mirror of
https://github.com/autc04/Retro68.git
synced 2024-11-28 05:51:04 +00:00
5667 lines
159 KiB
C
5667 lines
159 KiB
C
/* Passes for transactional memory support.
|
||
Copyright (C) 2008-2015 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "hash-table.h"
|
||
#include "hash-set.h"
|
||
#include "machmode.h"
|
||
#include "vec.h"
|
||
#include "double-int.h"
|
||
#include "input.h"
|
||
#include "alias.h"
|
||
#include "symtab.h"
|
||
#include "options.h"
|
||
#include "wide-int.h"
|
||
#include "inchash.h"
|
||
#include "tree.h"
|
||
#include "fold-const.h"
|
||
#include "predict.h"
|
||
#include "tm.h"
|
||
#include "hard-reg-set.h"
|
||
#include "input.h"
|
||
#include "function.h"
|
||
#include "dominance.h"
|
||
#include "cfg.h"
|
||
#include "basic-block.h"
|
||
#include "tree-ssa-alias.h"
|
||
#include "internal-fn.h"
|
||
#include "tree-eh.h"
|
||
#include "gimple-expr.h"
|
||
#include "is-a.h"
|
||
#include "gimple.h"
|
||
#include "calls.h"
|
||
#include "rtl.h"
|
||
#include "emit-rtl.h"
|
||
#include "gimplify.h"
|
||
#include "gimple-iterator.h"
|
||
#include "gimplify-me.h"
|
||
#include "gimple-walk.h"
|
||
#include "gimple-ssa.h"
|
||
#include "hash-map.h"
|
||
#include "plugin-api.h"
|
||
#include "ipa-ref.h"
|
||
#include "cgraph.h"
|
||
#include "tree-cfg.h"
|
||
#include "stringpool.h"
|
||
#include "tree-ssanames.h"
|
||
#include "tree-into-ssa.h"
|
||
#include "tree-pass.h"
|
||
#include "tree-inline.h"
|
||
#include "diagnostic-core.h"
|
||
#include "demangle.h"
|
||
#include "output.h"
|
||
#include "trans-mem.h"
|
||
#include "params.h"
|
||
#include "target.h"
|
||
#include "langhooks.h"
|
||
#include "gimple-pretty-print.h"
|
||
#include "cfgloop.h"
|
||
#include "tree-ssa-address.h"
|
||
|
||
|
||
#define A_RUNINSTRUMENTEDCODE 0x0001
|
||
#define A_RUNUNINSTRUMENTEDCODE 0x0002
|
||
#define A_SAVELIVEVARIABLES 0x0004
|
||
#define A_RESTORELIVEVARIABLES 0x0008
|
||
#define A_ABORTTRANSACTION 0x0010
|
||
|
||
#define AR_USERABORT 0x0001
|
||
#define AR_USERRETRY 0x0002
|
||
#define AR_TMCONFLICT 0x0004
|
||
#define AR_EXCEPTIONBLOCKABORT 0x0008
|
||
#define AR_OUTERABORT 0x0010
|
||
|
||
#define MODE_SERIALIRREVOCABLE 0x0000
|
||
|
||
|
||
/* The representation of a transaction changes several times during the
|
||
lowering process. In the beginning, in the front-end we have the
|
||
GENERIC tree TRANSACTION_EXPR. For example,
|
||
|
||
__transaction {
|
||
local++;
|
||
if (++global == 10)
|
||
__tm_abort;
|
||
}
|
||
|
||
During initial gimplification (gimplify.c) the TRANSACTION_EXPR node is
|
||
trivially replaced with a GIMPLE_TRANSACTION node.
|
||
|
||
During pass_lower_tm, we examine the body of transactions looking
|
||
for aborts. Transactions that do not contain an abort may be
|
||
merged into an outer transaction. We also add a TRY-FINALLY node
|
||
to arrange for the transaction to be committed on any exit.
|
||
|
||
[??? Think about how this arrangement affects throw-with-commit
|
||
and throw-with-abort operations. In this case we want the TRY to
|
||
handle gotos, but not to catch any exceptions because the transaction
|
||
will already be closed.]
|
||
|
||
GIMPLE_TRANSACTION [label=NULL] {
|
||
try {
|
||
local = local + 1;
|
||
t0 = global;
|
||
t1 = t0 + 1;
|
||
global = t1;
|
||
if (t1 == 10)
|
||
__builtin___tm_abort ();
|
||
} finally {
|
||
__builtin___tm_commit ();
|
||
}
|
||
}
|
||
|
||
During pass_lower_eh, we create EH regions for the transactions,
|
||
intermixed with the regular EH stuff. This gives us a nice persistent
|
||
mapping (all the way through rtl) from transactional memory operation
|
||
back to the transaction, which allows us to get the abnormal edges
|
||
correct to model transaction aborts and restarts:
|
||
|
||
GIMPLE_TRANSACTION [label=over]
|
||
local = local + 1;
|
||
t0 = global;
|
||
t1 = t0 + 1;
|
||
global = t1;
|
||
if (t1 == 10)
|
||
__builtin___tm_abort ();
|
||
__builtin___tm_commit ();
|
||
over:
|
||
|
||
This is the end of all_lowering_passes, and so is what is present
|
||
during the IPA passes, and through all of the optimization passes.
|
||
|
||
During pass_ipa_tm, we examine all GIMPLE_TRANSACTION blocks in all
|
||
functions and mark functions for cloning.
|
||
|
||
At the end of gimple optimization, before exiting SSA form,
|
||
pass_tm_edges replaces statements that perform transactional
|
||
memory operations with the appropriate TM builtins, and swap
|
||
out function calls with their transactional clones. At this
|
||
point we introduce the abnormal transaction restart edges and
|
||
complete lowering of the GIMPLE_TRANSACTION node.
|
||
|
||
x = __builtin___tm_start (MAY_ABORT);
|
||
eh_label:
|
||
if (x & abort_transaction)
|
||
goto over;
|
||
local = local + 1;
|
||
t0 = __builtin___tm_load (global);
|
||
t1 = t0 + 1;
|
||
__builtin___tm_store (&global, t1);
|
||
if (t1 == 10)
|
||
__builtin___tm_abort ();
|
||
__builtin___tm_commit ();
|
||
over:
|
||
*/
|
||
|
||
static void *expand_regions (struct tm_region *,
|
||
void *(*callback)(struct tm_region *, void *),
|
||
void *, bool);
|
||
|
||
|
||
/* Return the attributes we want to examine for X, or NULL if it's not
|
||
something we examine. We look at function types, but allow pointers
|
||
to function types and function decls and peek through. */
|
||
|
||
static tree
|
||
get_attrs_for (const_tree x)
|
||
{
|
||
if (x == NULL_TREE)
|
||
return NULL_TREE;
|
||
|
||
switch (TREE_CODE (x))
|
||
{
|
||
case FUNCTION_DECL:
|
||
return TYPE_ATTRIBUTES (TREE_TYPE (x));
|
||
break;
|
||
|
||
default:
|
||
if (TYPE_P (x))
|
||
return NULL_TREE;
|
||
x = TREE_TYPE (x);
|
||
if (TREE_CODE (x) != POINTER_TYPE)
|
||
return NULL_TREE;
|
||
/* FALLTHRU */
|
||
|
||
case POINTER_TYPE:
|
||
x = TREE_TYPE (x);
|
||
if (TREE_CODE (x) != FUNCTION_TYPE && TREE_CODE (x) != METHOD_TYPE)
|
||
return NULL_TREE;
|
||
/* FALLTHRU */
|
||
|
||
case FUNCTION_TYPE:
|
||
case METHOD_TYPE:
|
||
return TYPE_ATTRIBUTES (x);
|
||
}
|
||
}
|
||
|
||
/* Return true if X has been marked TM_PURE. */
|
||
|
||
bool
|
||
is_tm_pure (const_tree x)
|
||
{
|
||
unsigned flags;
|
||
|
||
switch (TREE_CODE (x))
|
||
{
|
||
case FUNCTION_DECL:
|
||
case FUNCTION_TYPE:
|
||
case METHOD_TYPE:
|
||
break;
|
||
|
||
default:
|
||
if (TYPE_P (x))
|
||
return false;
|
||
x = TREE_TYPE (x);
|
||
if (TREE_CODE (x) != POINTER_TYPE)
|
||
return false;
|
||
/* FALLTHRU */
|
||
|
||
case POINTER_TYPE:
|
||
x = TREE_TYPE (x);
|
||
if (TREE_CODE (x) != FUNCTION_TYPE && TREE_CODE (x) != METHOD_TYPE)
|
||
return false;
|
||
break;
|
||
}
|
||
|
||
flags = flags_from_decl_or_type (x);
|
||
return (flags & ECF_TM_PURE) != 0;
|
||
}
|
||
|
||
/* Return true if X has been marked TM_IRREVOCABLE. */
|
||
|
||
static bool
|
||
is_tm_irrevocable (tree x)
|
||
{
|
||
tree attrs = get_attrs_for (x);
|
||
|
||
if (attrs && lookup_attribute ("transaction_unsafe", attrs))
|
||
return true;
|
||
|
||
/* A call to the irrevocable builtin is by definition,
|
||
irrevocable. */
|
||
if (TREE_CODE (x) == ADDR_EXPR)
|
||
x = TREE_OPERAND (x, 0);
|
||
if (TREE_CODE (x) == FUNCTION_DECL
|
||
&& DECL_BUILT_IN_CLASS (x) == BUILT_IN_NORMAL
|
||
&& DECL_FUNCTION_CODE (x) == BUILT_IN_TM_IRREVOCABLE)
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Return true if X has been marked TM_SAFE. */
|
||
|
||
bool
|
||
is_tm_safe (const_tree x)
|
||
{
|
||
if (flag_tm)
|
||
{
|
||
tree attrs = get_attrs_for (x);
|
||
if (attrs)
|
||
{
|
||
if (lookup_attribute ("transaction_safe", attrs))
|
||
return true;
|
||
if (lookup_attribute ("transaction_may_cancel_outer", attrs))
|
||
return true;
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* Return true if CALL is const, or tm_pure. */
|
||
|
||
static bool
|
||
is_tm_pure_call (gimple call)
|
||
{
|
||
tree fn = gimple_call_fn (call);
|
||
|
||
if (TREE_CODE (fn) == ADDR_EXPR)
|
||
{
|
||
fn = TREE_OPERAND (fn, 0);
|
||
gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
|
||
}
|
||
else
|
||
fn = TREE_TYPE (fn);
|
||
|
||
return is_tm_pure (fn);
|
||
}
|
||
|
||
/* Return true if X has been marked TM_CALLABLE. */
|
||
|
||
static bool
|
||
is_tm_callable (tree x)
|
||
{
|
||
tree attrs = get_attrs_for (x);
|
||
if (attrs)
|
||
{
|
||
if (lookup_attribute ("transaction_callable", attrs))
|
||
return true;
|
||
if (lookup_attribute ("transaction_safe", attrs))
|
||
return true;
|
||
if (lookup_attribute ("transaction_may_cancel_outer", attrs))
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* Return true if X has been marked TRANSACTION_MAY_CANCEL_OUTER. */
|
||
|
||
bool
|
||
is_tm_may_cancel_outer (tree x)
|
||
{
|
||
tree attrs = get_attrs_for (x);
|
||
if (attrs)
|
||
return lookup_attribute ("transaction_may_cancel_outer", attrs) != NULL;
|
||
return false;
|
||
}
|
||
|
||
/* Return true for built in functions that "end" a transaction. */
|
||
|
||
bool
|
||
is_tm_ending_fndecl (tree fndecl)
|
||
{
|
||
if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
|
||
switch (DECL_FUNCTION_CODE (fndecl))
|
||
{
|
||
case BUILT_IN_TM_COMMIT:
|
||
case BUILT_IN_TM_COMMIT_EH:
|
||
case BUILT_IN_TM_ABORT:
|
||
case BUILT_IN_TM_IRREVOCABLE:
|
||
return true;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Return true if STMT is a built in function call that "ends" a
|
||
transaction. */
|
||
|
||
bool
|
||
is_tm_ending (gimple stmt)
|
||
{
|
||
tree fndecl;
|
||
|
||
if (gimple_code (stmt) != GIMPLE_CALL)
|
||
return false;
|
||
|
||
fndecl = gimple_call_fndecl (stmt);
|
||
return (fndecl != NULL_TREE
|
||
&& is_tm_ending_fndecl (fndecl));
|
||
}
|
||
|
||
/* Return true if STMT is a TM load. */
|
||
|
||
static bool
|
||
is_tm_load (gimple stmt)
|
||
{
|
||
tree fndecl;
|
||
|
||
if (gimple_code (stmt) != GIMPLE_CALL)
|
||
return false;
|
||
|
||
fndecl = gimple_call_fndecl (stmt);
|
||
return (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
|
||
&& BUILTIN_TM_LOAD_P (DECL_FUNCTION_CODE (fndecl)));
|
||
}
|
||
|
||
/* Same as above, but for simple TM loads, that is, not the
|
||
after-write, after-read, etc optimized variants. */
|
||
|
||
static bool
|
||
is_tm_simple_load (gimple stmt)
|
||
{
|
||
tree fndecl;
|
||
|
||
if (gimple_code (stmt) != GIMPLE_CALL)
|
||
return false;
|
||
|
||
fndecl = gimple_call_fndecl (stmt);
|
||
if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
|
||
{
|
||
enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
|
||
return (fcode == BUILT_IN_TM_LOAD_1
|
||
|| fcode == BUILT_IN_TM_LOAD_2
|
||
|| fcode == BUILT_IN_TM_LOAD_4
|
||
|| fcode == BUILT_IN_TM_LOAD_8
|
||
|| fcode == BUILT_IN_TM_LOAD_FLOAT
|
||
|| fcode == BUILT_IN_TM_LOAD_DOUBLE
|
||
|| fcode == BUILT_IN_TM_LOAD_LDOUBLE
|
||
|| fcode == BUILT_IN_TM_LOAD_M64
|
||
|| fcode == BUILT_IN_TM_LOAD_M128
|
||
|| fcode == BUILT_IN_TM_LOAD_M256);
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* Return true if STMT is a TM store. */
|
||
|
||
static bool
|
||
is_tm_store (gimple stmt)
|
||
{
|
||
tree fndecl;
|
||
|
||
if (gimple_code (stmt) != GIMPLE_CALL)
|
||
return false;
|
||
|
||
fndecl = gimple_call_fndecl (stmt);
|
||
return (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
|
||
&& BUILTIN_TM_STORE_P (DECL_FUNCTION_CODE (fndecl)));
|
||
}
|
||
|
||
/* Same as above, but for simple TM stores, that is, not the
|
||
after-write, after-read, etc optimized variants. */
|
||
|
||
static bool
|
||
is_tm_simple_store (gimple stmt)
|
||
{
|
||
tree fndecl;
|
||
|
||
if (gimple_code (stmt) != GIMPLE_CALL)
|
||
return false;
|
||
|
||
fndecl = gimple_call_fndecl (stmt);
|
||
if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
|
||
{
|
||
enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
|
||
return (fcode == BUILT_IN_TM_STORE_1
|
||
|| fcode == BUILT_IN_TM_STORE_2
|
||
|| fcode == BUILT_IN_TM_STORE_4
|
||
|| fcode == BUILT_IN_TM_STORE_8
|
||
|| fcode == BUILT_IN_TM_STORE_FLOAT
|
||
|| fcode == BUILT_IN_TM_STORE_DOUBLE
|
||
|| fcode == BUILT_IN_TM_STORE_LDOUBLE
|
||
|| fcode == BUILT_IN_TM_STORE_M64
|
||
|| fcode == BUILT_IN_TM_STORE_M128
|
||
|| fcode == BUILT_IN_TM_STORE_M256);
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* Return true if FNDECL is BUILT_IN_TM_ABORT. */
|
||
|
||
static bool
|
||
is_tm_abort (tree fndecl)
|
||
{
|
||
return (fndecl
|
||
&& DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
|
||
&& DECL_FUNCTION_CODE (fndecl) == BUILT_IN_TM_ABORT);
|
||
}
|
||
|
||
/* Build a GENERIC tree for a user abort. This is called by front ends
|
||
while transforming the __tm_abort statement. */
|
||
|
||
tree
|
||
build_tm_abort_call (location_t loc, bool is_outer)
|
||
{
|
||
return build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_TM_ABORT), 1,
|
||
build_int_cst (integer_type_node,
|
||
AR_USERABORT
|
||
| (is_outer ? AR_OUTERABORT : 0)));
|
||
}
|
||
|
||
/* Map for aribtrary function replacement under TM, as created
|
||
by the tm_wrap attribute. */
|
||
|
||
struct tm_wrapper_hasher : ggc_cache_hasher<tree_map *>
|
||
{
|
||
static inline hashval_t hash (tree_map *m) { return m->hash; }
|
||
static inline bool
|
||
equal (tree_map *a, tree_map *b)
|
||
{
|
||
return a->base.from == b->base.from;
|
||
}
|
||
|
||
static void
|
||
handle_cache_entry (tree_map *&m)
|
||
{
|
||
extern void gt_ggc_mx (tree_map *&);
|
||
if (m == HTAB_EMPTY_ENTRY || m == HTAB_DELETED_ENTRY)
|
||
return;
|
||
else if (ggc_marked_p (m->base.from))
|
||
gt_ggc_mx (m);
|
||
else
|
||
m = static_cast<tree_map *> (HTAB_DELETED_ENTRY);
|
||
}
|
||
};
|
||
|
||
static GTY((cache)) hash_table<tm_wrapper_hasher> *tm_wrap_map;
|
||
|
||
void
|
||
record_tm_replacement (tree from, tree to)
|
||
{
|
||
struct tree_map **slot, *h;
|
||
|
||
/* Do not inline wrapper functions that will get replaced in the TM
|
||
pass.
|
||
|
||
Suppose you have foo() that will get replaced into tmfoo(). Make
|
||
sure the inliner doesn't try to outsmart us and inline foo()
|
||
before we get a chance to do the TM replacement. */
|
||
DECL_UNINLINABLE (from) = 1;
|
||
|
||
if (tm_wrap_map == NULL)
|
||
tm_wrap_map = hash_table<tm_wrapper_hasher>::create_ggc (32);
|
||
|
||
h = ggc_alloc<tree_map> ();
|
||
h->hash = htab_hash_pointer (from);
|
||
h->base.from = from;
|
||
h->to = to;
|
||
|
||
slot = tm_wrap_map->find_slot_with_hash (h, h->hash, INSERT);
|
||
*slot = h;
|
||
}
|
||
|
||
/* Return a TM-aware replacement function for DECL. */
|
||
|
||
static tree
|
||
find_tm_replacement_function (tree fndecl)
|
||
{
|
||
if (tm_wrap_map)
|
||
{
|
||
struct tree_map *h, in;
|
||
|
||
in.base.from = fndecl;
|
||
in.hash = htab_hash_pointer (fndecl);
|
||
h = tm_wrap_map->find_with_hash (&in, in.hash);
|
||
if (h)
|
||
return h->to;
|
||
}
|
||
|
||
/* ??? We may well want TM versions of most of the common <string.h>
|
||
functions. For now, we've already these two defined. */
|
||
/* Adjust expand_call_tm() attributes as necessary for the cases
|
||
handled here: */
|
||
if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
|
||
switch (DECL_FUNCTION_CODE (fndecl))
|
||
{
|
||
case BUILT_IN_MEMCPY:
|
||
return builtin_decl_explicit (BUILT_IN_TM_MEMCPY);
|
||
case BUILT_IN_MEMMOVE:
|
||
return builtin_decl_explicit (BUILT_IN_TM_MEMMOVE);
|
||
case BUILT_IN_MEMSET:
|
||
return builtin_decl_explicit (BUILT_IN_TM_MEMSET);
|
||
default:
|
||
return NULL;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* When appropriate, record TM replacement for memory allocation functions.
