYTES_BIG_ENDIAN ? ibyte : byte;
|
||
unsigned bytele = (subword_byte % UNITS_PER_WORD
|
||
+ (word_byte / UNITS_PER_WORD) * UNITS_PER_WORD);
|
||
vp = value + (bytele * BITS_PER_UNIT) / value_bit;
|
||
}
|
||
|
||
switch (GET_CODE (el))
|
||
{
|
||
case CONST_INT:
|
||
for (i = 0;
|
||
i < HOST_BITS_PER_WIDE_INT && i < elem_bitsize;
|
||
i += value_bit)
|
||
*vp++ = INTVAL (el) >> i;
|
||
/* CONST_INTs are always logically sign-extended. */
|
||
for (; i < elem_bitsize; i += value_bit)
|
||
*vp++ = INTVAL (el) < 0 ? -1 : 0;
|
||
break;
|
||
|
||
case CONST_WIDE_INT:
|
||
{
|
||
rtx_mode_t val = std::make_pair (el, innermode);
|
||
unsigned char extend = wi::sign_mask (val);
|
||
|
||
for (i = 0; i < elem_bitsize; i += value_bit)
|
||
*vp++ = wi::extract_uhwi (val, i, value_bit);
|
||
for (; i < elem_bitsize; i += value_bit)
|
||
*vp++ = extend;
|
||
}
|
||
break;
|
||
|
||
case CONST_DOUBLE:
|
||
if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (el) == VOIDmode)
|
||
{
|
||
unsigned char extend = 0;
|
||
/* If this triggers, someone should have generated a
|
||
CONST_INT instead. */
|
||
gcc_assert (elem_bitsize > HOST_BITS_PER_WIDE_INT);
|
||
|
||
for (i = 0; i < HOST_BITS_PER_WIDE_INT; i += value_bit)
|
||
*vp++ = CONST_DOUBLE_LOW (el) >> i;
|
||
while (i < HOST_BITS_PER_DOUBLE_INT && i < elem_bitsize)
|
||
{
|
||
*vp++
|
||
= CONST_DOUBLE_HIGH (el) >> (i - HOST_BITS_PER_WIDE_INT);
|
||
i += value_bit;
|
||
}
|
||
|
||
if (CONST_DOUBLE_HIGH (el) >> (HOST_BITS_PER_WIDE_INT - 1))
|
||
extend = -1;
|
||
for (; i < elem_bitsize; i += value_bit)
|
||
*vp++ = extend;
|
||
}
|
||
else
|
||
{
|
||
/* This is big enough for anything on the platform. */
|
||
long tmp[MAX_BITSIZE_MODE_ANY_MODE / 32];
|
||
int bitsize = GET_MODE_BITSIZE (GET_MODE (el));
|
||
|
||
gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (el)));
|
||
gcc_assert (bitsize <= elem_bitsize);
|
||
gcc_assert (bitsize % value_bit == 0);
|
||
|
||
real_to_target (tmp, CONST_DOUBLE_REAL_VALUE (el),
|
||
GET_MODE (el));
|
||
|
||
/* real_to_target produces its result in words affected by
|
||
FLOAT_WORDS_BIG_ENDIAN. However, we ignore this,
|
||
and use WORDS_BIG_ENDIAN instead; see the documentation
|
||
of SUBREG in rtl.texi. */
|
||
for (i = 0; i < bitsize; i += value_bit)
|
||
{
|
||
int ibase;
|
||
if (WORDS_BIG_ENDIAN)
|
||
ibase = bitsize - 1 - i;
|
||
else
|
||
ibase = i;
|
||
*vp++ = tmp[ibase / 32] >> i % 32;
|
||
}
|
||
|
||
/* It shouldn't matter what's done here, so fill it with
|
||
zero. */
|
||
for (; i < elem_bitsize; i += value_bit)
|
||
*vp++ = 0;
|
||
}
|
||
break;
|
||
|
||
case CONST_FIXED:
|
||
if (elem_bitsize <= HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
for (i = 0; i < elem_bitsize; i += value_bit)
|
||
*vp++ = CONST_FIXED_VALUE_LOW (el) >> i;
|
||
}
|
||
else
|
||
{
|
||
for (i = 0; i < HOST_BITS_PER_WIDE_INT; i += value_bit)
|
||
*vp++ = CONST_FIXED_VALUE_LOW (el) >> i;
|
||
for (; i < HOST_BITS_PER_DOUBLE_INT && i < elem_bitsize;
|
||
i += value_bit)
|
||
*vp++ = CONST_FIXED_VALUE_HIGH (el)
|
||
>> (i - HOST_BITS_PER_WIDE_INT);
|
||
for (; i < elem_bitsize; i += value_bit)
|
||
*vp++ = 0;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Now, pick the right byte to start with. */
|
||
/* Renumber BYTE so that the least-significant byte is byte 0. A special