|
||
|
||
FROM is the FNDECL to wrap. */
|
||
void
|
||
tm_malloc_replacement (tree from)
|
||
{
|
||
const char *str;
|
||
tree to;
|
||
|
||
if (TREE_CODE (from) != FUNCTION_DECL)
|
||
return;
|
||
|
||
/* If we have a previous replacement, the user must be explicitly
|
||
wrapping malloc/calloc/free. They better know what they're
|
||
doing... */
|
||
if (find_tm_replacement_function (from))
|
||
return;
|
||
|
||
str = IDENTIFIER_POINTER (DECL_NAME (from));
|
||
|
||
if (!strcmp (str, "malloc"))
|
||
to = builtin_decl_explicit (BUILT_IN_TM_MALLOC);
|
||
else if (!strcmp (str, "calloc"))
|
||
to = builtin_decl_explicit (BUILT_IN_TM_CALLOC);
|
||
else if (!strcmp (str, "free"))
|
||
to = builtin_decl_explicit (BUILT_IN_TM_FREE);
|
||
else
|
||
return;
|
||
|
||
TREE_NOTHROW (to) = 0;
|
||
|
||
record_tm_replacement (from, to);
|
||
}
|
||
|
||
/* Diagnostics for tm_safe functions/regions. Called by the front end
|
||
once we've lowered the function to high-gimple. */
|
||
|
||
/* Subroutine of diagnose_tm_safe_errors, called through walk_gimple_seq.
|
||
Process exactly one statement. WI->INFO is set to non-null when in
|
||
the context of a tm_safe function, and null for a __transaction block. */
|
||
|
||
#define DIAG_TM_OUTER 1
|
||
#define DIAG_TM_SAFE 2
|
||
#define DIAG_TM_RELAXED 4
|
||
|
||
struct diagnose_tm
|
||
{
|
||
unsigned int summary_flags : 8;
|
||
unsigned int block_flags : 8;
|
||
unsigned int func_flags : 8;
|
||
unsigned int saw_volatile : 1;
|
||
gimple stmt;
|
||
};
|
||
|
||
/* Return true if T is a volatile variable of some kind. */
|
||
|
||
static bool
|
||
volatile_var_p (tree t)
|
||
{
|
||
return (SSA_VAR_P (t)
|
||
&& TREE_THIS_VOLATILE (TREE_TYPE (t)));
|
||
}
|
||
|
||
/* Tree callback function for diagnose_tm pass. */
|
||
|
||
static tree
|
||
diagnose_tm_1_op (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED,
|
||
void *data)
|
||
{
|
||
struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
|
||
struct diagnose_tm *d = (struct diagnose_tm *) wi->info;
|
||
|
||
if (volatile_var_p (*tp)
|
||
&& d->block_flags & DIAG_TM_SAFE
|
||
&& !d->saw_volatile)
|
||
{
|
||
d->saw_volatile = 1;
|
||
error_at (gimple_location (d->stmt),
|
||
"invalid volatile use of %qD inside transaction",
|
||
*tp);
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
static inline bool
|
||
is_tm_safe_or_pure (const_tree x)
|
||
{
|
||
return is_tm_safe (x) || is_tm_pure (x);
|
||
}
|
||
|
||
static tree
|
||
diagnose_tm_1 (gimple_stmt_iterator *gsi, bool *handled_ops_p,
|
||
struct walk_stmt_info *wi)
|
||
{
|
||
gimple stmt = gsi_stmt (*gsi);
|
||
struct diagnose_tm *d = (struct diagnose_tm *) wi->info;
|
||
|
||
/* Save stmt for use in leaf analysis. */
|
||
d->stmt = stmt;
|
||
|
||
switch (gimple_code (stmt))
|
||
{
|
||
case GIMPLE_CALL:
|
||
{
|
||
tree fn = gimple_call_fn (stmt);
|
||
|
||
if ((d->summary_flags & DIAG_TM_OUTER) == 0
|
||
&& is_tm_may_cancel_outer (fn))
|
||
error_at (gimple_location (stmt),
|
||
"%<transaction_may_cancel_outer%> function call not within"
|
||
" outer transaction or %<transaction_may_cancel_outer%>");
|
||
|
||
if (d->summary_flags & DIAG_TM_SAFE)
|
||
{
|
||
bool is_safe, direct_call_p;
|
||
tree replacement;
|
||
|
||
if (TREE_CODE (fn) == ADDR_EXPR
|
||
&& TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL)
|
||
{
|
||
direct_call_p = true;
|
||
replacement = TREE_OPERAND (fn, 0);
|
||
replacement = find_tm_replacement_function (replacement);
|
||
if (replacement)
|
||
fn = replacement;
|
||
}
|
||
else
|
||
{
|
||
direct_call_p = false;
|
||
replacement = NULL_TREE;
|
||
}
|
||
|
||
if (is_tm_safe_or_pure (fn))
|
||
is_safe = true;
|
||
else if (is_tm_callable (fn) || is_tm_irrevocable (fn))
|
||
{
|
||
/* A function explicitly marked transaction_callable as
|
||
opposed to transaction_safe is being defined to be
|
||
unsafe as part of its ABI, regardless of its contents. */
|
||
is_safe = false;
|
||
}
|
||
else if (direct_call_p)
|
||
{
|
||
if (IS_TYPE_OR_DECL_P (fn)
|
||
&& flags_from_decl_or_type (fn) & ECF_TM_BUILTIN)
|
||
is_safe = true;
|
||
else if (replacement)
|
||
{
|
||
/* ??? At present we've been considering replacements
|
||
merely transaction_callable, and therefore might
|
||
enter irrevocable. The tm_wrap attribute has not
|
||
yet made it into the new language spec. */
|
||
is_safe = false;
|
||
}
|
||
else
|
||
{
|
||
/* ??? Diagnostics for unmarked direct calls moved into
|
||
the IPA pass. Section 3.2 of the spec details how
|
||
functions not marked should be considered "implicitly
|
||
safe" based on having examined the function body. */
|
||
is_safe = true;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* An unmarked indirect call. Consider it unsafe even
|
||
though optimization may yet figure out how to inline. */
|
||
is_safe = false;
|
||
}
|
||
|
||
if (!is_safe)
|
||
{
|
||
if (TREE_CODE (fn) == ADDR_EXPR)
|
||
fn = TREE_OPERAND (fn, 0);
|
||
if (d->block_flags & DIAG_TM_SAFE)
|
||
{
|
||
if (direct_call_p)
|
||
error_at (gimple_location (stmt),
|
||
"unsafe function call %qD within "
|
||
"atomic transaction", fn);
|
||
else
|
||
{
|
||
if (!DECL_P (fn) || DECL_NAME (fn))
|
||
error_at (gimple_location (stmt),
|
||
"unsafe function call %qE within "
|
||
"atomic transaction", fn);
|
||
else
|
||
error_at (gimple_location (stmt),
|
||
"unsafe indirect function call within "
|
||
"atomic transaction");
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (direct_call_p)
|
||
error_at (gimple_location (stmt),
|
||
"unsafe function call %qD within "
|
||
"%<transaction_safe%> function", fn);
|
||
else
|
||
{
|
||
if (!DECL_P (fn) || DECL_NAME (fn))
|
||
error_at (gimple_location (stmt),
|
||
"unsafe function call %qE within "
|
||
"%<transaction_safe%> function", fn);
|
||
else
|
||
error_at (gimple_location (stmt),
|
||
"unsafe indirect function call within "
|
||
"%<transaction_safe%> function");
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
break;
|
||
|
||
case GIMPLE_ASM:
|
||
/* ??? We ought to come up with a way to add attributes to
|
||
asm statements, and then add "transaction_safe" to it.
|
||
Either that or get the language spec to resurrect __tm_waiver. */
|
||
if (d->block_flags & DIAG_TM_SAFE)
|
||
error_at (gimple_location (stmt),
|
||
"asm not allowed in atomic transaction");
|
||
else if (d->func_flags & DIAG_TM_SAFE)
|
||
error_at (gimple_location (stmt),
|
||
"asm not allowed in %<transaction_safe%> function");
|
||
break;
|
||
|
||
case GIMPLE_TRANSACTION:
|
||
{
|
||
gtransaction *trans_stmt = as_a <gtransaction *> (stmt);
|
||
unsigned char inner_flags = DIAG_TM_SAFE;
|
||
|
||
if (gimple_transaction_subcode (trans_stmt) & GTMA_IS_RELAXED)
|
||
{
|
||
if (d->block_flags & DIAG_TM_SAFE)
|
||
error_at (gimple_location (stmt),
|
||
"relaxed transaction in atomic transaction");
|
||
else if (d->func_flags & DIAG_TM_SAFE)
|
||
error_at (gimple_location (stmt),
|
||
"relaxed transaction in %<transaction_safe%> function");
|
||
inner_flags = DIAG_TM_RELAXED;
|
||
}
|
||
else if (gimple_transaction_subcode (trans_stmt) & GTMA_IS_OUTER)
|
||
{
|
||
if (d->block_flags)
|
||
error_at (gimple_location (stmt),
|
||
"outer transaction in transaction");
|
||
else if (d->func_flags & DIAG_TM_OUTER)
|
||
error_at (gimple_location (stmt),
|
||
"outer transaction in "
|
||
"%<transaction_may_cancel_outer%> function");
|
||
else if (d->func_flags & DIAG_TM_SAFE)
|
||
error_at (gimple_location (stmt),
|
||
"outer transaction in %<transaction_safe%> function");
|
||
inner_flags |= DIAG_TM_OUTER;
|
||
}
|
||
|
||
*handled_ops_p = true;
|
||
if (gimple_transaction_body (trans_stmt))
|
||
{
|
||
struct walk_stmt_info wi_inner;
|
||
struct diagnose_tm d_inner;
|
||
|
||
memset (&d_inner, 0, sizeof (d_inner));
|
||
d_inner.func_flags = d->func_flags;
|
||
d_inner.block_flags = d->block_flags | inner_flags;
|
||
d_inner.summary_flags = d_inner.func_flags | d_inner.block_flags;
|
||
|
||
memset (&wi_inner, 0, sizeof (wi_inner));
|
||
wi_inner.info = &d_inner;
|
||
|
||
walk_gimple_seq (gimple_transaction_body (trans_stmt),
|
||
diagnose_tm_1, diagnose_tm_1_op, &wi_inner);
|
||
}
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
static unsigned int
|
||
diagnose_tm_blocks (void)
|
||
{
|
||
struct walk_stmt_info wi;
|
||
struct diagnose_tm d;
|
||
|
||
memset (&d, 0, sizeof (d));
|
||
if (is_tm_may_cancel_outer (current_function_decl))
|
||
d.func_flags = DIAG_TM_OUTER | DIAG_TM_SAFE;
|
||
else if (is_tm_safe (current_function_decl))
|
||
d.func_flags = DIAG_TM_SAFE;
|
||
d.summary_flags = d.func_flags;
|
||
|
||
memset (&wi, 0, sizeof (wi));
|
||
wi.info = &d;
|
||
|
||
walk_gimple_seq (gimple_body (current_function_decl),
|
||
diagnose_tm_1, diagnose_tm_1_op, &wi);
|
||
|
||
return 0;
|
||
}
|
||
|
||
namespace {
|
||
|
||
const pass_data pass_data_diagnose_tm_blocks =
|
||
{
|
||
GIMPLE_PASS, /* type */
|
||
"*diagnose_tm_blocks", /* name */
|
||
OPTGROUP_NONE, /* optinfo_flags */
|
||
TV_TRANS_MEM, /* tv_id */
|
||
PROP_gimple_any, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
0, /* todo_flags_finish */
|
||
};
|
||
|
||
class pass_diagnose_tm_blocks : public gimple_opt_pass
|
||
{
|
||
public:
|
||
pass_diagnose_tm_blocks (gcc::context *ctxt)
|
||
: gimple_opt_pass (pass_data_diagnose_tm_blocks, ctxt)
|
||
{}
|
||
|
||
/* opt_pass methods: */
|
||
virtual bool gate (function *) { return flag_tm; }
|
||
virtual unsigned int execute (function *) { return diagnose_tm_blocks (); }
|
||
|
||
}; // class pass_diagnose_tm_blocks
|
||
|
||
} // anon namespace
|
||
|
||
gimple_opt_pass *
|
||
make_pass_diagnose_tm_blocks (gcc::context *ctxt)
|
||
{
|
||
return new pass_diagnose_tm_blocks (ctxt);
|
||
}
|
||
|
||
/* Instead of instrumenting thread private memory, we save the
|
||
addresses in a log which we later use to save/restore the addresses
|
||
upon transaction start/restart.
|
||
|
||
The log is keyed by address, where each element contains individual
|
||
statements among different code paths that perform the store.
|
||
|
||
This log is later used to generate either plain save/restore of the
|
||
addresses upon transaction start/restart, or calls to the ITM_L*
|
||
logging functions.
|
||
|
||
So for something like:
|
||
|
||
struct large { int x[1000]; };
|
||
struct large lala = { 0 };
|
||
__transaction {
|
||
lala.x[i] = 123;
|
||
...
|
||
}
|
||
|
||
We can either save/restore:
|
||
|
||
lala = { 0 };
|
||
trxn = _ITM_startTransaction ();
|
||
if (trxn & a_saveLiveVariables)
|
||
tmp_lala1 = lala.x[i];
|
||
else if (a & a_restoreLiveVariables)
|
||
lala.x[i] = tmp_lala1;
|
||
|
||
or use the logging functions:
|
||
|
||
lala = { 0 };
|
||
trxn = _ITM_startTransaction ();
|
||
_ITM_LU4 (&lala.x[i]);
|
||
|
||
Obviously, if we use _ITM_L* to log, we prefer to call _ITM_L* as
|
||
far up the dominator tree to shadow all of the writes to a given
|
||
location (thus reducing the total number of logging calls), but not
|
||
so high as to be called on a path that does not perform a
|
||
write. */
|
||
|
||
/* One individual log entry. We may have multiple statements for the
|
||
same location if neither dominate each other (on different
|
||
execution paths). */
|
||
typedef struct tm_log_entry
|
||
{
|
||
/* Address to save. */
|
||
tree addr;
|
||
/* Entry block for the transaction this address occurs in. */
|
||
basic_block entry_block;
|
||
/* Dominating statements the store occurs in. */
|
||
vec<gimple> stmts;
|
||
/* Initially, while we are building the log, we place a nonzero
|
||
value here to mean that this address *will* be saved with a
|
||
save/restore sequence. Later, when generating the save sequence
|
||
we place the SSA temp generated here. */
|
||
tree save_var;
|
||
} *tm_log_entry_t;
|
||
|
||
|
||
/* Log entry hashtable helpers. */
|
||
|
||
struct log_entry_hasher
|
||
{
|
||
typedef tm_log_entry value_type;
|
||
typedef tm_log_entry compare_type;
|
||
static inline hashval_t hash (const value_type *);
|
||
static inline bool equal (const value_type *, const compare_type *);
|
||
static inline void remove (value_type *);
|
||
};
|
||
|
||
/* Htab support. Return hash value for a `tm_log_entry'. */
|
||
inline hashval_t
|
||
log_entry_hasher::hash (const value_type *log)
|
||
{
|
||
return iterative_hash_expr (log->addr, 0);
|
||
}
|
||
|
||
/* Htab support. Return true if two log entries are the same. */
|
||
inline bool
|
||
log_entry_hasher::equal (const value_type *log1, const compare_type *log2)
|
||
{
|
||
/* FIXME:
|
||
|
||
rth: I suggest that we get rid of the component refs etc.
|
||
I.e. resolve the reference to base + offset.
|
||
|
||
We may need to actually finish a merge with mainline for this,
|
||
since we'd like to be presented with Richi's MEM_REF_EXPRs more
|
||
often than not. But in the meantime your tm_log_entry could save
|
||
the results of get_inner_reference.
|
||
|
||
See: g++.dg/tm/pr46653.C
|
||
*/
|
||
|
||
/* Special case plain equality because operand_equal_p() below will
|
||
return FALSE if the addresses are equal but they have
|
||
side-effects (e.g. a volatile address). */
|
||
if (log1->addr == log2->addr)
|
||
return true;
|
||
|
||
return operand_equal_p (log1->addr, log2->addr, 0);
|
||
}
|
||
|
||
/* Htab support. Free one tm_log_entry. */
|
||
inline void
|
||
log_entry_hasher::remove (value_type *lp)
|
||
{
|
||
lp->stmts.release ();
|
||
free (lp);
|
||
}
|
||
|
||
|
||
/* The actual log. */
|
||
static hash_table<log_entry_hasher> *tm_log;
|
||
|
||
/* Addresses to log with a save/restore sequence. These should be in
|
||
dominator order. */
|
||
static vec<tree> tm_log_save_addresses;
|
||
|
||
enum thread_memory_type
|
||
{
|
||
mem_non_local = 0,
|
||
mem_thread_local,
|
||
mem_transaction_local,
|
||
mem_max
|
||
};
|
||
|
||
typedef struct tm_new_mem_map
|
||
{
|
||
/* SSA_NAME being dereferenced. */
|
||
tree val;
|
||
enum thread_memory_type local_new_memory;
|
||
} tm_new_mem_map_t;
|
||
|
||
/* Hashtable helpers. */
|
||
|
||
struct tm_mem_map_hasher : typed_free_remove <tm_new_mem_map_t>
|
||
{
|
||
typedef tm_new_mem_map_t value_type;
|
||
typedef tm_new_mem_map_t compare_type;
|
||
static inline hashval_t hash (const value_type *);
|
||
static inline bool equal (const value_type *, const compare_type *);
|
||
};
|
||
|
||
inline hashval_t
|
||
tm_mem_map_hasher::hash (const value_type *v)
|
||
{
|
||
return (intptr_t)v->val >> 4;
|
||
}
|
||
|
||
inline bool
|
||
tm_mem_map_hasher::equal (const value_type *v, const compare_type *c)
|
||
{
|
||
return v->val == c->val;
|
||
}
|
||
|
||
/* Map for an SSA_NAME originally pointing to a non aliased new piece
|
||
of memory (malloc, alloc, etc). */
|
||
static hash_table<tm_mem_map_hasher> *tm_new_mem_hash;
|
||
|
||
/* Initialize logging data structures. */
|
||
static void
|
||
tm_log_init (void)
|
||
{
|
||
tm_log = new hash_table<log_entry_hasher> (10);
|
||
tm_new_mem_hash = new hash_table<tm_mem_map_hasher> (5);
|
||
tm_log_save_addresses.create (5);
|
||
}
|
||
|
||
/* Free logging data structures. */
|
||
static void
|
||
tm_log_delete (void)
|
||
{
|
||
delete tm_log;
|
||
tm_log = NULL;
|
||
delete tm_new_mem_hash;
|
||
tm_new_mem_hash = NULL;
|
||
tm_log_save_addresses.release ();
|
||
}
|
||
|
||
/* Return true if MEM is a transaction invariant memory for the TM
|
||
region starting at REGION_ENTRY_BLOCK. */
|
||
static bool
|
||
transaction_invariant_address_p (const_tree mem, basic_block region_entry_block)
|
||
{
|
||
if ((TREE_CODE (mem) == INDIRECT_REF || TREE_CODE (mem) == MEM_REF)
|
||
&& TREE_CODE (TREE_OPERAND (mem, 0)) == SSA_NAME)
|
||
{
|
||
basic_block def_bb;
|
||
|
||
def_bb = gimple_bb (SSA_NAME_DEF_STMT (TREE_OPERAND (mem, 0)));
|
||
return def_bb != region_entry_block
|
||
&& dominated_by_p (CDI_DOMINATORS, region_entry_block, def_bb);
|
||
}
|
||
|
||
mem = strip_invariant_refs (mem);
|
||
return mem && (CONSTANT_CLASS_P (mem) || decl_address_invariant_p (mem));
|
||
}
|
||
|
||
/* Given an address ADDR in STMT, find it in the memory log or add it,
|
||
making sure to keep only the addresses highest in the dominator
|
||
tree.