|
||
case is paradoxical SUBREGs, which shouldn't be adjusted since they
|
||
will already have offset 0. */
|
||
if (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode))
|
||
{
|
||
unsigned ibyte = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode)
|
||
- byte);
|
||
unsigned word_byte = WORDS_BIG_ENDIAN ? ibyte : byte;
|
||
unsigned subword_byte = BYTES_BIG_ENDIAN ? ibyte : byte;
|
||
byte = (subword_byte % UNITS_PER_WORD
|
||
+ (word_byte / UNITS_PER_WORD) * UNITS_PER_WORD);
|
||
}
|
||
|
||
/* BYTE should still be inside OP. (Note that BYTE is unsigned,
|
||
so if it's become negative it will instead be very large.) */
|
||
gcc_assert (byte < GET_MODE_SIZE (innermode));
|
||
|
||
/* Convert from bytes to chunks of size value_bit. */
|
||
value_start = byte * (BITS_PER_UNIT / value_bit);
|
||
|
||
/* Re-pack the value. */
|
||
|
||
if (VECTOR_MODE_P (outermode))
|
||
{
|
||
num_elem = GET_MODE_NUNITS (outermode);
|
||
result_v = rtvec_alloc (num_elem);
|
||
elems = &RTVEC_ELT (result_v, 0);
|
||
outer_submode = GET_MODE_INNER (outermode);
|
||
}
|
||
else
|
||
{
|
||
num_elem = 1;
|
||
elems = &result_s;
|
||
outer_submode = outermode;
|
||
}
|
||
|
||
outer_class = GET_MODE_CLASS (outer_submode);
|
||
elem_bitsize = GET_MODE_BITSIZE (outer_submode);
|
||
|
||
gcc_assert (elem_bitsize % value_bit == 0);
|
||
gcc_assert (elem_bitsize + value_start * value_bit <= max_bitsize);
|
||
|
||
for (elem = 0; elem < num_elem; elem++)
|
||
{
|
||
unsigned char *vp;
|
||
|
||
/* Vectors are stored in target memory order. (This is probably
|
||
a mistake.) */
|
||
{
|
||
unsigned byte = (elem * elem_bitsize) / BITS_PER_UNIT;
|
||
unsigned ibyte = (((num_elem - 1 - elem) * elem_bitsize)
|
||
/ BITS_PER_UNIT);
|
||
unsigned word_byte = WORDS_BIG_ENDIAN ? ibyte : byte;
|
||
unsigned subword_byte = BYTES_BIG_ENDIAN ? ibyte : byte;
|
||
unsigned bytele = (subword_byte % UNITS_PER_WORD
|
||
+ (word_byte / UNITS_PER_WORD) * UNITS_PER_WORD);
|
||
vp = value + value_start + (bytele * BITS_PER_UNIT) / value_bit;
|
||
}
|
||
|
||
switch (outer_class)
|
||
{
|
||
case MODE_INT:
|
||
case MODE_PARTIAL_INT:
|
||
{
|
||
int u;
|
||
int base = 0;
|
||
int units
|
||
= (GET_MODE_BITSIZE (outer_submode) + HOST_BITS_PER_WIDE_INT - 1)
|
||
/ HOST_BITS_PER_WIDE_INT;
|
||
HOST_WIDE_INT tmp[MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_WIDE_INT];
|
||
wide_int r;
|
||
|
||
if (GET_MODE_PRECISION (outer_submode) > MAX_BITSIZE_MODE_ANY_INT)
|
||
return NULL_RTX;
|
||
for (u = 0; u < units; u++)
|
||
{
|
||
unsigned HOST_WIDE_INT buf = 0;
|
||
for (i = 0;
|
||
i < HOST_BITS_PER_WIDE_INT && base + i < elem_bitsize;
|
||
i += value_bit)
|
||
buf |= (unsigned HOST_WIDE_INT)(*vp++ & value_mask) << i;
|
||
|
||
tmp[u] = buf;
|
||
base += HOST_BITS_PER_WIDE_INT;
|
||
}
|
||
r = wide_int::from_array (tmp, units,
|
||
GET_MODE_PRECISION (outer_submode));
|
||
#if TARGET_SUPPORTS_WIDE_INT == 0
|
||
/* Make sure r will fit into CONST_INT or CONST_DOUBLE. */
|
||
if (wi::min_precision (r, SIGNED) > HOST_BITS_PER_DOUBLE_INT)
|
||
return NULL_RTX;
|
||
#endif
|
||
elems[elem] = immed_wide_int_const (r, outer_submode);
|
||
}
|
||
break;
|
||
|
||
case MODE_FLOAT:
|
||
case MODE_DECIMAL_FLOAT:
|
||
{
|
||
REAL_VALUE_TYPE r;
|
||
long tmp[MAX_BITSIZE_MODE_ANY_MODE / 32];
|
||
|
||