|
||
|
||
ENTRY_BLOCK is the entry_block for the transaction.
|
||
|
||
If we find the address in the log, make sure it's either the same
|
||
address, or an equivalent one that dominates ADDR.
|
||
|
||
If we find the address, but neither ADDR dominates the found
|
||
address, nor the found one dominates ADDR, we're on different
|
||
execution paths. Add it.
|
||
|
||
If known, ENTRY_BLOCK is the entry block for the region, otherwise
|
||
NULL. */
|
||
static void
|
||
tm_log_add (basic_block entry_block, tree addr, gimple stmt)
|
||
{
|
||
tm_log_entry **slot;
|
||
struct tm_log_entry l, *lp;
|
||
|
||
l.addr = addr;
|
||
slot = tm_log->find_slot (&l, INSERT);
|
||
if (!*slot)
|
||
{
|
||
tree type = TREE_TYPE (addr);
|
||
|
||
lp = XNEW (struct tm_log_entry);
|
||
lp->addr = addr;
|
||
*slot = lp;
|
||
|
||
/* Small invariant addresses can be handled as save/restores. */
|
||
if (entry_block
|
||
&& transaction_invariant_address_p (lp->addr, entry_block)
|
||
&& TYPE_SIZE_UNIT (type) != NULL
|
||
&& tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
|
||
&& ((HOST_WIDE_INT) tree_to_uhwi (TYPE_SIZE_UNIT (type))
|
||
< PARAM_VALUE (PARAM_TM_MAX_AGGREGATE_SIZE))
|
||
/* We must be able to copy this type normally. I.e., no
|
||
special constructors and the like. */
|
||
&& !TREE_ADDRESSABLE (type))
|
||
{
|
||
lp->save_var = create_tmp_reg (TREE_TYPE (lp->addr), "tm_save");
|
||
lp->stmts.create (0);
|
||
lp->entry_block = entry_block;
|
||
/* Save addresses separately in dominator order so we don't
|
||
get confused by overlapping addresses in the save/restore
|
||
sequence. */
|
||
tm_log_save_addresses.safe_push (lp->addr);
|
||
}
|
||
else
|
||
{
|
||
/* Use the logging functions. */
|
||
lp->stmts.create (5);
|
||
lp->stmts.quick_push (stmt);
|
||
lp->save_var = NULL;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
size_t i;
|
||
gimple oldstmt;
|
||
|
||
lp = *slot;
|
||
|
||
/* If we're generating a save/restore sequence, we don't care
|
||
about statements. */
|
||
if (lp->save_var)
|
||
return;
|
||
|
||
for (i = 0; lp->stmts.iterate (i, &oldstmt); ++i)
|
||
{
|
||
if (stmt == oldstmt)
|
||
return;
|
||
/* We already have a store to the same address, higher up the
|
||
dominator tree. Nothing to do. */
|
||
if (dominated_by_p (CDI_DOMINATORS,
|
||
gimple_bb (stmt), gimple_bb (oldstmt)))
|
||
return;
|
||
/* We should be processing blocks in dominator tree order. */
|
||
gcc_assert (!dominated_by_p (CDI_DOMINATORS,
|
||
gimple_bb (oldstmt), gimple_bb (stmt)));
|
||
}
|
||
/* Store is on a different code path. */
|
||
lp->stmts.safe_push (stmt);
|
||
}
|
||
}
|
||
|
||
/* Gimplify the address of a TARGET_MEM_REF. Return the SSA_NAME
|
||
result, insert the new statements before GSI. */
|
||
|
||
static tree
|
||
gimplify_addr (gimple_stmt_iterator *gsi, tree x)
|
||
{
|
||
if (TREE_CODE (x) == TARGET_MEM_REF)
|
||
x = tree_mem_ref_addr (build_pointer_type (TREE_TYPE (x)), x);
|
||
else
|
||
x = build_fold_addr_expr (x);
|
||
return force_gimple_operand_gsi (gsi, x, true, NULL, true, GSI_SAME_STMT);
|
||
}
|
||
|
||
/* Instrument one address with the logging functions.
|
||
ADDR is the address to save.
|
||
STMT is the statement before which to place it. */
|
||
static void
|
||
tm_log_emit_stmt (tree addr, gimple stmt)
|
||
{
|
||
tree type = TREE_TYPE (addr);
|
||
tree size = TYPE_SIZE_UNIT (type);
|
||
gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
|
||
gimple log;
|
||
enum built_in_function code = BUILT_IN_TM_LOG;
|
||
|
||
if (type == float_type_node)
|
||
code = BUILT_IN_TM_LOG_FLOAT;
|
||
else if (type == double_type_node)
|
||
code = BUILT_IN_TM_LOG_DOUBLE;
|
||
else if (type == long_double_type_node)
|
||
code = BUILT_IN_TM_LOG_LDOUBLE;
|
||
else if (tree_fits_uhwi_p (size))
|
||
{
|
||
unsigned int n = tree_to_uhwi (size);
|
||
switch (n)
|
||
{
|
||
case 1:
|
||
code = BUILT_IN_TM_LOG_1;
|
||
break;
|
||
case 2:
|
||
code = BUILT_IN_TM_LOG_2;
|
||
break;
|
||
case 4:
|
||
code = BUILT_IN_TM_LOG_4;
|
||
break;
|
||
case 8:
|
||
code = BUILT_IN_TM_LOG_8;
|
||
break;
|
||
default:
|
||
code = BUILT_IN_TM_LOG;
|
||
if (TREE_CODE (type) == VECTOR_TYPE)
|
||
{
|
||
if (n == 8 && builtin_decl_explicit (BUILT_IN_TM_LOG_M64))
|
||
code = BUILT_IN_TM_LOG_M64;
|
||
else if (n == 16 && builtin_decl_explicit (BUILT_IN_TM_LOG_M128))
|
||
code = BUILT_IN_TM_LOG_M128;
|
||
else if (n == 32 && builtin_decl_explicit (BUILT_IN_TM_LOG_M256))
|
||
code = BUILT_IN_TM_LOG_M256;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
addr = gimplify_addr (&gsi, addr);
|
||
if (code == BUILT_IN_TM_LOG)
|
||
log = gimple_build_call (builtin_decl_explicit (code), 2, addr, size);
|
||
else
|
||
log = gimple_build_call (builtin_decl_explicit (code), 1, addr);
|
||
gsi_insert_before (&gsi, log, GSI_SAME_STMT);
|
||
}
|
||
|
||
/* Go through the log and instrument address that must be instrumented
|
||
with the logging functions. Leave the save/restore addresses for
|
||
later. */
|
||
static void
|
||
tm_log_emit (void)
|
||
{
|
||
hash_table<log_entry_hasher>::iterator hi;
|
||
struct tm_log_entry *lp;
|
||
|
||
FOR_EACH_HASH_TABLE_ELEMENT (*tm_log, lp, tm_log_entry_t, hi)
|
||
{
|
||
size_t i;
|
||
gimple stmt;
|
||
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "TM thread private mem logging: ");
|
||
print_generic_expr (dump_file, lp->addr, 0);
|
||
fprintf (dump_file, "\n");
|
||
}
|
||
|
||
if (lp->save_var)
|
||
{
|
||
if (dump_file)
|
||
fprintf (dump_file, "DUMPING to variable\n");
|
||
continue;
|
||
}
|
||
else
|
||
{
|
||
if (dump_file)
|
||
fprintf (dump_file, "DUMPING with logging functions\n");
|
||
for (i = 0; lp->stmts.iterate (i, &stmt); ++i)
|
||
tm_log_emit_stmt (lp->addr, stmt);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Emit the save sequence for the corresponding addresses in the log.
|
||
ENTRY_BLOCK is the entry block for the transaction.
|
||
BB is the basic block to insert the code in. */
|
||
static void
|
||
tm_log_emit_saves (basic_block entry_block, basic_block bb)
|
||
{
|
||
size_t i;
|
||
gimple_stmt_iterator gsi = gsi_last_bb (bb);
|
||
gimple stmt;
|
||
struct tm_log_entry l, *lp;
|
||
|
||
for (i = 0; i < tm_log_save_addresses.length (); ++i)
|
||
{
|
||
l.addr = tm_log_save_addresses[i];
|
||
lp = *(tm_log->find_slot (&l, NO_INSERT));
|
||
gcc_assert (lp->save_var != NULL);
|
||
|
||
/* We only care about variables in the current transaction. */
|
||
if (lp->entry_block != entry_block)
|
||
continue;
|
||
|
||
stmt = gimple_build_assign (lp->save_var, unshare_expr (lp->addr));
|
||
|
||
/* Make sure we can create an SSA_NAME for this type. For
|
||
instance, aggregates aren't allowed, in which case the system
|
||
will create a VOP for us and everything will just work. */
|
||
if (is_gimple_reg_type (TREE_TYPE (lp->save_var)))
|
||
{
|
||
lp->save_var = make_ssa_name (lp->save_var, stmt);
|
||
gimple_assign_set_lhs (stmt, lp->save_var);
|
||
}
|
||
|
||
gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
|
||
}
|
||
}
|
||
|
||
/* Emit the restore sequence for the corresponding addresses in the log.
|
||
ENTRY_BLOCK is the entry block for the transaction.
|
||
BB is the basic block to insert the code in. */
|
||
static void
|
||
tm_log_emit_restores (basic_block entry_block, basic_block bb)
|
||
{
|
||
int i;
|
||
struct tm_log_entry l, *lp;
|
||
gimple_stmt_iterator gsi;
|
||
gimple stmt;
|
||
|
||
for (i = tm_log_save_addresses.length () - 1; i >= 0; i--)
|
||
{
|
||
l.addr = tm_log_save_addresses[i];
|
||
lp = *(tm_log->find_slot (&l, NO_INSERT));
|
||
gcc_assert (lp->save_var != NULL);
|
||
|
||
/* We only care about variables in the current transaction. */
|
||
if (lp->entry_block != entry_block)
|
||
continue;
|
||
|
||
/* Restores are in LIFO order from the saves in case we have
|
||
overlaps. */
|
||
gsi = gsi_start_bb (bb);
|
||
|
||
stmt = gimple_build_assign (unshare_expr (lp->addr), lp->save_var);
|
||
gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
|
||
}
|
||
}
|
||
|
||
|
||
static tree lower_sequence_tm (gimple_stmt_iterator *, bool *,
|
||
struct walk_stmt_info *);
|
||
static tree lower_sequence_no_tm (gimple_stmt_iterator *, bool *,
|
||
struct walk_stmt_info *);
|
||
|
||
/* Evaluate an address X being dereferenced and determine if it
|
||
originally points to a non aliased new chunk of memory (malloc,
|
||
alloca, etc).
|
||
|
||
Return MEM_THREAD_LOCAL if it points to a thread-local address.
|
||
Return MEM_TRANSACTION_LOCAL if it points to a transaction-local address.
|
||
Return MEM_NON_LOCAL otherwise.
|
||
|
||
ENTRY_BLOCK is the entry block to the transaction containing the
|
||
dereference of X. */
|
||
static enum thread_memory_type
|
||
thread_private_new_memory (basic_block entry_block, tree x)
|
||
{
|
||
gimple stmt = NULL;
|
||
enum tree_code code;
|
||
tm_new_mem_map_t **slot;
|
||
tm_new_mem_map_t elt, *elt_p;
|
||
tree val = x;
|
||
enum thread_memory_type retval = mem_transaction_local;
|
||
|
||
if (!entry_block
|
||
|| TREE_CODE (x) != SSA_NAME
|
||
/* Possible uninitialized use, or a function argument. In
|
||
either case, we don't care. */
|
||
|| SSA_NAME_IS_DEFAULT_DEF (x))
|
||
return mem_non_local;
|
||
|
||
/* Look in cache first. */
|
||
elt.val = x;
|
||
slot = tm_new_mem_hash->find_slot (&elt, INSERT);
|
||
elt_p = *slot;
|
||
if (elt_p)
|
||
return elt_p->local_new_memory;
|
||
|
||
/* Optimistically assume the memory is transaction local during
|
||
processing. This catches recursion into this variable. */
|
||
*slot = elt_p = XNEW (tm_new_mem_map_t);
|
||
elt_p->val = val;
|
||
elt_p->local_new_memory = mem_transaction_local;
|
||
|
||
/* Search DEF chain to find the original definition of this address. */
|
||
do
|
||
{
|
||
if (ptr_deref_may_alias_global_p (x))
|
||
{
|
||
/* Address escapes. This is not thread-private. */
|
||
retval = mem_non_local;
|
||
goto new_memory_ret;
|
||
}
|
||
|
||
stmt = SSA_NAME_DEF_STMT (x);
|
||
|
||
/* If the malloc call is outside the transaction, this is
|
||
thread-local. */
|
||
if (retval != mem_thread_local
|
||
&& !dominated_by_p (CDI_DOMINATORS, gimple_bb (stmt), entry_block))
|
||
retval = mem_thread_local;
|
||
|
||
if (is_gimple_assign (stmt))
|
||
{
|
||
code = gimple_assign_rhs_code (stmt);
|
||
/* x = foo ==> foo */
|
||
if (code == SSA_NAME)
|
||
x = gimple_assign_rhs1 (stmt);
|
||
/* x = foo + n ==> foo */
|
||
else if (code == POINTER_PLUS_EXPR)
|
||
x = gimple_assign_rhs1 (stmt);
|
||
/* x = (cast*) foo ==> foo */
|
||
else if (code == VIEW_CONVERT_EXPR || CONVERT_EXPR_CODE_P (code))
|
||
x = gimple_assign_rhs1 (stmt);
|
||
/* x = c ? op1 : op2 == > op1 or op2 just like a PHI */
|
||
else if (code == COND_EXPR)
|
||
{
|
||
tree op1 = gimple_assign_rhs2 (stmt);
|
||
tree op2 = gimple_assign_rhs3 (stmt);
|
||
enum thread_memory_type mem;
|
||
retval = thread_private_new_memory (entry_block, op1);
|
||
if (retval == mem_non_local)
|
||
goto new_memory_ret;
|
||
mem = thread_private_new_memory (entry_block, op2);
|
||
retval = MIN (retval, mem);
|
||
goto new_memory_ret;
|
||
}
|
||
else
|
||
{
|
||
retval = mem_non_local;
|
||
goto new_memory_ret;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (gimple_code (stmt) == GIMPLE_PHI)
|
||
{
|
||
unsigned int i;
|
||
enum thread_memory_type mem;
|
||
tree phi_result = gimple_phi_result (stmt);
|
||
|
||
/* If any of the ancestors are non-local, we are sure to
|
||
be non-local. Otherwise we can avoid doing anything
|
||
and inherit what has already been generated. */
|
||
retval = mem_max;
|
||
for (i = 0; i < gimple_phi_num_args (stmt); ++i)
|
||
{
|
||
tree op = PHI_ARG_DEF (stmt, i);
|
||
|
||
/* Exclude self-assignment. */
|
||
if (phi_result == op)
|
||
continue;
|
||
|
||
mem = thread_private_new_memory (entry_block, op);
|
||
if (mem == mem_non_local)
|
||
{
|
||
retval = mem;
|
||
goto new_memory_ret;
|
||
}
|
||
retval = MIN (retval, mem);
|
||
}
|
||
goto new_memory_ret;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
while (TREE_CODE (x) == SSA_NAME);
|
||
|
||
if (stmt && is_gimple_call (stmt) && gimple_call_flags (stmt) & ECF_MALLOC)
|
||
/* Thread-local or transaction-local. */
|
||
;
|
||
else
|
||
retval = mem_non_local;
|
||
|
||
new_memory_ret:
|
||
elt_p->local_new_memory = retval;
|
||
return retval;
|
||
}
|
||
|
||
/* Determine whether X has to be instrumented using a read
|
||
or write barrier.
|
||
|
||
ENTRY_BLOCK is the entry block for the region where stmt resides
|
||
in. NULL if unknown.
|
||
|
||
STMT is the statement in which X occurs in. It is used for thread
|
||
private memory instrumentation. If no TPM instrumentation is
|
||
desired, STMT should be null. */
|
||
static bool
|
||
requires_barrier (basic_block entry_block, tree x, gimple stmt)
|
||
{
|
||
tree orig = x;
|
||
while (handled_component_p (x))
|
||
x = TREE_OPERAND (x, 0);
|
||
|
||
switch (TREE_CODE (x))
|
||
{
|
||
case INDIRECT_REF:
|
||
case MEM_REF:
|
||
{
|
||
enum thread_memory_type ret;
|
||
|
||
ret = thread_private_new_memory (entry_block, TREE_OPERAND (x, 0));
|
||
if (ret == mem_non_local)
|
||
return true;
|
||
if (stmt && ret == mem_thread_local)
|
||
/* ?? Should we pass `orig', or the INDIRECT_REF X. ?? */
|
||
tm_log_add (entry_block, orig, stmt);
|
||
|
||
/* Transaction-locals require nothing at all. For malloc, a
|
||
transaction restart frees the memory and we reallocate.
|
||
For alloca, the stack pointer gets reset by the retry and
|
||
we reallocate. */
|
||
return false;
|
||
}
|
||
|
||
case TARGET_MEM_REF:
|
||
if (TREE_CODE (TMR_BASE (x)) != ADDR_EXPR)
|
||
return true;
|
||
x = TREE_OPERAND (TMR_BASE (x), 0);
|
||
if (TREE_CODE (x) == PARM_DECL)
|
||
return false;
|
||
gcc_assert (TREE_CODE (x) == VAR_DECL);
|
||
/* FALLTHRU */
|
||
|
||
case PARM_DECL:
|
||
case RESULT_DECL:
|
||
case VAR_DECL:
|
||
if (DECL_BY_REFERENCE (x))
|
||
{
|
||
/* ??? This value is a pointer, but aggregate_value_p has been
|
||
jigged to return true which confuses needs_to_live_in_memory.
|
||
This ought to be cleaned up generically.
|
||
|
||
FIXME: Verify this still happens after the next mainline
|
||
merge. Testcase ie g++.dg/tm/pr47554.C.
|
||
*/
|
||
return false;
|
||
}
|
||
|
||
if (is_global_var (x))
|
||
return !TREE_READONLY (x);
|
||
if (/* FIXME: This condition should actually go below in the
|
||
tm_log_add() call, however is_call_clobbered() depends on
|
||
aliasing info which is not available during
|
||
gimplification. Since requires_barrier() gets called
|
||
during lower_sequence_tm/gimplification, leave the call
|
||
to needs_to_live_in_memory until we eliminate
|
||
lower_sequence_tm altogether. */
|
||
needs_to_live_in_memory (x))
|
||
return true;
|
||
else
|
||
{
|
||
/* For local memory that doesn't escape (aka thread private
|
||
memory), we can either save the value at the beginning of
|
||
the transaction and restore on restart, or call a tm
|
||
function to dynamically save and restore on restart
|
||
(ITM_L*). */
|
||
if (stmt)
|
||
tm_log_add (entry_block, orig, stmt);
|
||
return false;
|
||
}
|
||
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* Mark the GIMPLE_ASSIGN statement as appropriate for being inside
|
||
a transaction region. */
|
||
|
||
static void
|
||
examine_assign_tm (unsigned *state, gimple_stmt_iterator *gsi)
|
||
{
|
||
gimple stmt = gsi_stmt (*gsi);
|
||
|
||
if (requires_barrier (/*entry_block=*/NULL, gimple_assign_rhs1 (stmt), NULL))
|
||
*state |= GTMA_HAVE_LOAD;
|
||
if (requires_barrier (/*entry_block=*/NULL, gimple_assign_lhs (stmt), NULL))
|
||
*state |= GTMA_HAVE_STORE;
|
||
}
|
||
|
||
/* Mark a GIMPLE_CALL as appropriate for being inside a transaction. */
|
||
|
||
static void
|
||
examine_call_tm (unsigned *state, gimple_stmt_iterator *gsi)
|
||
{
|
||
gimple stmt = gsi_stmt (*gsi);
|
||
tree fn;
|
||
|
||
if (is_tm_pure_call (stmt))
|
||
return;
|
||
|
||
/* Check if this call is a transaction abort. */
|
||
fn = gimple_call_fndecl (stmt);
|
||
if (is_tm_abort (fn))
|
||
*state |= GTMA_HAVE_ABORT;
|
||
|
||
/* Note that something may happen. */
|
||
*state |= GTMA_HAVE_LOAD | GTMA_HAVE_STORE;
|
||
}
|
||
|
||
/* Lower a GIMPLE_TRANSACTION statement. */
|
||
|
||
static void
|
||
lower_transaction (gimple_stmt_iterator *gsi, struct walk_stmt_info *wi)
|
||
{
|
||
gimple g;
|
||
gtransaction *stmt = as_a <gtransaction *> (gsi_stmt (*gsi));
|
||
unsigned int *outer_state = (unsigned int *) wi->info;
|
||
unsigned int this_state = 0;
|
||
struct walk_stmt_info this_wi;
|
||
|
||
/* First, lower the body. The scanning that we do inside gives
|
||
us some idea of what we're dealing with. */
|
||
memset (&this_wi, 0, sizeof (this_wi));
|
||
this_wi.info = (void *) &this_state;
|
||
walk_gimple_seq_mod (gimple_transaction_body_ptr (stmt),
|
||
lower_sequence_tm, NULL, &this_wi);
|
||
|
||
/* If there was absolutely nothing transaction related inside the
|
||
transaction, we may elide it. Likewise if this is a nested
|
||
transaction and does not contain an abort. */
|
||
if (this_state == 0
|
||
|| (!(this_state & GTMA_HAVE_ABORT) && outer_state != NULL))
|
||
{
|
||
if (outer_state)
|
||
*outer_state |= this_state;
|
||
|
||
gsi_insert_seq_before (gsi, gimple_transaction_body (stmt),
|
||
GSI_SAME_STMT);
|
||
gimple_transaction_set_body (stmt, NULL);
|
||
|
||
gsi_remove (gsi, true);
|
||
wi->removed_stmt = true;
|
||
return;
|
||
}
|
||
|
||
/* Wrap the body of the transaction in a try-finally node so that
|
||
the commit call is always properly called. */
|
||
g = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_COMMIT), 0);
|
||
if (flag_exceptions)
|
||
{
|
||
tree ptr;
|
||
gimple_seq n_seq, e_seq;
|
||
|
||
n_seq = gimple_seq_alloc_with_stmt (g);
|
||
e_seq = NULL;
|
||
|
||
g = gimple_build_call (builtin_decl_explicit (BUILT_IN_EH_POINTER),
|
||
1, integer_zero_node);
|
||
ptr = create_tmp_var (ptr_type_node);
|
||
gimple_call_set_lhs (g, ptr);
|
||
gimple_seq_add_stmt (&e_seq, g);
|
||
|
||
g = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_COMMIT_EH),
|
||
1, ptr);
|
||
gimple_seq_add_stmt (&e_seq, g);
|
||
|
||
g = gimple_build_eh_else (n_seq, e_seq);
|
||
}
|
||
|
||
g = gimple_build_try (gimple_transaction_body (stmt),
|
||
gimple_seq_alloc_with_stmt (g), GIMPLE_TRY_FINALLY);
|
||
gsi_insert_after (gsi, g, GSI_CONTINUE_LINKING);
|
||
|
||
gimple_transaction_set_body (stmt, NULL);
|
||
|
||
/* If the transaction calls abort or if this is an outer transaction,
|
||
add an "over" label afterwards. */
|
||
if ((this_state & (GTMA_HAVE_ABORT))
|
||
|| (gimple_transaction_subcode (stmt) & GTMA_IS_OUTER))
|
||
{
|
||
tree label = create_artificial_label (UNKNOWN_LOCATION);
|
||
gimple_transaction_set_label (stmt, label);
|
||
gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
|
||
}
|
||
|
||
/* Record the set of operations found for use later. */
|
||
this_state |= gimple_transaction_subcode (stmt) & GTMA_DECLARATION_MASK;
|
||
gimple_transaction_set_subcode (stmt, this_state);
|
||
}
|
||
|
||
/* Iterate through the statements in the sequence, lowering them all
|
||
as appropriate for being in a transaction. */
|
||
|
||
static tree
|
||
lower_sequence_tm (gimple_stmt_iterator *gsi, bool *handled_ops_p,
|
||
struct walk_stmt_info *wi)
|
||
{
|
||
unsigned int *state = (unsigned int *) wi->info;
|
||
gimple stmt = gsi_stmt (*gsi);
|
||
|
||
*handled_ops_p = true;
|
||
switch (gimple_code (stmt))
|
||
{
|
||
case GIMPLE_ASSIGN:
|
||
/* Only memory reads/writes need to be instrumented. */
|
||
if (gimple_assign_single_p (stmt))
|
||
examine_assign_tm (state, gsi);
|
||
break;
|
||
|
||
case GIMPLE_CALL:
|
||
examine_call_tm (state, gsi);
|
||
break;
|
||
|
||
case GIMPLE_ASM:
|
||
*state |= GTMA_MAY_ENTER_IRREVOCABLE;
|
||
break;
|
||
|
||
case GIMPLE_TRANSACTION:
|
||
lower_transaction (gsi, wi);
|
||
break;
|
||
|
||
default:
|
||
*handled_ops_p = !gimple_has_substatements (stmt);
|
||
break;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Iterate through the statements in the sequence, lowering them all
|
||
as appropriate for being outside of a transaction. */
|
||
|
||
static tree
|
||
lower_sequence_no_tm (gimple_stmt_iterator *gsi, bool *handled_ops_p,
|
||
struct walk_stmt_info * wi)
|
||
{
|
||
gimple stmt = gsi_stmt (*gsi);
|
||
|
||
if (gimple_code (stmt) == GIMPLE_TRANSACTION)
|
||
{
|
||
*handled_ops_p = true;
|
||
lower_transaction (gsi, wi);
|
||
}
|
||
else
|
||
*handled_ops_p = !gimple_has_substatements (stmt);
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Main entry point for flattening GIMPLE_TRANSACTION constructs. After
|
||
this, GIMPLE_TRANSACTION nodes still exist, but the nested body has
|
||
been moved out, and all the data required for constructing a proper
|
||
CFG has been recorded. */
|
||
|
||
static unsigned int
|
||
execute_lower_tm (void)
|
||
{
|
||
struct walk_stmt_info wi;
|
||
gimple_seq body;
|
||
|
||
/* Transactional clones aren't created until a later pass. */
|
||
gcc_assert (!decl_is_tm_clone (current_function_decl));
|
||
|
||
body = gimple_body (current_function_decl);
|
||
memset (&wi, 0, sizeof (wi));
|
||
walk_gimple_seq_mod (&body, lower_sequence_no_tm, NULL, &wi);
|
||
gimple_set_body (current_function_decl, body);
|
||
|
||
return 0;
|
||
}
|
||
|
||
namespace {
|
||
|
||
const pass_data pass_data_lower_tm =
|
||
{
|
||
GIMPLE_PASS, /* type */
|
||
"tmlower", /* name */
|
||
OPTGROUP_NONE, /* optinfo_flags */
|
||
TV_TRANS_MEM, /* tv_id */
|
||
PROP_gimple_lcf, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
0, /* todo_flags_finish */
|
||
};
|
||
|
||
class pass_lower_tm : public gimple_opt_pass
|
||
{
|
||
public:
|
||
pass_lower_tm (gcc::context *ctxt)
|
||
: gimple_opt_pass (pass_data_lower_tm, ctxt)
|
||
{}
|
||
|
||
/* opt_pass methods: */
|
||
virtual bool gate (function *) { return flag_tm; }
|
||
virtual unsigned int execute (function *) { return execute_lower_tm (); }
|
||
|
||
}; // class pass_lower_tm
|
||
|
||
} // anon namespace
|
||
|
||
gimple_opt_pass *
|
||
make_pass_lower_tm (gcc::context *ctxt)
|
||
{
|
||
return new pass_lower_tm (ctxt);
|
||
}
|
||
|
||
/* Collect region information for each transaction. */
|
||
|
||
struct tm_region
|
||
{
|
||
public:
|
||
|
||
/* The field "transaction_stmt" is initially a gtransaction *,
|
||
but eventually gets lowered to a gcall *(to BUILT_IN_TM_START).
|
||
|
||
Helper method to get it as a gtransaction *, with code-checking
|
||
in a checked-build. */
|
||
|
||
gtransaction *
|
||
get_transaction_stmt () const
|
||
{
|
||
return as_a <gtransaction *> (transaction_stmt);
|
||
}
|
||
|
||
public:
|
||
|
||
/* Link to the next unnested transaction. */
|
||
struct tm_region *next;
|
||
|
||
/* Link to the next inner transaction. */
|
||
struct tm_region *inner;
|
||
|
||
/* Link to the next outer transaction. */
|
||
struct tm_region *outer;
|
||
|
||
/* The GIMPLE_TRANSACTION statement beginning this transaction.
|
||
After TM_MARK, this gets replaced by a call to
|
||
BUILT_IN_TM_START.
|
||
Hence this will be either a gtransaction *or a gcall *. */
|
||
gimple transaction_stmt;
|
||
|
||
/* After TM_MARK expands the GIMPLE_TRANSACTION into a call to
|
||
BUILT_IN_TM_START, this field is true if the transaction is an
|
||
outer transaction. */
|
||
bool original_transaction_was_outer;
|
||
|
||
/* Return value from BUILT_IN_TM_START. */
|
||
tree tm_state;
|
||
|
||
/* The entry block to this region. This will always be the first
|
||
block of the body of the transaction. */
|
||
basic_block entry_block;
|
||
|
||
/* The first block after an expanded call to _ITM_beginTransaction. */
|
||
basic_block restart_block;
|
||
|
||
/* The set of all blocks that end the region; NULL if only EXIT_BLOCK.
|
||
These blocks are still a part of the region (i.e., the border is
|
||
inclusive). Note that this set is only complete for paths in the CFG
|
||
starting at ENTRY_BLOCK, and that there is no exit block recorded for
|
||
the edge to the "over" label. */
|
||
bitmap exit_blocks;
|
||
|
||
/* The set of all blocks that have an TM_IRREVOCABLE call. */
|
||
bitmap irr_blocks;
|
||
};
|
||
|
||
typedef struct tm_region *tm_region_p;
|
||
|
||
/* True if there are pending edge statements to be committed for the
|
||
current function being scanned in the tmmark pass. */
|
||
bool pending_edge_inserts_p;
|
||
|
||
static struct tm_region *all_tm_regions;
|
||
static bitmap_obstack tm_obstack;
|
||
|
||
|
||
/* A subroutine of tm_region_init. Record the existence of the
|
||
GIMPLE_TRANSACTION statement in a tree of tm_region elements. */
|
||
|
||
static struct tm_region *
|
||
tm_region_init_0 (struct tm_region *outer, basic_block bb,
|
||
gtransaction *stmt)
|
||
{
|
||
struct tm_region *region;
|
||
|
||
region = (struct tm_region *)
|
||
obstack_alloc (&tm_obstack.obstack, sizeof (struct tm_region));
|
||
|
||
if (outer)
|
||
{
|
||
region->next = outer->inner;
|
||
outer->inner = region;
|
||
}
|
||
else
|
||
{
|
||
region->next = all_tm_regions;
|
||
all_tm_regions = region;
|
||
}
|
||
region->inner = NULL;
|
||
region->outer = outer;
|
||
|
||
region->transaction_stmt = stmt;
|
||
region->original_transaction_was_outer = false;
|
||
region->tm_state = NULL;
|
||
|
||
/* There are either one or two edges out of the block containing
|
||
the GIMPLE_TRANSACTION, one to the actual region and one to the
|
||
"over" label if the region contains an abort. The former will
|
||
always be the one marked FALLTHRU. */
|
||
region->entry_block = FALLTHRU_EDGE (bb)->dest;
|
||
|
||
region->exit_blocks = BITMAP_ALLOC (&tm_obstack);
|
||
region->irr_blocks = BITMAP_ALLOC (&tm_obstack);
|
||
|
||
return region;
|
||
}
|
||
|
||
/* A subroutine of tm_region_init. Record all the exit and
|
||
irrevocable blocks in BB into the region's exit_blocks and
|
||
irr_blocks bitmaps. Returns the new region being scanned. */
|
||
|
||
static struct tm_region *
|
||
tm_region_init_1 (struct tm_region *region, basic_block bb)
|
||
{
|
||
gimple_stmt_iterator gsi;
|
||
gimple g;
|
||
|
||
if (!region
|
||
|| (!region->irr_blocks && !region->exit_blocks))
|
||
return region;
|
||
|
||
/* Check to see if this is the end of a region by seeing if it
|
||
contains a call to __builtin_tm_commit{,_eh}. Note that the
|
||
outermost region for DECL_IS_TM_CLONE need not collect this. */
|
||
for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
|
||
{
|
||
g = gsi_stmt (gsi);
|
||
if (gimple_code (g) == GIMPLE_CALL)
|
||
{
|
||
tree fn = gimple_call_fndecl (g);
|
||
if (fn && DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL)
|
||
{
|
||
if ((DECL_FUNCTION_CODE (fn) == BUILT_IN_TM_COMMIT
|
||
|| DECL_FUNCTION_CODE (fn) == BUILT_IN_TM_COMMIT_EH)
|
||
&& region->exit_blocks)
|
||
{
|
||
bitmap_set_bit (region->exit_blocks, bb->index);
|
||
region = region->outer;
|
||
break;
|
||
}
|
||
if (DECL_FUNCTION_CODE (fn) == BUILT_IN_TM_IRREVOCABLE)
|
||
bitmap_set_bit (region->irr_blocks, bb->index);
|
||
}
|
||
}
|
||
}
|
||
return region;
|
||
}
|
||
|
||
/* Collect all of the transaction regions within the current function
|
||
and record them in ALL_TM_REGIONS. The REGION parameter may specify
|
||
an "outermost" region for use by tm clones. */
|
||
|
||
static void
|
||
tm_region_init (struct tm_region *region)
|
||
{
|
||
gimple g;
|
||
edge_iterator ei;
|
||
edge e;
|
||
basic_block bb;
|
||
auto_vec<basic_block> queue;
|
||
bitmap visited_blocks = BITMAP_ALLOC (NULL);
|
||
struct tm_region *old_region;
|
||
auto_vec<tm_region_p> bb_regions;
|
||
|
||
all_tm_regions = region;
|
||
bb = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
|
||
|
||
/* We could store this information in bb->aux, but we may get called
|
||
through get_all_tm_blocks() from another pass that may be already
|
||
using bb->aux. */
|
||
bb_regions.safe_grow_cleared (last_basic_block_for_fn (cfun));
|
||
|
||
queue.safe_push (bb);
|
||
bb_regions[bb->index] = region;
|
||
do
|
||
{
|
||
bb = queue.pop ();
|
||
region = bb_regions[bb->index];
|
||
bb_regions[bb->index] = NULL;
|
||
|
||
/* Record exit and irrevocable blocks. */
|
||
region = tm_region_init_1 (region, bb);
|
||
|
||
/* Check for the last statement in the block beginning a new region. */
|
||
g = last_stmt (bb);
|
||
old_region = region;
|
||
if (g)
|
||
if (gtransaction *trans_stmt = dyn_cast <gtransaction *> (g))
|
||
region = tm_region_init_0 (region, bb, trans_stmt);
|
||
|
||
/* Process subsequent blocks. */
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
if (!bitmap_bit_p (visited_blocks, e->dest->index))
|
||
{
|
||
bitmap_set_bit (visited_blocks, e->dest->index);
|
||
queue.safe_push (e->dest);
|
||
|
||
/* If the current block started a new region, make sure that only
|
||
the entry block of the new region is associated with this region.