/* real_from_target wants its input in words affected by
|
||
FLOAT_WORDS_BIG_ENDIAN. However, we ignore this,
|
||
and use WORDS_BIG_ENDIAN instead; see the documentation
|
||
of SUBREG in rtl.texi. */
|
||
for (i = 0; i < max_bitsize / 32; i++)
|
||
tmp[i] = 0;
|
||
for (i = 0; i < elem_bitsize; i += value_bit)
|
||
{
|
||
int ibase;
|
||
if (WORDS_BIG_ENDIAN)
|
||
ibase = elem_bitsize - 1 - i;
|
||
else
|
||
ibase = i;
|
||
tmp[ibase / 32] |= (*vp++ & value_mask) << i % 32;
|
||
}
|
||
|
||
real_from_target (&r, tmp, outer_submode);
|
||
elems[elem] = CONST_DOUBLE_FROM_REAL_VALUE (r, outer_submode);
|
||
}
|
||
break;
|
||
|
||
case MODE_FRACT:
|
||
case MODE_UFRACT:
|
||
case MODE_ACCUM:
|
||
case MODE_UACCUM:
|
||
{
|
||
FIXED_VALUE_TYPE f;
|
||
f.data.low = 0;
|
||
f.data.high = 0;
|
||
f.mode = outer_submode;
|
||
|
||
for (i = 0;
|
||
i < HOST_BITS_PER_WIDE_INT && i < elem_bitsize;
|
||
i += value_bit)
|
||
f.data.low |= (unsigned HOST_WIDE_INT)(*vp++ & value_mask) << i;
|
||
for (; i < elem_bitsize; i += value_bit)
|
||
f.data.high |= ((unsigned HOST_WIDE_INT)(*vp++ & value_mask)
|
||
<< (i - HOST_BITS_PER_WIDE_INT));
|
||
|
||
elems[elem] = CONST_FIXED_FROM_FIXED_VALUE (f, outer_submode);
|
||
}
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
if (VECTOR_MODE_P (outermode))
|
||
return gen_rtx_CONST_VECTOR (outermode, result_v);
|
||
else
|
||
return result_s;
|
||
}
|
||
|
||
/* Simplify SUBREG:OUTERMODE(OP:INNERMODE, BYTE)
|
||
Return 0 if no simplifications are possible. */
|
||
rtx
|
||
simplify_subreg (machine_mode outermode, rtx op,
|
||
machine_mode innermode, unsigned int byte)
|
||
{
|
||
/* Little bit of sanity checking. */
|
||
gcc_assert (innermode != VOIDmode);
|
||
gcc_assert (outermode != VOIDmode);
|
||
gcc_assert (innermode != BLKmode);
|
||
gcc_assert (outermode != BLKmode);
|
||
|
||
gcc_assert (GET_MODE (op) == innermode
|
||
|| GET_MODE (op) == VOIDmode);
|
||
|
||
if ((byte % GET_MODE_SIZE (outermode)) != 0)
|
||
return NULL_RTX;
|
||
|
||
if (byte >= GET_MODE_SIZE (innermode))
|
||
return NULL_RTX;
|
||
|
||
if (outermode == innermode && !byte)
|
||
return op;
|
||
|
||
if (CONST_SCALAR_INT_P (op)
|
||
|| CONST_DOUBLE_AS_FLOAT_P (op)
|
||
|| GET_CODE (op) == CONST_FIXED
|
||
|| GET_CODE (op) == CONST_VECTOR)
|
||
return simplify_immed_subreg (outermode, op, innermode, byte);
|
||
|
||
/* Changing mode twice with SUBREG => just change it once,
|
||
or not at all if changing back op starting mode. */
|
||
if (GET_CODE (op) == SUBREG)
|
||
{
|
||
machine_mode innermostmode = GET_MODE (SUBREG_REG (op));
|
||
int final_offset = byte + SUBREG_BYTE (op);
|
||
rtx newx;
|
||
|
||
if (outermode == innermostmode
|
||
&& byte == 0 && SUBREG_BYTE (op) == 0)
|
||
return SUBREG_REG (op);
|
||
|
||
/* The SUBREG_BYTE represents offset, as if the value were stored
|
||
in memory. Irritating exception is paradoxical subreg, where
|
||
we define SUBREG_BYTE to be 0. On big endian machines, this
|
||
value should be negative. For a moment, undo this exception. */
|
||
if (byte == 0 && GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
|
||
{
|
||
int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
|
||
if (WORDS_BIG_ENDIAN)
|
||
final_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
|
||
if (BYTES_BIG_ENDIAN)
|
||
final_offset += difference % UNITS_PER_WORD;