|
||
Other successors are still part of the old region. */
|
||
if (old_region != region && e->dest != region->entry_block)
|
||
bb_regions[e->dest->index] = old_region;
|
||
else
|
||
bb_regions[e->dest->index] = region;
|
||
}
|
||
}
|
||
while (!queue.is_empty ());
|
||
BITMAP_FREE (visited_blocks);
|
||
}
|
||
|
||
/* The "gate" function for all transactional memory expansion and optimization
|
||
passes. We collect region information for each top-level transaction, and
|
||
if we don't find any, we skip all of the TM passes. Each region will have
|
||
all of the exit blocks recorded, and the originating statement. */
|
||
|
||
static bool
|
||
gate_tm_init (void)
|
||
{
|
||
if (!flag_tm)
|
||
return false;
|
||
|
||
calculate_dominance_info (CDI_DOMINATORS);
|
||
bitmap_obstack_initialize (&tm_obstack);
|
||
|
||
/* If the function is a TM_CLONE, then the entire function is the region. */
|
||
if (decl_is_tm_clone (current_function_decl))
|
||
{
|
||
struct tm_region *region = (struct tm_region *)
|
||
obstack_alloc (&tm_obstack.obstack, sizeof (struct tm_region));
|
||
memset (region, 0, sizeof (*region));
|
||
region->entry_block = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
|
||
/* For a clone, the entire function is the region. But even if
|
||
we don't need to record any exit blocks, we may need to
|
||
record irrevocable blocks. */
|
||
region->irr_blocks = BITMAP_ALLOC (&tm_obstack);
|
||
|
||
tm_region_init (region);
|
||
}
|
||
else
|
||
{
|
||
tm_region_init (NULL);
|
||
|
||
/* If we didn't find any regions, cleanup and skip the whole tree
|
||
of tm-related optimizations. */
|
||
if (all_tm_regions == NULL)
|
||
{
|
||
bitmap_obstack_release (&tm_obstack);
|
||
return false;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
namespace {
|
||
|
||
const pass_data pass_data_tm_init =
|
||
{
|
||
GIMPLE_PASS, /* type */
|
||
"*tminit", /* name */
|
||
OPTGROUP_NONE, /* optinfo_flags */
|
||
TV_TRANS_MEM, /* tv_id */
|
||
( PROP_ssa | PROP_cfg ), /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
0, /* todo_flags_finish */
|
||
};
|
||
|
||
class pass_tm_init : public gimple_opt_pass
|
||
{
|
||
public:
|
||
pass_tm_init (gcc::context *ctxt)
|
||
: gimple_opt_pass (pass_data_tm_init, ctxt)
|
||
{}
|
||
|
||
/* opt_pass methods: */
|
||
virtual bool gate (function *) { return gate_tm_init (); }
|
||
|
||
}; // class pass_tm_init
|
||
|
||
} // anon namespace
|
||
|
||
gimple_opt_pass *
|
||
make_pass_tm_init (gcc::context *ctxt)
|
||
{
|
||
return new pass_tm_init (ctxt);
|
||
}
|
||
|
||
/* Add FLAGS to the GIMPLE_TRANSACTION subcode for the transaction region
|
||
represented by STATE. */
|
||
|
||
static inline void
|
||
transaction_subcode_ior (struct tm_region *region, unsigned flags)
|
||
{
|
||
if (region && region->transaction_stmt)
|
||
{
|
||
gtransaction *transaction_stmt = region->get_transaction_stmt ();
|
||
flags |= gimple_transaction_subcode (transaction_stmt);
|
||
gimple_transaction_set_subcode (transaction_stmt, flags);
|
||
}
|
||
}
|
||
|
||
/* Construct a memory load in a transactional context. Return the
|
||
gimple statement performing the load, or NULL if there is no
|
||
TM_LOAD builtin of the appropriate size to do the load.
|
||
|
||
LOC is the location to use for the new statement(s). */
|
||
|
||
static gcall *
|
||
build_tm_load (location_t loc, tree lhs, tree rhs, gimple_stmt_iterator *gsi)
|
||
{
|
||
enum built_in_function code = END_BUILTINS;
|
||
tree t, type = TREE_TYPE (rhs), decl;
|
||
gcall *gcall;
|
||
|
||
if (type == float_type_node)
|
||
code = BUILT_IN_TM_LOAD_FLOAT;
|
||
else if (type == double_type_node)
|
||
code = BUILT_IN_TM_LOAD_DOUBLE;
|
||
else if (type == long_double_type_node)
|
||
code = BUILT_IN_TM_LOAD_LDOUBLE;
|
||
else if (TYPE_SIZE_UNIT (type) != NULL
|
||
&& tree_fits_uhwi_p (TYPE_SIZE_UNIT (type)))
|
||
{
|
||
switch (tree_to_uhwi (TYPE_SIZE_UNIT (type)))
|
||
{
|
||
case 1:
|
||
code = BUILT_IN_TM_LOAD_1;
|
||
break;
|
||
case 2:
|
||
code = BUILT_IN_TM_LOAD_2;
|
||
break;
|
||
case 4:
|
||
code = BUILT_IN_TM_LOAD_4;
|
||
break;
|
||
case 8:
|
||
code = BUILT_IN_TM_LOAD_8;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (code == END_BUILTINS)
|
||
{
|
||
decl = targetm.vectorize.builtin_tm_load (type);
|
||
if (!decl)
|
||
return NULL;
|
||
}
|
||
else
|
||
decl = builtin_decl_explicit (code);
|
||
|
||
t = gimplify_addr (gsi, rhs);
|
||
gcall = gimple_build_call (decl, 1, t);
|
||
gimple_set_location (gcall, loc);
|
||
|
||
t = TREE_TYPE (TREE_TYPE (decl));
|
||
if (useless_type_conversion_p (type, t))
|
||
{
|
||
gimple_call_set_lhs (gcall, lhs);
|
||
gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
|
||
}
|
||
else
|
||
{
|
||
gimple g;
|
||
tree temp;
|
||
|
||
temp = create_tmp_reg (t);
|
||
gimple_call_set_lhs (gcall, temp);
|
||
gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
|
||
|
||
t = fold_build1 (VIEW_CONVERT_EXPR, type, temp);
|
||
g = gimple_build_assign (lhs, t);
|
||
gsi_insert_before (gsi, g, GSI_SAME_STMT);
|
||
}
|
||
|
||
return gcall;
|
||
}
|
||
|
||
|
||
/* Similarly for storing TYPE in a transactional context. */
|
||
|
||
static gcall *
|
||
build_tm_store (location_t loc, tree lhs, tree rhs, gimple_stmt_iterator *gsi)
|
||
{
|
||
enum built_in_function code = END_BUILTINS;
|
||
tree t, fn, type = TREE_TYPE (rhs), simple_type;
|
||
gcall *gcall;
|
||
|
||
if (type == float_type_node)
|
||
code = BUILT_IN_TM_STORE_FLOAT;
|
||
else if (type == double_type_node)
|
||
code = BUILT_IN_TM_STORE_DOUBLE;
|
||
else if (type == long_double_type_node)
|
||
code = BUILT_IN_TM_STORE_LDOUBLE;
|
||
else if (TYPE_SIZE_UNIT (type) != NULL
|
||
&& tree_fits_uhwi_p (TYPE_SIZE_UNIT (type)))
|
||
{
|
||
switch (tree_to_uhwi (TYPE_SIZE_UNIT (type)))
|
||
{
|
||
case 1:
|
||
code = BUILT_IN_TM_STORE_1;
|
||
break;
|
||
case 2:
|
||
code = BUILT_IN_TM_STORE_2;
|
||
break;
|
||
case 4:
|
||
code = BUILT_IN_TM_STORE_4;
|
||
break;
|
||
case 8:
|
||
code = BUILT_IN_TM_STORE_8;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (code == END_BUILTINS)
|
||
{
|
||
fn = targetm.vectorize.builtin_tm_store (type);
|
||
if (!fn)
|
||
return NULL;
|
||
}
|
||
else
|
||
fn = builtin_decl_explicit (code);
|
||
|
||
simple_type = TREE_VALUE (TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn))));
|
||
|
||
if (TREE_CODE (rhs) == CONSTRUCTOR)
|
||
{
|
||
/* Handle the easy initialization to zero. */
|
||
if (!CONSTRUCTOR_ELTS (rhs))
|
||
rhs = build_int_cst (simple_type, 0);
|
||
else
|
||
{
|
||
/* ...otherwise punt to the caller and probably use
|
||
BUILT_IN_TM_MEMMOVE, because we can't wrap a
|
||
VIEW_CONVERT_EXPR around a CONSTRUCTOR (below) and produce
|
||
valid gimple. */
|
||
return NULL;
|
||
}
|
||
}
|
||
else if (!useless_type_conversion_p (simple_type, type))
|
||
{
|
||
gimple g;
|
||
tree temp;
|
||
|
||
temp = create_tmp_reg (simple_type);
|
||
t = fold_build1 (VIEW_CONVERT_EXPR, simple_type, rhs);
|
||
g = gimple_build_assign (temp, t);
|
||
gimple_set_location (g, loc);
|
||
gsi_insert_before (gsi, g, GSI_SAME_STMT);
|
||
|
||
rhs = temp;
|
||
}
|
||
|
||
t = gimplify_addr (gsi, lhs);
|
||
gcall = gimple_build_call (fn, 2, t, rhs);
|
||
gimple_set_location (gcall, loc);
|
||
gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
|
||
|
||
return gcall;
|
||
}
|
||
|
||
|
||
/* Expand an assignment statement into transactional builtins. */
|
||
|
||
static void
|
||
expand_assign_tm (struct tm_region *region, gimple_stmt_iterator *gsi)
|
||
{
|
||
gimple stmt = gsi_stmt (*gsi);
|
||
location_t loc = gimple_location (stmt);
|
||
tree lhs = gimple_assign_lhs (stmt);
|
||
tree rhs = gimple_assign_rhs1 (stmt);
|
||
bool store_p = requires_barrier (region->entry_block, lhs, NULL);
|
||
bool load_p = requires_barrier (region->entry_block, rhs, NULL);
|
||
gimple gcall = NULL;
|
||
|
||
if (!load_p && !store_p)
|
||
{
|
||
/* Add thread private addresses to log if applicable. */
|
||
requires_barrier (region->entry_block, lhs, stmt);
|
||
gsi_next (gsi);
|
||
return;
|
||
}
|
||
|
||
// Remove original load/store statement.
|
||
gsi_remove (gsi, true);
|
||
|
||
if (load_p && !store_p)
|
||
{
|
||
transaction_subcode_ior (region, GTMA_HAVE_LOAD);
|
||
gcall = build_tm_load (loc, lhs, rhs, gsi);
|
||
}
|
||
else if (store_p && !load_p)
|
||
{
|
||
transaction_subcode_ior (region, GTMA_HAVE_STORE);
|
||
gcall = build_tm_store (loc, lhs, rhs, gsi);
|
||
}
|
||
if (!gcall)
|
||
{
|
||
tree lhs_addr, rhs_addr, tmp;
|
||
|
||
if (load_p)
|
||
transaction_subcode_ior (region, GTMA_HAVE_LOAD);
|
||
if (store_p)
|
||
transaction_subcode_ior (region, GTMA_HAVE_STORE);
|
||
|
||
/* ??? Figure out if there's any possible overlap between the LHS
|
||
and the RHS and if not, use MEMCPY. */
|
||
|
||
if (load_p && is_gimple_reg (lhs))
|
||
{
|
||
tmp = create_tmp_var (TREE_TYPE (lhs));
|
||
lhs_addr = build_fold_addr_expr (tmp);
|
||
}
|
||
else
|
||
{
|
||
tmp = NULL_TREE;
|
||
lhs_addr = gimplify_addr (gsi, lhs);
|
||
}
|
||
rhs_addr = gimplify_addr (gsi, rhs);
|
||
gcall = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_MEMMOVE),
|
||
3, lhs_addr, rhs_addr,
|
||
TYPE_SIZE_UNIT (TREE_TYPE (lhs)));
|
||
gimple_set_location (gcall, loc);
|
||
gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
|
||
|
||
if (tmp)
|
||
{
|
||
gcall = gimple_build_assign (lhs, tmp);
|
||
gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
|
||
}
|
||
}
|
||
|
||
/* Now that we have the load/store in its instrumented form, add
|
||
thread private addresses to the log if applicable. */
|
||
if (!store_p)
|
||
requires_barrier (region->entry_block, lhs, gcall);
|
||
|
||
// The calls to build_tm_{store,load} above inserted the instrumented
|
||
// call into the stream.
|
||
// gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
|
||
}
|
||
|
||
|
||
/* Expand a call statement as appropriate for a transaction. That is,
|
||
either verify that the call does not affect the transaction, or
|
||
redirect the call to a clone that handles transactions, or change
|
||
the transaction state to IRREVOCABLE. Return true if the call is
|
||
one of the builtins that end a transaction. */
|
||
|
||
static bool
|
||
expand_call_tm (struct tm_region *region,
|
||
gimple_stmt_iterator *gsi)
|
||
{
|
||
gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi));
|
||
tree lhs = gimple_call_lhs (stmt);
|
||
tree fn_decl;
|
||
struct cgraph_node *node;
|
||
bool retval = false;
|
||
|
||
fn_decl = gimple_call_fndecl (stmt);
|
||
|
||
if (fn_decl == builtin_decl_explicit (BUILT_IN_TM_MEMCPY)
|
||
|| fn_decl == builtin_decl_explicit (BUILT_IN_TM_MEMMOVE))
|
||
transaction_subcode_ior (region, GTMA_HAVE_STORE | GTMA_HAVE_LOAD);
|
||
if (fn_decl == builtin_decl_explicit (BUILT_IN_TM_MEMSET))
|
||
transaction_subcode_ior (region, GTMA_HAVE_STORE);
|
||
|
||
if (is_tm_pure_call (stmt))
|
||
return false;
|
||
|
||
if (fn_decl)
|
||
retval = is_tm_ending_fndecl (fn_decl);
|
||
if (!retval)
|
||
{
|
||
/* Assume all non-const/pure calls write to memory, except
|
||
transaction ending builtins. */
|
||
transaction_subcode_ior (region, GTMA_HAVE_STORE);
|
||
}
|
||
|
||
/* For indirect calls, we already generated a call into the runtime. */
|
||
if (!fn_decl)
|
||
{
|
||
tree fn = gimple_call_fn (stmt);
|
||
|
||
/* We are guaranteed never to go irrevocable on a safe or pure
|
||
call, and the pure call was handled above. */
|
||
if (is_tm_safe (fn))
|
||
return false;
|
||
else
|
||
transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
|
||
|
||
return false;
|
||
}
|
||
|
||
node = cgraph_node::get (fn_decl);
|
||
/* All calls should have cgraph here. */
|
||
if (!node)
|
||
{
|
||
/* We can have a nodeless call here if some pass after IPA-tm
|
||
added uninstrumented calls. For example, loop distribution
|
||
can transform certain loop constructs into __builtin_mem*
|
||
calls. In this case, see if we have a suitable TM
|
||
replacement and fill in the gaps. */
|
||
gcc_assert (DECL_BUILT_IN_CLASS (fn_decl) == BUILT_IN_NORMAL);
|
||
enum built_in_function code = DECL_FUNCTION_CODE (fn_decl);
|
||
gcc_assert (code == BUILT_IN_MEMCPY
|
||
|| code == BUILT_IN_MEMMOVE
|
||
|| code == BUILT_IN_MEMSET);
|
||
|
||
tree repl = find_tm_replacement_function (fn_decl);
|
||
if (repl)
|
||
{
|
||
gimple_call_set_fndecl (stmt, repl);
|
||
update_stmt (stmt);
|
||
node = cgraph_node::create (repl);
|
||
node->local.tm_may_enter_irr = false;
|
||
return expand_call_tm (region, gsi);
|
||
}
|
||
gcc_unreachable ();
|
||
}
|
||
if (node->local.tm_may_enter_irr)
|
||
transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
|
||
|
||
if (is_tm_abort (fn_decl))
|
||
{
|
||
transaction_subcode_ior (region, GTMA_HAVE_ABORT);
|
||
return true;
|
||
}
|
||
|
||
/* Instrument the store if needed.
|
||
|
||
If the assignment happens inside the function call (return slot
|
||
optimization), there is no instrumentation to be done, since
|
||
the callee should have done the right thing. */
|
||
if (lhs && requires_barrier (region->entry_block, lhs, stmt)
|
||
&& !gimple_call_return_slot_opt_p (stmt))
|
||
{
|
||
tree tmp = create_tmp_reg (TREE_TYPE (lhs));
|
||
location_t loc = gimple_location (stmt);
|
||
edge fallthru_edge = NULL;
|
||
gassign *assign_stmt;
|
||
|
||
/* Remember if the call was going to throw. */
|
||
if (stmt_can_throw_internal (stmt))
|
||
{
|
||
edge_iterator ei;
|
||
edge e;
|
||
basic_block bb = gimple_bb (stmt);
|
||
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
if (e->flags & EDGE_FALLTHRU)
|
||
{
|
||
fallthru_edge = e;
|
||
break;
|
||
}
|
||
}
|
||
|
||
gimple_call_set_lhs (stmt, tmp);
|
||
update_stmt (stmt);
|
||
assign_stmt = gimple_build_assign (lhs, tmp);
|
||
gimple_set_location (assign_stmt, loc);
|
||
|
||
/* We cannot throw in the middle of a BB. If the call was going
|
||
to throw, place the instrumentation on the fallthru edge, so
|
||
the call remains the last statement in the block. */
|
||
if (fallthru_edge)
|
||
{
|
||
gimple_seq fallthru_seq = gimple_seq_alloc_with_stmt (assign_stmt);
|
||
gimple_stmt_iterator fallthru_gsi = gsi_start (fallthru_seq);
|
||
expand_assign_tm (region, &fallthru_gsi);
|
||
gsi_insert_seq_on_edge (fallthru_edge, fallthru_seq);
|
||
pending_edge_inserts_p = true;
|
||
}
|
||
else
|
||
{
|
||
gsi_insert_after (gsi, assign_stmt, GSI_CONTINUE_LINKING);
|
||
expand_assign_tm (region, gsi);
|
||
}
|
||
|
||
transaction_subcode_ior (region, GTMA_HAVE_STORE);
|
||
}
|
||
|
||
return retval;
|
||
}
|
||
|
||
|
||
/* Expand all statements in BB as appropriate for being inside
|
||
a transaction. */
|
||
|
||
static void
|
||
expand_block_tm (struct tm_region *region, basic_block bb)
|
||
{
|
||
gimple_stmt_iterator gsi;
|
||
|
||
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
|
||
{
|
||
gimple stmt = gsi_stmt (gsi);
|
||
switch (gimple_code (stmt))
|
||
{
|
||
case GIMPLE_ASSIGN:
|
||
/* Only memory reads/writes need to be instrumented. */
|
||
if (gimple_assign_single_p (stmt)
|
||
&& !gimple_clobber_p (stmt))
|
||
{
|
||
expand_assign_tm (region, &gsi);
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case GIMPLE_CALL:
|
||
if (expand_call_tm (region, &gsi))
|
||
return;
|
||
break;
|
||
|
||
case GIMPLE_ASM:
|
||
gcc_unreachable ();
|
||
|
||
default:
|
||
break;
|
||
}
|
||
if (!gsi_end_p (gsi))
|
||
gsi_next (&gsi);
|
||
}
|
||
}
|
||
|
||
/* Return the list of basic-blocks in REGION.
|
||
|
||
STOP_AT_IRREVOCABLE_P is true if caller is uninterested in blocks
|
||
following a TM_IRREVOCABLE call.
|
||
|
||
INCLUDE_UNINSTRUMENTED_P is TRUE if we should include the
|
||
uninstrumented code path blocks in the list of basic blocks
|
||
returned, false otherwise. */
|
||
|
||
static vec<basic_block>
|
||
get_tm_region_blocks (basic_block entry_block,
|
||
bitmap exit_blocks,
|
||
bitmap irr_blocks,
|
||
bitmap all_region_blocks,
|
||
bool stop_at_irrevocable_p,
|
||
bool include_uninstrumented_p = true)
|
||
{
|
||
vec<basic_block> bbs = vNULL;
|
||
unsigned i;
|
||
edge e;
|
||
edge_iterator ei;
|
||
bitmap visited_blocks = BITMAP_ALLOC (NULL);
|
||
|
||
i = 0;
|
||
bbs.safe_push (entry_block);
|
||
bitmap_set_bit (visited_blocks, entry_block->index);
|
||
|
||
do
|
||
{
|
||
basic_block bb = bbs[i++];
|
||
|
||
if (exit_blocks &&
|
||
bitmap_bit_p (exit_blocks, bb->index))
|
||
continue;
|
||
|
||
if (stop_at_irrevocable_p
|
||
&& irr_blocks
|
||
&& bitmap_bit_p (irr_blocks, bb->index))
|
||
continue;
|
||
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
if ((include_uninstrumented_p
|
||
|| !(e->flags & EDGE_TM_UNINSTRUMENTED))
|
||
&& !bitmap_bit_p (visited_blocks, e->dest->index))
|
||
{
|
||
bitmap_set_bit (visited_blocks, e->dest->index);
|
||
bbs.safe_push (e->dest);
|
||
}
|
||
}
|
||
while (i < bbs.length ());
|
||
|
||
if (all_region_blocks)
|
||
bitmap_ior_into (all_region_blocks, visited_blocks);
|
||
|
||
BITMAP_FREE (visited_blocks);
|
||
return bbs;
|
||
}
|
||
|
||
// Callback data for collect_bb2reg.
|
||
struct bb2reg_stuff
|
||
{
|
||
vec<tm_region_p> *bb2reg;
|
||
bool include_uninstrumented_p;
|
||
};
|
||
|
||
// Callback for expand_regions, collect innermost region data for each bb.
|
||
static void *
|
||
collect_bb2reg (struct tm_region *region, void *data)
|
||
{
|
||
struct bb2reg_stuff *stuff = (struct bb2reg_stuff *)data;
|
||
vec<tm_region_p> *bb2reg = stuff->bb2reg;
|
||
vec<basic_block> queue;
|
||
unsigned int i;
|
||
basic_block bb;
|
||
|
||
queue = get_tm_region_blocks (region->entry_block,
|
||
region->exit_blocks,
|
||
region->irr_blocks,
|
||
NULL,
|
||
/*stop_at_irr_p=*/true,
|
||
stuff->include_uninstrumented_p);
|
||
|
||
// We expect expand_region to perform a post-order traversal of the region
|
||
// tree. Therefore the last region seen for any bb is the innermost.
|
||
FOR_EACH_VEC_ELT (queue, i, bb)
|
||
(*bb2reg)[bb->index] = region;
|
||
|
||
queue.release ();
|
||
return NULL;
|
||
}
|
||
|
||
// Returns a vector, indexed by BB->INDEX, of the innermost tm_region to
|
||
// which a basic block belongs. Note that we only consider the instrumented
|
||
// code paths for the region; the uninstrumented code paths are ignored if
|
||
// INCLUDE_UNINSTRUMENTED_P is false.
|
||
//
|
||
// ??? This data is very similar to the bb_regions array that is collected
|
||
// during tm_region_init. Or, rather, this data is similar to what could
|
||
// be used within tm_region_init. The actual computation in tm_region_init
|
||
// begins and ends with bb_regions entirely full of NULL pointers, due to
|
||
// the way in which pointers are swapped in and out of the array.
|
||
//
|
||
// ??? Our callers expect that blocks are not shared between transactions.
|
||
// When the optimizers get too smart, and blocks are shared, then during
|
||
// the tm_mark phase we'll add log entries to only one of the two transactions,
|
||
// and in the tm_edge phase we'll add edges to the CFG that create invalid
|
||
// cycles. The symptom being SSA defs that do not dominate their uses.
|
||
// Note that the optimizers were locally correct with their transformation,
|
||
// as we have no info within the program that suggests that the blocks cannot
|
||
// be shared.
|
||
//
|
||
// ??? There is currently a hack inside tree-ssa-pre.c to work around the
|
||
// only known instance of this block sharing.
|
||
|
||
static vec<tm_region_p>
|
||
get_bb_regions_instrumented (bool traverse_clones,
|
||
bool include_uninstrumented_p)
|
||
{
|
||
unsigned n = last_basic_block_for_fn (cfun);
|
||
struct bb2reg_stuff stuff;
|
||
vec<tm_region_p> ret;
|
||
|
||
ret.create (n);
|
||
ret.safe_grow_cleared (n);
|
||
stuff.bb2reg = &ret;
|
||
stuff.include_uninstrumented_p = include_uninstrumented_p;
|
||
expand_regions (all_tm_regions, collect_bb2reg, &stuff, traverse_clones);
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Set the IN_TRANSACTION for all gimple statements that appear in a
|
||
transaction. */
|
||
|
||
void
|
||
compute_transaction_bits (void)
|
||
{
|
||
struct tm_region *region;
|
||
vec<basic_block> queue;
|
||
unsigned int i;
|
||
basic_block bb;
|
||
|
||
/* ?? Perhaps we need to abstract gate_tm_init further, because we
|
||
certainly don't need it to calculate CDI_DOMINATOR info. */
|
||
gate_tm_init ();
|
||
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
bb->flags &= ~BB_IN_TRANSACTION;
|
||
|
||
for (region = all_tm_regions; region; region = region->next)
|
||
{
|
||
queue = get_tm_region_blocks (region->entry_block,
|
||
region->exit_blocks,
|
||
region->irr_blocks,
|
||
NULL,
|
||
/*stop_at_irr_p=*/true);
|
||
for (i = 0; queue.iterate (i, &bb); ++i)
|
||
bb->flags |= BB_IN_TRANSACTION;
|
||
queue.release ();
|
||
}
|
||
|
||
if (all_tm_regions)
|
||
bitmap_obstack_release (&tm_obstack);
|
||
}
|
||
|
||
/* Replace the GIMPLE_TRANSACTION in this region with the corresponding
|
||
call to BUILT_IN_TM_START. */
|
||
|
||
static void *
|
||
expand_transaction (struct tm_region *region, void *data ATTRIBUTE_UNUSED)
|
||
{
|
||
tree tm_start = builtin_decl_explicit (BUILT_IN_TM_START);
|
||
basic_block transaction_bb = gimple_bb (region->transaction_stmt);
|
||
tree tm_state = region->tm_state;
|
||
tree tm_state_type = TREE_TYPE (tm_state);
|
||
edge abort_edge = NULL;
|
||
edge inst_edge = NULL;
|
||
edge uninst_edge = NULL;
|
||
edge fallthru_edge = NULL;
|
||
|
||
// Identify the various successors of the transaction start.
|
||
{
|
||
edge_iterator i;
|
||
edge e;
|
||
FOR_EACH_EDGE (e, i, transaction_bb->succs)
|
||
{
|
||
if (e->flags & EDGE_TM_ABORT)
|
||
abort_edge = e;
|
||
else if (e->flags & EDGE_TM_UNINSTRUMENTED)
|
||
uninst_edge = e;
|
||
else
|
||
inst_edge = e;
|
||
if (e->flags & EDGE_FALLTHRU)
|
||
fallthru_edge = e;
|
||
}
|
||
}
|
||
|
||
/* ??? There are plenty of bits here we're not computing. */
|
||
{
|
||
int subcode = gimple_transaction_subcode (region->get_transaction_stmt ());
|
||
int flags = 0;
|
||
if (subcode & GTMA_DOES_GO_IRREVOCABLE)
|
||
flags |= PR_DOESGOIRREVOCABLE;
|
||
if ((subcode & GTMA_MAY_ENTER_IRREVOCABLE) == 0)
|
||
flags |= PR_HASNOIRREVOCABLE;
|
||
/* If the transaction does not have an abort in lexical scope and is not
|
||
marked as an outer transaction, then it will never abort. */
|
||
if ((subcode & GTMA_HAVE_ABORT) == 0 && (subcode & GTMA_IS_OUTER) == 0)
|
||
flags |= PR_HASNOABORT;
|
||
if ((subcode & GTMA_HAVE_STORE) == 0)
|
||
flags |= PR_READONLY;
|
||
if (inst_edge && !(subcode & GTMA_HAS_NO_INSTRUMENTATION))
|
||
flags |= PR_INSTRUMENTEDCODE;
|
||
if (uninst_edge)
|
||
flags |= PR_UNINSTRUMENTEDCODE;
|
||
if (subcode & GTMA_IS_OUTER)
|
||
region->original_transaction_was_outer = true;
|
||
tree t = build_int_cst (tm_state_type, flags);
|
||
gcall *call = gimple_build_call (tm_start, 1, t);
|
||
gimple_call_set_lhs (call, tm_state);
|
||
gimple_set_location (call, gimple_location (region->transaction_stmt));
|
||
|
||
// Replace the GIMPLE_TRANSACTION with the call to BUILT_IN_TM_START.
|
||
gimple_stmt_iterator gsi = gsi_last_bb (transaction_bb);
|
||
gcc_assert (gsi_stmt (gsi) == region->transaction_stmt);
|
||
gsi_insert_before (&gsi, call, GSI_SAME_STMT);
|
||
gsi_remove (&gsi, true);
|
||
region->transaction_stmt = call;
|
||
}
|
||
|
||
// Generate log saves.
|
||
if (!tm_log_save_addresses.is_empty ())
|
||
tm_log_emit_saves (region->entry_block, transaction_bb);
|
||
|
||
// In the beginning, we've no tests to perform on transaction restart.
|
||
// Note that after this point, transaction_bb becomes the "most recent
|
||
// block containing tests for the transaction".
|
||
region->restart_block = region->entry_block;
|
||
|
||
// Generate log restores.
|
||
if (!tm_log_save_addresses.is_empty ())
|
||
{
|
||
basic_block test_bb = create_empty_bb (transaction_bb);
|
||
basic_block code_bb = create_empty_bb (test_bb);
|
||
basic_block join_bb = create_empty_bb (code_bb);
|
||
add_bb_to_loop (test_bb, transaction_bb->loop_father);
|
||
add_bb_to_loop (code_bb, transaction_bb->loop_father);
|
||
add_bb_to_loop (join_bb, transaction_bb->loop_father);
|
||
if (region->restart_block == region->entry_block)
|
||
region->restart_block = test_bb;
|
||
|
||
tree t1 = create_tmp_reg (tm_state_type);
|
||
tree t2 = build_int_cst (tm_state_type, A_RESTORELIVEVARIABLES);
|
||
gimple stmt = gimple_build_assign (t1, BIT_AND_EXPR, tm_state, t2);
|
||
gimple_stmt_iterator gsi = gsi_last_bb (test_bb);
|
||
gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
|
||
|
||
t2 = build_int_cst (tm_state_type, 0);
|
||
stmt = gimple_build_cond (NE_EXPR, t1, t2, NULL, NULL);
|
||
gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
|
||
|
||
tm_log_emit_restores (region->entry_block, code_bb);
|
||
|
||
edge ei = make_edge (transaction_bb, test_bb, EDGE_FALLTHRU);
|
||
edge et = make_edge (test_bb, code_bb, EDGE_TRUE_VALUE);
|
||
edge ef = make_edge (test_bb, join_bb, EDGE_FALSE_VALUE);
|
||
redirect_edge_pred (fallthru_edge, join_bb);
|
||
|
||
join_bb->frequency = test_bb->frequency = transaction_bb->frequency;
|
||
join_bb->count = test_bb->count = transaction_bb->count;
|
||
|
||
ei->probability = PROB_ALWAYS;
|
||
et->probability = PROB_LIKELY;
|
||
ef->probability = PROB_UNLIKELY;
|
||
et->count = apply_probability (test_bb->count, et->probability);
|
||
ef->count = apply_probability (test_bb->count, ef->probability);
|
||
|
||
code_bb->count = et->count;
|
||
code_bb->frequency = EDGE_FREQUENCY (et);
|
||
|
||
transaction_bb = join_bb;
|
||
}
|
||
|
||
// If we have an ABORT edge, create a test to perform the abort.
|
||
if (abort_edge)
|
||
{
|
||
basic_block test_bb = create_empty_bb (transaction_bb);
|
||
add_bb_to_loop (test_bb, transaction_bb->loop_father);
|
||
if (region->restart_block == region->entry_block)
|
||
region->restart_block = test_bb;
|
||
|
||
tree t1 = create_tmp_reg (tm_state_type);
|
||
tree t2 = build_int_cst (tm_state_type, A_ABORTTRANSACTION);
|
||
gimple stmt = gimple_build_assign (t1, BIT_AND_EXPR, tm_state, t2);
|
||
gimple_stmt_iterator gsi = gsi_last_bb (test_bb);
|
||
gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
|
||
|
||
t2 = build_int_cst (tm_state_type, 0);
|
||
stmt = gimple_build_cond (NE_EXPR, t1, t2, NULL, NULL);
|
||
gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
|
||
|
||
edge ei = make_edge (transaction_bb, test_bb, EDGE_FALLTHRU);
|
||
test_bb->frequency = transaction_bb->frequency;
|
||
test_bb->count = transaction_bb->count;
|
||
ei->probability = PROB_ALWAYS;
|
||
|
||
// Not abort edge. If both are live, chose one at random as we'll
|
||
// we'll be fixing that up below.
|
||
redirect_edge_pred (fallthru_edge, test_bb);
|
||
fallthru_edge->flags = EDGE_FALSE_VALUE;
|
||
fallthru_edge->probability = PROB_VERY_LIKELY;
|
||
fallthru_edge->count
|
||
= apply_probability (test_bb->count, fallthru_edge->probability);
|
||
|
||
// Abort/over edge.
|
||
redirect_edge_pred (abort_edge, test_bb);
|
||
abort_edge->flags = EDGE_TRUE_VALUE;
|
||
abort_edge->probability = PROB_VERY_UNLIKELY;
|
||
abort_edge->count
|
||
= apply_probability (test_bb->count, abort_edge->probability);
|
||
|
||
transaction_bb = test_bb;
|
||
}
|
||
|
||
// If we have both instrumented and uninstrumented code paths, select one.
|
||
if (inst_edge && uninst_edge)
|
||
{
|
||
basic_block test_bb = create_empty_bb (transaction_bb);
|
||
add_bb_to_loop (test_bb, transaction_bb->loop_father);
|
||
if (region->restart_block == region->entry_block)
|
||
region->restart_block = test_bb;
|
||
|
||
tree t1 = create_tmp_reg (tm_state_type);
|
||
tree t2 = build_int_cst (tm_state_type, A_RUNUNINSTRUMENTEDCODE);
|
||
|
||
gimple stmt = gimple_build_assign (t1, BIT_AND_EXPR, tm_state, t2);
|
||
gimple_stmt_iterator gsi = gsi_last_bb (test_bb);
|
||
gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
|
||
|
||
t2 = build_int_cst (tm_state_type, 0);
|
||
stmt = gimple_build_cond (NE_EXPR, t1, t2, NULL, NULL);
|
||
gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
|
||
|
||
// Create the edge into test_bb first, as we want to copy values
|
||
// out of the fallthru edge.
|
||
edge e = make_edge (transaction_bb, test_bb, fallthru_edge->flags);
|
||
e->probability = fallthru_edge->probability;
|
||
test_bb->count = e->count = fallthru_edge->count;
|
||
test_bb->frequency = EDGE_FREQUENCY (e);
|
||
|
||
// Now update the edges to the inst/uninist implementations.
|
||
// For now assume that the paths are equally likely. When using HTM,
|
||
// we'll try the uninst path first and fallback to inst path if htm
|
||
// buffers are exceeded. Without HTM we start with the inst path and
|
||
// use the uninst path when falling back to serial mode.
|
||
redirect_edge_pred (inst_edge, test_bb);
|
||
inst_edge->flags = EDGE_FALSE_VALUE;
|
||
inst_edge->probability = REG_BR_PROB_BASE / 2;
|
||
inst_edge->count
|
||
= apply_probability (test_bb->count, inst_edge->probability);
|
||
|
||
redirect_edge_pred (uninst_edge, test_bb);
|
||
uninst_edge->flags = EDGE_TRUE_VALUE;
|
||
uninst_edge->probability = REG_BR_PROB_BASE / 2;
|
||
uninst_edge->count
|
||
= apply_probability (test_bb->count, uninst_edge->probability);
|
||
}
|
||
|
||
// If we have no previous special cases, and we have PHIs at the beginning
|
||
// of the atomic region, this means we have a loop at the beginning of the
|
||
// atomic region that shares the first block. This can cause problems with
|
||
// the transaction restart abnormal edges to be added in the tm_edges pass.
|
||
// Solve this by adding a new empty block to receive the abnormal edges.
|
||
if (region->restart_block == region->entry_block
|
||
&& phi_nodes (region->entry_block))
|
||
{
|
||
basic_block empty_bb = create_empty_bb (transaction_bb);
|
||
region->restart_block = empty_bb;
|
||
add_bb_to_loop (empty_bb, transaction_bb->loop_father);
|
||
|
||
redirect_edge_pred (fallthru_edge, empty_bb);
|
||
make_edge (transaction_bb, empty_bb, EDGE_FALLTHRU);
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Generate the temporary to be used for the return value of
|
||
BUILT_IN_TM_START. */
|
||
|
||
static void *
|
||
generate_tm_state (struct tm_region *region, void *data ATTRIBUTE_UNUSED)
|
||
{
|
||
tree tm_start = builtin_decl_explicit (BUILT_IN_TM_START);
|
||
region->tm_state =
|
||
create_tmp_reg (TREE_TYPE (TREE_TYPE (tm_start)), "tm_state");
|
||
|
||
// Reset the subcode, post optimizations. We'll fill this in
|
||
// again as we process blocks.