|
||
}
|
||
if (SUBREG_BYTE (op) == 0
|
||
&& GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
|
||
{
|
||
int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
|
||
if (WORDS_BIG_ENDIAN)
|
||
final_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
|
||
if (BYTES_BIG_ENDIAN)
|
||
final_offset += difference % UNITS_PER_WORD;
|
||
}
|
||
|
||
/* See whether resulting subreg will be paradoxical. */
|
||
if (GET_MODE_SIZE (innermostmode) > GET_MODE_SIZE (outermode))
|
||
{
|
||
/* In nonparadoxical subregs we can't handle negative offsets. */
|
||
if (final_offset < 0)
|
||
return NULL_RTX;
|
||
/* Bail out in case resulting subreg would be incorrect. */
|
||
if (final_offset % GET_MODE_SIZE (outermode)
|
||
|| (unsigned) final_offset >= GET_MODE_SIZE (innermostmode))
|
||
return NULL_RTX;
|
||
}
|
||
else
|
||
{
|
||
int offset = 0;
|
||
int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (outermode));
|
||
|
||
/* In paradoxical subreg, see if we are still looking on lower part.
|
||
If so, our SUBREG_BYTE will be 0. */
|
||
if (WORDS_BIG_ENDIAN)
|
||
offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
|
||
if (BYTES_BIG_ENDIAN)
|
||
offset += difference % UNITS_PER_WORD;
|
||
if (offset == final_offset)
|
||
final_offset = 0;
|
||
else
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* Recurse for further possible simplifications. */
|
||
newx = simplify_subreg (outermode, SUBREG_REG (op), innermostmode,
|
||
final_offset);
|
||
if (newx)
|
||
return newx;
|
||
if (validate_subreg (outermode, innermostmode,
|
||
SUBREG_REG (op), final_offset))
|
||
{
|
||
newx = gen_rtx_SUBREG (outermode, SUBREG_REG (op), final_offset);
|
||
if (SUBREG_PROMOTED_VAR_P (op)
|
||
&& SUBREG_PROMOTED_SIGN (op) >= 0
|
||
&& GET_MODE_CLASS (outermode) == MODE_INT
|
||
&& IN_RANGE (GET_MODE_SIZE (outermode),
|
||
GET_MODE_SIZE (innermode),
|
||
GET_MODE_SIZE (innermostmode))
|
||
&& subreg_lowpart_p (newx))
|
||
{
|
||
SUBREG_PROMOTED_VAR_P (newx) = 1;
|
||
SUBREG_PROMOTED_SET (newx, SUBREG_PROMOTED_GET (op));
|
||
}
|
||
return newx;
|
||
}
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* SUBREG of a hard register => just change the register number
|
||
and/or mode. If the hard register is not valid in that mode,
|
||
suppress this simplification. If the hard register is the stack,
|
||
frame, or argument pointer, leave this as a SUBREG. */
|
||
|
||
if (REG_P (op) && HARD_REGISTER_P (op))
|
||
{
|
||
unsigned int regno, final_regno;
|
||
|
||
regno = REGNO (op);
|
||
final_regno = simplify_subreg_regno (regno, innermode, byte, outermode);
|
||
if (HARD_REGISTER_NUM_P (final_regno))
|
||
{
|
||
rtx x;
|
||
int final_offset = byte;
|
||
|
||
/* Adjust offset for paradoxical subregs. */
|
||
if (byte == 0
|
||
&& GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
|
||
{
|
||
int difference = (GET_MODE_SIZE (innermode)
|
||
- GET_MODE_SIZE (outermode));
|
||
if (WORDS_BIG_ENDIAN)
|
||
final_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
|
||
if (BYTES_BIG_ENDIAN)
|
||
final_offset += difference % UNITS_PER_WORD;
|
||
}
|
||
|
||
x = gen_rtx_REG_offset (op, outermode, final_regno, final_offset);
|
||
|
||
/* Propagate original regno. We don't have any way to specify
|
||
the offset inside original regno, so do so only for lowpart.