|
||
if (region->exit_blocks)
|
||
{
|
||
gtransaction *transaction_stmt = region->get_transaction_stmt ();
|
||
unsigned int subcode = gimple_transaction_subcode (transaction_stmt);
|
||
|
||
if (subcode & GTMA_DOES_GO_IRREVOCABLE)
|
||
subcode &= (GTMA_DECLARATION_MASK | GTMA_DOES_GO_IRREVOCABLE
|
||
| GTMA_MAY_ENTER_IRREVOCABLE
|
||
| GTMA_HAS_NO_INSTRUMENTATION);
|
||
else
|
||
subcode &= GTMA_DECLARATION_MASK;
|
||
gimple_transaction_set_subcode (transaction_stmt, subcode);
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
// Propagate flags from inner transactions outwards.
|
||
static void
|
||
propagate_tm_flags_out (struct tm_region *region)
|
||
{
|
||
if (region == NULL)
|
||
return;
|
||
propagate_tm_flags_out (region->inner);
|
||
|
||
if (region->outer && region->outer->transaction_stmt)
|
||
{
|
||
unsigned s
|
||
= gimple_transaction_subcode (region->get_transaction_stmt ());
|
||
s &= (GTMA_HAVE_ABORT | GTMA_HAVE_LOAD | GTMA_HAVE_STORE
|
||
| GTMA_MAY_ENTER_IRREVOCABLE);
|
||
s |= gimple_transaction_subcode (region->outer->get_transaction_stmt ());
|
||
gimple_transaction_set_subcode (region->outer->get_transaction_stmt (),
|
||
s);
|
||
}
|
||
|
||
propagate_tm_flags_out (region->next);
|
||
}
|
||
|
||
/* Entry point to the MARK phase of TM expansion. Here we replace
|
||
transactional memory statements with calls to builtins, and function
|
||
calls with their transactional clones (if available). But we don't
|
||
yet lower GIMPLE_TRANSACTION or add the transaction restart back-edges. */
|
||
|
||
static unsigned int
|
||
execute_tm_mark (void)
|
||
{
|
||
pending_edge_inserts_p = false;
|
||
|
||
expand_regions (all_tm_regions, generate_tm_state, NULL,
|
||
/*traverse_clones=*/true);
|
||
|
||
tm_log_init ();
|
||
|
||
vec<tm_region_p> bb_regions
|
||
= get_bb_regions_instrumented (/*traverse_clones=*/true,
|
||
/*include_uninstrumented_p=*/false);
|
||
struct tm_region *r;
|
||
unsigned i;
|
||
|
||
// Expand memory operations into calls into the runtime.
|
||
// This collects log entries as well.
|
||
FOR_EACH_VEC_ELT (bb_regions, i, r)
|
||
{
|
||
if (r != NULL)
|
||
{
|
||
if (r->transaction_stmt)
|
||
{
|
||
unsigned sub
|
||
= gimple_transaction_subcode (r->get_transaction_stmt ());
|
||
|
||
/* If we're sure to go irrevocable, there won't be
|
||
anything to expand, since the run-time will go
|
||
irrevocable right away. */
|
||
if (sub & GTMA_DOES_GO_IRREVOCABLE
|
||
&& sub & GTMA_MAY_ENTER_IRREVOCABLE)
|
||
continue;
|
||
}
|
||
expand_block_tm (r, BASIC_BLOCK_FOR_FN (cfun, i));
|
||
}
|
||
}
|
||
|
||
bb_regions.release ();
|
||
|
||
// Propagate flags from inner transactions outwards.
|
||
propagate_tm_flags_out (all_tm_regions);
|
||
|
||
// Expand GIMPLE_TRANSACTIONs into calls into the runtime.
|
||
expand_regions (all_tm_regions, expand_transaction, NULL,
|
||
/*traverse_clones=*/false);
|
||
|
||
tm_log_emit ();
|
||
tm_log_delete ();
|
||
|
||
if (pending_edge_inserts_p)
|
||
gsi_commit_edge_inserts ();
|
||
free_dominance_info (CDI_DOMINATORS);
|
||
return 0;
|
||
}
|
||
|
||
namespace {
|
||
|
||
const pass_data pass_data_tm_mark =
|
||
{
|
||
GIMPLE_PASS, /* type */
|
||
"tmmark", /* name */
|
||
OPTGROUP_NONE, /* optinfo_flags */
|
||
TV_TRANS_MEM, /* tv_id */
|
||
( PROP_ssa | PROP_cfg ), /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_update_ssa, /* todo_flags_finish */
|
||
};
|
||
|
||
class pass_tm_mark : public gimple_opt_pass
|
||
{
|
||
public:
|
||
pass_tm_mark (gcc::context *ctxt)
|
||
: gimple_opt_pass (pass_data_tm_mark, ctxt)
|
||
{}
|
||
|
||
/* opt_pass methods: */
|
||
virtual unsigned int execute (function *) { return execute_tm_mark (); }
|
||
|
||
}; // class pass_tm_mark
|
||
|
||
} // anon namespace
|
||
|
||
gimple_opt_pass *
|
||
make_pass_tm_mark (gcc::context *ctxt)
|
||
{
|
||
return new pass_tm_mark (ctxt);
|
||
}
|
||
|
||
|
||
/* Create an abnormal edge from STMT at iter, splitting the block
|
||
as necessary. Adjust *PNEXT as needed for the split block. */
|
||
|
||
static inline void
|
||
split_bb_make_tm_edge (gimple stmt, basic_block dest_bb,
|
||
gimple_stmt_iterator iter, gimple_stmt_iterator *pnext)
|
||
{
|
||
basic_block bb = gimple_bb (stmt);
|
||
if (!gsi_one_before_end_p (iter))
|
||
{
|
||
edge e = split_block (bb, stmt);
|
||
*pnext = gsi_start_bb (e->dest);
|
||
}
|
||
make_edge (bb, dest_bb, EDGE_ABNORMAL);
|
||
|
||
// Record the need for the edge for the benefit of the rtl passes.
|
||
if (cfun->gimple_df->tm_restart == NULL)
|
||
cfun->gimple_df->tm_restart
|
||
= hash_table<tm_restart_hasher>::create_ggc (31);
|
||
|
||
struct tm_restart_node dummy;
|
||
dummy.stmt = stmt;
|
||
dummy.label_or_list = gimple_block_label (dest_bb);
|
||
|
||
tm_restart_node **slot = cfun->gimple_df->tm_restart->find_slot (&dummy,
|
||
INSERT);
|
||
struct tm_restart_node *n = *slot;
|
||
if (n == NULL)
|
||
{
|
||
n = ggc_alloc<tm_restart_node> ();
|
||
*n = dummy;
|
||
}
|
||
else
|
||
{
|
||
tree old = n->label_or_list;
|
||
if (TREE_CODE (old) == LABEL_DECL)
|
||
old = tree_cons (NULL, old, NULL);
|
||
n->label_or_list = tree_cons (NULL, dummy.label_or_list, old);
|
||
}
|
||
}
|
||
|
||
/* Split block BB as necessary for every builtin function we added, and
|
||
wire up the abnormal back edges implied by the transaction restart. */
|
||
|
||
static void
|
||
expand_block_edges (struct tm_region *const region, basic_block bb)
|
||
{
|
||
gimple_stmt_iterator gsi, next_gsi;
|
||
|
||
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi = next_gsi)
|
||
{
|
||
gimple stmt = gsi_stmt (gsi);
|
||
gcall *call_stmt;
|
||
|
||
next_gsi = gsi;
|
||
gsi_next (&next_gsi);
|
||
|
||
// ??? Shouldn't we split for any non-pure, non-irrevocable function?
|
||
call_stmt = dyn_cast <gcall *> (stmt);
|
||
if ((!call_stmt)
|
||
|| (gimple_call_flags (call_stmt) & ECF_TM_BUILTIN) == 0)
|
||
continue;
|
||
|
||
if (DECL_FUNCTION_CODE (gimple_call_fndecl (call_stmt))
|
||
== BUILT_IN_TM_ABORT)
|
||
{
|
||
// If we have a ``_transaction_cancel [[outer]]'', there is only
|
||
// one abnormal edge: to the transaction marked OUTER.
|
||
// All compiler-generated instances of BUILT_IN_TM_ABORT have a
|
||
// constant argument, which we can examine here. Users invoking
|
||
// TM_ABORT directly get what they deserve.
|
||
tree arg = gimple_call_arg (call_stmt, 0);
|
||
if (TREE_CODE (arg) == INTEGER_CST
|
||
&& (TREE_INT_CST_LOW (arg) & AR_OUTERABORT) != 0
|
||
&& !decl_is_tm_clone (current_function_decl))
|
||
{
|
||
// Find the GTMA_IS_OUTER transaction.
|
||
for (struct tm_region *o = region; o; o = o->outer)
|
||
if (o->original_transaction_was_outer)
|
||
{
|
||
split_bb_make_tm_edge (call_stmt, o->restart_block,
|
||
gsi, &next_gsi);
|
||
break;
|
||
}
|
||
|
||
// Otherwise, the front-end should have semantically checked
|
||
// outer aborts, but in either case the target region is not
|
||
// within this function.
|
||
continue;
|
||
}
|
||
|
||
// Non-outer, TM aborts have an abnormal edge to the inner-most
|
||
// transaction, the one being aborted;
|
||
split_bb_make_tm_edge (call_stmt, region->restart_block, gsi,
|
||
&next_gsi);
|
||
}
|
||
|
||
// All TM builtins have an abnormal edge to the outer-most transaction.
|
||
// We never restart inner transactions. For tm clones, we know a-priori
|
||
// that the outer-most transaction is outside the function.
|
||
if (decl_is_tm_clone (current_function_decl))
|
||
continue;
|
||
|
||
if (cfun->gimple_df->tm_restart == NULL)
|
||
cfun->gimple_df->tm_restart
|
||
= hash_table<tm_restart_hasher>::create_ggc (31);
|
||
|
||
// All TM builtins have an abnormal edge to the outer-most transaction.
|
||
// We never restart inner transactions.
|
||
for (struct tm_region *o = region; o; o = o->outer)
|
||
if (!o->outer)
|
||
{
|
||
split_bb_make_tm_edge (call_stmt, o->restart_block, gsi, &next_gsi);
|
||
break;
|
||
}
|
||
|
||
// Delete any tail-call annotation that may have been added.
|
||
// The tail-call pass may have mis-identified the commit as being
|
||
// a candidate because we had not yet added this restart edge.
|
||
gimple_call_set_tail (call_stmt, false);
|
||
}
|
||
}
|
||
|
||
/* Entry point to the final expansion of transactional nodes. */
|
||
|
||
namespace {
|
||
|
||
const pass_data pass_data_tm_edges =
|
||
{
|
||
GIMPLE_PASS, /* type */
|
||
"tmedge", /* name */
|
||
OPTGROUP_NONE, /* optinfo_flags */
|
||
TV_TRANS_MEM, /* tv_id */
|
||
( PROP_ssa | PROP_cfg ), /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_update_ssa, /* todo_flags_finish */
|
||
};
|
||
|
||
class pass_tm_edges : public gimple_opt_pass
|
||
{
|
||
public:
|
||
pass_tm_edges (gcc::context *ctxt)
|
||
: gimple_opt_pass (pass_data_tm_edges, ctxt)
|
||
{}
|
||
|
||
/* opt_pass methods: */
|
||
virtual unsigned int execute (function *);
|
||
|
||
}; // class pass_tm_edges
|
||
|
||
unsigned int
|
||
pass_tm_edges::execute (function *fun)
|
||
{
|
||
vec<tm_region_p> bb_regions
|
||
= get_bb_regions_instrumented (/*traverse_clones=*/false,
|
||
/*include_uninstrumented_p=*/true);
|
||
struct tm_region *r;
|
||
unsigned i;
|
||
|
||
FOR_EACH_VEC_ELT (bb_regions, i, r)
|
||
if (r != NULL)
|
||
expand_block_edges (r, BASIC_BLOCK_FOR_FN (fun, i));
|
||
|
||
bb_regions.release ();
|
||
|
||
/* We've got to release the dominance info now, to indicate that it
|
||
must be rebuilt completely. Otherwise we'll crash trying to update
|
||
the SSA web in the TODO section following this pass. */
|
||
free_dominance_info (CDI_DOMINATORS);
|
||
bitmap_obstack_release (&tm_obstack);
|
||
all_tm_regions = NULL;
|
||
|
||
return 0;
|
||
}
|
||
|
||
} // anon namespace
|
||
|
||
gimple_opt_pass *
|
||
make_pass_tm_edges (gcc::context *ctxt)
|
||
{
|
||
return new pass_tm_edges (ctxt);
|
||
}
|
||
|
||
/* Helper function for expand_regions. Expand REGION and recurse to
|
||
the inner region. Call CALLBACK on each region. CALLBACK returns
|
||
NULL to continue the traversal, otherwise a non-null value which
|
||
this function will return as well. TRAVERSE_CLONES is true if we
|
||
should traverse transactional clones. */
|
||
|
||
static void *
|
||
expand_regions_1 (struct tm_region *region,
|
||
void *(*callback)(struct tm_region *, void *),
|
||
void *data,
|
||
bool traverse_clones)
|
||
{
|
||
void *retval = NULL;
|
||
if (region->exit_blocks
|
||
|| (traverse_clones && decl_is_tm_clone (current_function_decl)))
|
||
{
|
||
retval = callback (region, data);
|
||
if (retval)
|
||
return retval;
|
||
}
|
||
if (region->inner)
|
||
{
|
||
retval = expand_regions (region->inner, callback, data, traverse_clones);
|
||
if (retval)
|
||
return retval;
|
||
}
|
||
return retval;
|
||
}
|
||
|
||
/* Traverse the regions enclosed and including REGION. Execute
|
||
CALLBACK for each region, passing DATA. CALLBACK returns NULL to
|
||
continue the traversal, otherwise a non-null value which this
|
||
function will return as well. TRAVERSE_CLONES is true if we should
|
||
traverse transactional clones. */
|
||
|
||
static void *
|
||
expand_regions (struct tm_region *region,
|
||
void *(*callback)(struct tm_region *, void *),
|
||
void *data,
|
||
bool traverse_clones)
|
||
{
|
||
void *retval = NULL;
|
||
while (region)
|
||
{
|
||
retval = expand_regions_1 (region, callback, data, traverse_clones);
|
||
if (retval)
|
||
return retval;
|
||
region = region->next;
|
||
}
|
||
return retval;
|
||
}
|
||
|
||
|
||
/* A unique TM memory operation. */
|
||
typedef struct tm_memop
|
||
{
|
||
/* Unique ID that all memory operations to the same location have. */
|
||
unsigned int value_id;
|
||
/* Address of load/store. */
|
||
tree addr;
|
||
} *tm_memop_t;
|
||
|
||
/* TM memory operation hashtable helpers. */
|
||
|
||
struct tm_memop_hasher : typed_free_remove <tm_memop>
|
||
{
|
||
typedef tm_memop value_type;
|
||
typedef tm_memop compare_type;
|
||
static inline hashval_t hash (const value_type *);
|
||
static inline bool equal (const value_type *, const compare_type *);
|
||
};
|
||
|
||
/* Htab support. Return a hash value for a `tm_memop'. */
|
||
inline hashval_t
|
||
tm_memop_hasher::hash (const value_type *mem)
|
||
{
|
||
tree addr = mem->addr;
|
||
/* We drill down to the SSA_NAME/DECL for the hash, but equality is
|
||
actually done with operand_equal_p (see tm_memop_eq). */
|
||
if (TREE_CODE (addr) == ADDR_EXPR)
|
||
addr = TREE_OPERAND (addr, 0);
|
||
return iterative_hash_expr (addr, 0);
|
||
}
|
||
|
||
/* Htab support. Return true if two tm_memop's are the same. */
|
||
inline bool
|
||
tm_memop_hasher::equal (const value_type *mem1, const compare_type *mem2)
|
||
{
|
||
return operand_equal_p (mem1->addr, mem2->addr, 0);
|
||
}
|
||
|
||
/* Sets for solving data flow equations in the memory optimization pass. */
|
||
struct tm_memopt_bitmaps
|
||
{
|
||
/* Stores available to this BB upon entry. Basically, stores that
|
||
dominate this BB. */
|
||
bitmap store_avail_in;
|
||
/* Stores available at the end of this BB. */
|
||
bitmap store_avail_out;
|
||
bitmap store_antic_in;
|
||
bitmap store_antic_out;
|
||
/* Reads available to this BB upon entry. Basically, reads that
|
||
dominate this BB. */
|
||
bitmap read_avail_in;
|
||
/* Reads available at the end of this BB. */
|
||
bitmap read_avail_out;
|
||
/* Reads performed in this BB. */
|
||
bitmap read_local;
|
||
/* Writes performed in this BB. */
|
||
bitmap store_local;
|
||
|
||
/* Temporary storage for pass. */
|
||
/* Is the current BB in the worklist? */
|
||
bool avail_in_worklist_p;
|
||
/* Have we visited this BB? */
|
||
bool visited_p;
|
||
};
|
||
|
||
static bitmap_obstack tm_memopt_obstack;
|
||
|
||
/* Unique counter for TM loads and stores. Loads and stores of the
|
||
same address get the same ID. */
|
||
static unsigned int tm_memopt_value_id;
|
||
static hash_table<tm_memop_hasher> *tm_memopt_value_numbers;
|
||
|
||
#define STORE_AVAIL_IN(BB) \
|
||
((struct tm_memopt_bitmaps *) ((BB)->aux))->store_avail_in
|
||
#define STORE_AVAIL_OUT(BB) \
|
||
((struct tm_memopt_bitmaps *) ((BB)->aux))->store_avail_out
|
||
#define STORE_ANTIC_IN(BB) \
|
||
((struct tm_memopt_bitmaps *) ((BB)->aux))->store_antic_in
|
||
#define STORE_ANTIC_OUT(BB) \
|
||
((struct tm_memopt_bitmaps *) ((BB)->aux))->store_antic_out
|
||
#define READ_AVAIL_IN(BB) \
|
||
((struct tm_memopt_bitmaps *) ((BB)->aux))->read_avail_in
|
||
#define READ_AVAIL_OUT(BB) \
|
||
((struct tm_memopt_bitmaps *) ((BB)->aux))->read_avail_out
|
||
#define READ_LOCAL(BB) \
|
||
((struct tm_memopt_bitmaps *) ((BB)->aux))->read_local
|
||
#define STORE_LOCAL(BB) \
|
||
((struct tm_memopt_bitmaps *) ((BB)->aux))->store_local
|
||
#define AVAIL_IN_WORKLIST_P(BB) \
|
||
((struct tm_memopt_bitmaps *) ((BB)->aux))->avail_in_worklist_p
|
||
#define BB_VISITED_P(BB) \
|
||
((struct tm_memopt_bitmaps *) ((BB)->aux))->visited_p
|
||
|
||
/* Given a TM load/store in STMT, return the value number for the address
|
||
it accesses. */
|
||
|
||
static unsigned int
|
||
tm_memopt_value_number (gimple stmt, enum insert_option op)
|
||
{
|
||
struct tm_memop tmpmem, *mem;
|
||
tm_memop **slot;
|
||
|
||
gcc_assert (is_tm_load (stmt) || is_tm_store (stmt));
|
||
tmpmem.addr = gimple_call_arg (stmt, 0);
|
||
slot = tm_memopt_value_numbers->find_slot (&tmpmem, op);
|
||
if (*slot)
|
||
mem = *slot;
|
||
else if (op == INSERT)
|
||
{
|
||
mem = XNEW (struct tm_memop);
|
||
*slot = mem;
|
||
mem->value_id = tm_memopt_value_id++;
|
||
mem->addr = tmpmem.addr;
|
||
}
|
||
else
|
||
gcc_unreachable ();
|
||
return mem->value_id;
|
||
}
|
||
|
||
/* Accumulate TM memory operations in BB into STORE_LOCAL and READ_LOCAL. */
|
||
|
||
static void
|
||
tm_memopt_accumulate_memops (basic_block bb)
|
||
{
|
||
gimple_stmt_iterator gsi;
|
||
|
||
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
||
{
|
||
gimple stmt = gsi_stmt (gsi);
|
||
bitmap bits;
|
||
unsigned int loc;
|
||
|
||
if (is_tm_store (stmt))
|
||
bits = STORE_LOCAL (bb);
|
||
else if (is_tm_load (stmt))
|
||
bits = READ_LOCAL (bb);
|
||
else
|
||
continue;
|
||
|
||
loc = tm_memopt_value_number (stmt, INSERT);
|
||
bitmap_set_bit (bits, loc);
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "TM memopt (%s): value num=%d, BB=%d, addr=",
|
||
is_tm_load (stmt) ? "LOAD" : "STORE", loc,
|
||
gimple_bb (stmt)->index);
|
||
print_generic_expr (dump_file, gimple_call_arg (stmt, 0), 0);
|
||
fprintf (dump_file, "\n");
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Prettily dump one of the memopt sets. BITS is the bitmap to dump. */
|
||
|
||
static void
|
||
dump_tm_memopt_set (const char *set_name, bitmap bits)
|
||
{
|
||
unsigned i;
|
||
bitmap_iterator bi;
|
||
const char *comma = "";
|
||
|
||
fprintf (dump_file, "TM memopt: %s: [", set_name);
|
||
EXECUTE_IF_SET_IN_BITMAP (bits, 0, i, bi)
|
||
{
|
||
hash_table<tm_memop_hasher>::iterator hi;
|
||
struct tm_memop *mem = NULL;
|
||
|
||
/* Yeah, yeah, yeah. Whatever. This is just for debugging. */
|
||
FOR_EACH_HASH_TABLE_ELEMENT (*tm_memopt_value_numbers, mem, tm_memop_t, hi)
|
||
if (mem->value_id == i)
|
||
break;
|
||
gcc_assert (mem->value_id == i);
|
||
fprintf (dump_file, "%s", comma);
|
||
comma = ", ";
|
||
print_generic_expr (dump_file, mem->addr, 0);
|
||
}
|
||
fprintf (dump_file, "]\n");
|
||
}
|
||
|
||
/* Prettily dump all of the memopt sets in BLOCKS. */
|
||
|
||
static void
|
||
dump_tm_memopt_sets (vec<basic_block> blocks)
|
||
{
|
||
size_t i;
|
||
basic_block bb;
|
||
|
||
for (i = 0; blocks.iterate (i, &bb); ++i)
|
||
{
|
||
fprintf (dump_file, "------------BB %d---------\n", bb->index);
|
||
dump_tm_memopt_set ("STORE_LOCAL", STORE_LOCAL (bb));
|
||
dump_tm_memopt_set ("READ_LOCAL", READ_LOCAL (bb));
|
||
dump_tm_memopt_set ("STORE_AVAIL_IN", STORE_AVAIL_IN (bb));
|
||
dump_tm_memopt_set ("STORE_AVAIL_OUT", STORE_AVAIL_OUT (bb));
|
||
dump_tm_memopt_set ("READ_AVAIL_IN", READ_AVAIL_IN (bb));
|
||
dump_tm_memopt_set ("READ_AVAIL_OUT", READ_AVAIL_OUT (bb));
|
||
}
|
||
}
|
||
|
||
/* Compute {STORE,READ}_AVAIL_IN for the basic block BB. */
|
||
|
||
static void
|
||
tm_memopt_compute_avin (basic_block bb)
|
||
{
|
||
edge e;
|
||
unsigned ix;
|
||
|
||
/* Seed with the AVOUT of any predecessor. */
|
||
for (ix = 0; ix < EDGE_COUNT (bb->preds); ix++)
|
||
{
|
||
e = EDGE_PRED (bb, ix);
|
||
/* Make sure we have already visited this BB, and is thus
|
||
initialized.