|
||
The information is used only by alias analysis that can not
|
||
grog partial register anyway. */
|
||
|
||
if (subreg_lowpart_offset (outermode, innermode) == byte)
|
||
ORIGINAL_REGNO (x) = ORIGINAL_REGNO (op);
|
||
return x;
|
||
}
|
||
}
|
||
|
||
/* If we have a SUBREG of a register that we are replacing and we are
|
||
replacing it with a MEM, make a new MEM and try replacing the
|
||
SUBREG with it. Don't do this if the MEM has a mode-dependent address
|
||
or if we would be widening it. */
|
||
|
||
if (MEM_P (op)
|
||
&& ! mode_dependent_address_p (XEXP (op, 0), MEM_ADDR_SPACE (op))
|
||
/* Allow splitting of volatile memory references in case we don't
|
||
have instruction to move the whole thing. */
|
||
&& (! MEM_VOLATILE_P (op)
|
||
|| ! have_insn_for (SET, innermode))
|
||
&& GET_MODE_SIZE (outermode) <= GET_MODE_SIZE (GET_MODE (op)))
|
||
return adjust_address_nv (op, outermode, byte);
|
||
|
||
/* Handle complex values represented as CONCAT
|
||
of real and imaginary part. */
|
||
if (GET_CODE (op) == CONCAT)
|
||
{
|
||
unsigned int part_size, final_offset;
|
||
rtx part, res;
|
||
|
||
part_size = GET_MODE_UNIT_SIZE (GET_MODE (XEXP (op, 0)));
|
||
if (byte < part_size)
|
||
{
|
||
part = XEXP (op, 0);
|
||
final_offset = byte;
|
||
}
|
||
else
|
||
{
|
||
part = XEXP (op, 1);
|
||
final_offset = byte - part_size;
|
||
}
|
||
|
||
if (final_offset + GET_MODE_SIZE (outermode) > part_size)
|
||
return NULL_RTX;
|
||
|
||
res = simplify_subreg (outermode, part, GET_MODE (part), final_offset);
|
||
if (res)
|
||
return res;
|
||
if (validate_subreg (outermode, GET_MODE (part), part, final_offset))
|
||
return gen_rtx_SUBREG (outermode, part, final_offset);
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* A SUBREG resulting from a zero extension may fold to zero if
|
||
it extracts higher bits that the ZERO_EXTEND's source bits. */
|
||
if (GET_CODE (op) == ZERO_EXTEND && SCALAR_INT_MODE_P (innermode))
|
||
{
|
||
unsigned int bitpos = subreg_lsb_1 (outermode, innermode, byte);
|
||
if (bitpos >= GET_MODE_PRECISION (GET_MODE (XEXP (op, 0))))
|
||
return CONST0_RTX (outermode);
|
||
}
|
||
|
||
if (SCALAR_INT_MODE_P (outermode)
|
||
&& SCALAR_INT_MODE_P (innermode)
|
||
&& GET_MODE_PRECISION (outermode) < GET_MODE_PRECISION (innermode)
|
||
&& byte == subreg_lowpart_offset (outermode, innermode))
|
||
{
|
||
rtx tem = simplify_truncation (outermode, op, innermode);
|
||
if (tem)
|
||
return tem;
|
||
}
|
||
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* Make a SUBREG operation or equivalent if it folds. */
|
||
|
||
rtx
|
||
simplify_gen_subreg (machine_mode outermode, rtx op,
|
||
machine_mode innermode, unsigned int byte)
|
||
{
|
||
rtx newx;
|
||
|
||
newx = simplify_subreg (outermode, op, innermode, byte);
|
||
if (newx)
|
||
return newx;
|
||
|
||
if (GET_CODE (op) == SUBREG
|
||
|| GET_CODE (op) == CONCAT
|
||
|| GET_MODE (op) == VOIDmode)
|
||
return NULL_RTX;
|
||
|
||
if (validate_subreg (outermode, innermode, op, byte))
|
||
return gen_rtx_SUBREG (outermode, op, byte);
|
||
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* Simplify X, an rtx expression.
|
||
|
||
Return the simplified expression or NULL if no simplifications
|
||
were possible.
|
||
|
||
This is the preferred entry point into the simplification routines;
|
||
however, we still allow passes to call the more specific routines.
|
||
|
||
Right now GCC has three (yes, three) major bodies of RTL simplification
|
||
code that need to be unified.
|
||
|
||
1. fold_rtx in cse.c. This code uses various CSE specific
|
||
information to aid in RTL simplification.
|
||
|
||
2. simplify_rtx in combine.c. Similar to fold_rtx, except that
|
||
it uses combine specific information to aid in RTL
|
||
simplification.
|
||
|
||
3. The routines in this file.
|
||
|
||
|
||
Long term we want to only have one body of simplification code; to
|
||
get to that state I recommend the following steps:
|
||
|
||
1. Pour over fold_rtx & simplify_rtx and move any simplifications
|
||
which are not pass dependent state into these routines.
|
||
|
||
2. As code is moved by #1, change fold_rtx & simplify_rtx to
|
||
use this routine whenever possible.
|
||
|
||
3. Allow for pass dependent state to be provided to these
|
||
routines and add simplifications based on the pass dependent
|
||
state. Remove code from cse.c & combine.c that becomes
|
||
redundant/dead.
|
||
|
||
It will take time, but ultimately the compiler will be easier to
|
||
maintain and improve. It's totally silly that when we add a
|
||
simplification that it needs to be added to 4 places (3 for RTL
|
||
simplification and 1 for tree simplification. */
|
||
|
||
rtx
|
||
simplify_rtx (const_rtx x)
|
||
{
|
||
const enum rtx_code code = GET_CODE (x);
|
||
const machine_mode mode = GET_MODE (x);
|
||
|
||
switch (GET_RTX_CLASS (code))
|
||
{
|
||
case RTX_UNARY:
|
||
return simplify_unary_operation (code, mode,
|
||
XEXP (x, 0), GET_MODE (XEXP (x, 0)));
|
||
case RTX_COMM_ARITH:
|
||
if (swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
|
||
return simplify_gen_binary (code, mode, XEXP (x, 1), XEXP (x, 0));
|
||
|
||
/* Fall through.... */
|
||
|
||
case RTX_BIN_ARITH:
|
||
return simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
|
||
|
||
case RTX_TERNARY:
|
||
case RTX_BITFIELD_OPS:
|
||
return simplify_ternary_operation (code, mode, GET_MODE (XEXP (x, 0)),
|
||
XEXP (x, 0), XEXP (x, 1),
|
||
XEXP (x, 2));
|
||
|
||
case RTX_COMPARE:
|
||
case RTX_COMM_COMPARE:
|
||
return simplify_relational_operation (code, mode,
|
||
((GET_MODE (XEXP (x, 0))
|
||
!= VOIDmode)
|
||
? GET_MODE (XEXP (x, 0))
|
||
: GET_MODE (XEXP (x, 1))),
|
||
XEXP (x, 0),
|
||
XEXP (x, 1));
|
||
|
||
case RTX_EXTRA:
|
||
if (code == SUBREG)
|
||
return simplify_subreg (mode, SUBREG_REG (x),
|
||
GET_MODE (SUBREG_REG (x)),
|
||
SUBREG_BYTE (x));
|
||
break;
|
||
|
||
case RTX_OBJ:
|
||
if (code == LO_SUM)
|
||
{
|
||
/* Convert (lo_sum (high FOO) FOO) to FOO. */
|
||
if (GET_CODE (XEXP (x, 0)) == HIGH
|
||
&& rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
|
||
return XEXP (x, 1);
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
return NULL;
|
||
}
|