|
||
|
||
If e->src->aux is NULL, this predecessor is actually on an
|
||
enclosing transaction. We only care about the current
|
||
transaction, so ignore it. */
|
||
if (e->src->aux && BB_VISITED_P (e->src))
|
||
{
|
||
bitmap_copy (STORE_AVAIL_IN (bb), STORE_AVAIL_OUT (e->src));
|
||
bitmap_copy (READ_AVAIL_IN (bb), READ_AVAIL_OUT (e->src));
|
||
break;
|
||
}
|
||
}
|
||
|
||
for (; ix < EDGE_COUNT (bb->preds); ix++)
|
||
{
|
||
e = EDGE_PRED (bb, ix);
|
||
if (e->src->aux && BB_VISITED_P (e->src))
|
||
{
|
||
bitmap_and_into (STORE_AVAIL_IN (bb), STORE_AVAIL_OUT (e->src));
|
||
bitmap_and_into (READ_AVAIL_IN (bb), READ_AVAIL_OUT (e->src));
|
||
}
|
||
}
|
||
|
||
BB_VISITED_P (bb) = true;
|
||
}
|
||
|
||
/* Compute the STORE_ANTIC_IN for the basic block BB. */
|
||
|
||
static void
|
||
tm_memopt_compute_antin (basic_block bb)
|
||
{
|
||
edge e;
|
||
unsigned ix;
|
||
|
||
/* Seed with the ANTIC_OUT of any successor. */
|
||
for (ix = 0; ix < EDGE_COUNT (bb->succs); ix++)
|
||
{
|
||
e = EDGE_SUCC (bb, ix);
|
||
/* Make sure we have already visited this BB, and is thus
|
||
initialized. */
|
||
if (BB_VISITED_P (e->dest))
|
||
{
|
||
bitmap_copy (STORE_ANTIC_IN (bb), STORE_ANTIC_OUT (e->dest));
|
||
break;
|
||
}
|
||
}
|
||
|
||
for (; ix < EDGE_COUNT (bb->succs); ix++)
|
||
{
|
||
e = EDGE_SUCC (bb, ix);
|
||
if (BB_VISITED_P (e->dest))
|
||
bitmap_and_into (STORE_ANTIC_IN (bb), STORE_ANTIC_OUT (e->dest));
|
||
}
|
||
|
||
BB_VISITED_P (bb) = true;
|
||
}
|
||
|
||
/* Compute the AVAIL sets for every basic block in BLOCKS.
|
||
|
||
We compute {STORE,READ}_AVAIL_{OUT,IN} as follows:
|
||
|
||
AVAIL_OUT[bb] = union (AVAIL_IN[bb], LOCAL[bb])
|
||
AVAIL_IN[bb] = intersect (AVAIL_OUT[predecessors])
|
||
|
||
This is basically what we do in lcm's compute_available(), but here
|
||
we calculate two sets of sets (one for STOREs and one for READs),
|
||
and we work on a region instead of the entire CFG.
|
||
|
||
REGION is the TM region.
|
||
BLOCKS are the basic blocks in the region. */
|
||
|
||
static void
|
||
tm_memopt_compute_available (struct tm_region *region,
|
||
vec<basic_block> blocks)
|
||
{
|
||
edge e;
|
||
basic_block *worklist, *qin, *qout, *qend, bb;
|
||
unsigned int qlen, i;
|
||
edge_iterator ei;
|
||
bool changed;
|
||
|
||
/* Allocate a worklist array/queue. Entries are only added to the
|
||
list if they were not already on the list. So the size is
|
||
bounded by the number of basic blocks in the region. */
|
||
qlen = blocks.length () - 1;
|
||
qin = qout = worklist =
|
||
XNEWVEC (basic_block, qlen);
|
||
|
||
/* Put every block in the region on the worklist. */
|
||
for (i = 0; blocks.iterate (i, &bb); ++i)
|
||
{
|
||
/* Seed AVAIL_OUT with the LOCAL set. */
|
||
bitmap_ior_into (STORE_AVAIL_OUT (bb), STORE_LOCAL (bb));
|
||
bitmap_ior_into (READ_AVAIL_OUT (bb), READ_LOCAL (bb));
|
||
|
||
AVAIL_IN_WORKLIST_P (bb) = true;
|
||
/* No need to insert the entry block, since it has an AVIN of
|
||
null, and an AVOUT that has already been seeded in. */
|
||
if (bb != region->entry_block)
|
||
*qin++ = bb;
|
||
}
|
||
|
||
/* The entry block has been initialized with the local sets. */
|
||
BB_VISITED_P (region->entry_block) = true;
|
||
|
||
qin = worklist;
|
||
qend = &worklist[qlen];
|
||
|
||
/* Iterate until the worklist is empty. */
|
||
while (qlen)
|
||
{
|
||
/* Take the first entry off the worklist. */
|
||
bb = *qout++;
|
||
qlen--;
|
||
|
||
if (qout >= qend)
|
||
qout = worklist;
|
||
|
||
/* This block can be added to the worklist again if necessary. */
|
||
AVAIL_IN_WORKLIST_P (bb) = false;
|
||
tm_memopt_compute_avin (bb);
|
||
|
||
/* Note: We do not add the LOCAL sets here because we already
|
||
seeded the AVAIL_OUT sets with them. */
|
||
changed = bitmap_ior_into (STORE_AVAIL_OUT (bb), STORE_AVAIL_IN (bb));
|
||
changed |= bitmap_ior_into (READ_AVAIL_OUT (bb), READ_AVAIL_IN (bb));
|
||
if (changed
|
||
&& (region->exit_blocks == NULL
|
||
|| !bitmap_bit_p (region->exit_blocks, bb->index)))
|
||
/* If the out state of this block changed, then we need to add
|
||
its successors to the worklist if they are not already in. */
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
if (!AVAIL_IN_WORKLIST_P (e->dest)
|
||
&& e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
{
|
||
*qin++ = e->dest;
|
||
AVAIL_IN_WORKLIST_P (e->dest) = true;
|
||
qlen++;
|
||
|
||
if (qin >= qend)
|
||
qin = worklist;
|
||
}
|
||
}
|
||
|
||
free (worklist);
|
||
|
||
if (dump_file)
|
||
dump_tm_memopt_sets (blocks);
|
||
}
|
||
|
||
/* Compute ANTIC sets for every basic block in BLOCKS.
|
||
|
||
We compute STORE_ANTIC_OUT as follows:
|
||
|
||
STORE_ANTIC_OUT[bb] = union(STORE_ANTIC_IN[bb], STORE_LOCAL[bb])
|
||
STORE_ANTIC_IN[bb] = intersect(STORE_ANTIC_OUT[successors])
|
||
|
||
REGION is the TM region.
|
||
BLOCKS are the basic blocks in the region. */
|
||
|
||
static void
|
||
tm_memopt_compute_antic (struct tm_region *region,
|
||
vec<basic_block> blocks)
|
||
{
|
||
edge e;
|
||
basic_block *worklist, *qin, *qout, *qend, bb;
|
||
unsigned int qlen;
|
||
int i;
|
||
edge_iterator ei;
|
||
|
||
/* Allocate a worklist array/queue. Entries are only added to the
|
||
list if they were not already on the list. So the size is
|
||
bounded by the number of basic blocks in the region. */
|
||
qin = qout = worklist = XNEWVEC (basic_block, blocks.length ());
|
||
|
||
for (qlen = 0, i = blocks.length () - 1; i >= 0; --i)
|
||
{
|
||
bb = blocks[i];
|
||
|
||
/* Seed ANTIC_OUT with the LOCAL set. */
|
||
bitmap_ior_into (STORE_ANTIC_OUT (bb), STORE_LOCAL (bb));
|
||
|
||
/* Put every block in the region on the worklist. */
|
||
AVAIL_IN_WORKLIST_P (bb) = true;
|
||
/* No need to insert exit blocks, since their ANTIC_IN is NULL,
|
||
and their ANTIC_OUT has already been seeded in. */
|
||
if (region->exit_blocks
|
||
&& !bitmap_bit_p (region->exit_blocks, bb->index))
|
||
{
|
||
qlen++;
|
||
*qin++ = bb;
|
||
}
|
||
}
|
||
|
||
/* The exit blocks have been initialized with the local sets. */
|
||
if (region->exit_blocks)
|
||
{
|
||
unsigned int i;
|
||
bitmap_iterator bi;
|
||
EXECUTE_IF_SET_IN_BITMAP (region->exit_blocks, 0, i, bi)
|
||
BB_VISITED_P (BASIC_BLOCK_FOR_FN (cfun, i)) = true;
|
||
}
|
||
|
||
qin = worklist;
|
||
qend = &worklist[qlen];
|
||
|
||
/* Iterate until the worklist is empty. */
|
||
while (qlen)
|
||
{
|
||
/* Take the first entry off the worklist. */
|
||
bb = *qout++;
|
||
qlen--;
|
||
|
||
if (qout >= qend)
|
||
qout = worklist;
|
||
|
||
/* This block can be added to the worklist again if necessary. */
|
||
AVAIL_IN_WORKLIST_P (bb) = false;
|
||
tm_memopt_compute_antin (bb);
|
||
|
||
/* Note: We do not add the LOCAL sets here because we already
|
||
seeded the ANTIC_OUT sets with them. */
|
||
if (bitmap_ior_into (STORE_ANTIC_OUT (bb), STORE_ANTIC_IN (bb))
|
||
&& bb != region->entry_block)
|
||
/* If the out state of this block changed, then we need to add
|
||
its predecessors to the worklist if they are not already in. */
|
||
FOR_EACH_EDGE (e, ei, bb->preds)
|
||
if (!AVAIL_IN_WORKLIST_P (e->src))
|
||
{
|
||
*qin++ = e->src;
|
||
AVAIL_IN_WORKLIST_P (e->src) = true;
|
||
qlen++;
|
||
|
||
if (qin >= qend)
|
||
qin = worklist;
|
||
}
|
||
}
|
||
|
||
free (worklist);
|
||
|
||
if (dump_file)
|
||
dump_tm_memopt_sets (blocks);
|
||
}
|
||
|
||
/* Offsets of load variants from TM_LOAD. For example,
|
||
BUILT_IN_TM_LOAD_RAR* is an offset of 1 from BUILT_IN_TM_LOAD*.
|
||
See gtm-builtins.def. */
|
||
#define TRANSFORM_RAR 1
|
||
#define TRANSFORM_RAW 2
|
||
#define TRANSFORM_RFW 3
|
||
/* Offsets of store variants from TM_STORE. */
|
||
#define TRANSFORM_WAR 1
|
||
#define TRANSFORM_WAW 2
|
||
|
||
/* Inform about a load/store optimization. */
|
||
|
||
static void
|
||
dump_tm_memopt_transform (gimple stmt)
|
||
{
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "TM memopt: transforming: ");
|
||
print_gimple_stmt (dump_file, stmt, 0, 0);
|
||
fprintf (dump_file, "\n");
|
||
}
|
||
}
|
||
|
||
/* Perform a read/write optimization. Replaces the TM builtin in STMT
|
||
by a builtin that is OFFSET entries down in the builtins table in
|
||
gtm-builtins.def. */
|
||
|
||
static void
|
||
tm_memopt_transform_stmt (unsigned int offset,
|
||
gcall *stmt,
|
||
gimple_stmt_iterator *gsi)
|
||
{
|
||
tree fn = gimple_call_fn (stmt);
|
||
gcc_assert (TREE_CODE (fn) == ADDR_EXPR);
|
||
TREE_OPERAND (fn, 0)
|
||
= builtin_decl_explicit ((enum built_in_function)
|
||
(DECL_FUNCTION_CODE (TREE_OPERAND (fn, 0))
|
||
+ offset));
|
||
gimple_call_set_fn (stmt, fn);
|
||
gsi_replace (gsi, stmt, true);
|
||
dump_tm_memopt_transform (stmt);
|
||
}
|
||
|
||
/* Perform the actual TM memory optimization transformations in the
|
||
basic blocks in BLOCKS. */
|
||
|
||
static void
|
||
tm_memopt_transform_blocks (vec<basic_block> blocks)
|
||
{
|
||
size_t i;
|
||
basic_block bb;
|
||
gimple_stmt_iterator gsi;
|
||
|
||
for (i = 0; blocks.iterate (i, &bb); ++i)
|
||
{
|
||
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
||
{
|
||
gimple stmt = gsi_stmt (gsi);
|
||
bitmap read_avail = READ_AVAIL_IN (bb);
|
||
bitmap store_avail = STORE_AVAIL_IN (bb);
|
||
bitmap store_antic = STORE_ANTIC_OUT (bb);
|
||
unsigned int loc;
|
||
|
||
if (is_tm_simple_load (stmt))
|
||
{
|
||
gcall *call_stmt = as_a <gcall *> (stmt);
|
||
loc = tm_memopt_value_number (stmt, NO_INSERT);
|
||
if (store_avail && bitmap_bit_p (store_avail, loc))
|
||
tm_memopt_transform_stmt (TRANSFORM_RAW, call_stmt, &gsi);
|
||
else if (store_antic && bitmap_bit_p (store_antic, loc))
|
||
{
|
||
tm_memopt_transform_stmt (TRANSFORM_RFW, call_stmt, &gsi);
|
||
bitmap_set_bit (store_avail, loc);
|
||
}
|
||
else if (read_avail && bitmap_bit_p (read_avail, loc))
|
||
tm_memopt_transform_stmt (TRANSFORM_RAR, call_stmt, &gsi);
|
||
else
|
||
bitmap_set_bit (read_avail, loc);
|
||
}
|
||
else if (is_tm_simple_store (stmt))
|
||
{
|
||
gcall *call_stmt = as_a <gcall *> (stmt);
|
||
loc = tm_memopt_value_number (stmt, NO_INSERT);
|
||
if (store_avail && bitmap_bit_p (store_avail, loc))
|
||
tm_memopt_transform_stmt (TRANSFORM_WAW, call_stmt, &gsi);
|
||
else
|
||
{
|
||
if (read_avail && bitmap_bit_p (read_avail, loc))
|
||
tm_memopt_transform_stmt (TRANSFORM_WAR, call_stmt, &gsi);
|
||
bitmap_set_bit (store_avail, loc);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Return a new set of bitmaps for a BB. */
|
||
|
||
static struct tm_memopt_bitmaps *
|
||
tm_memopt_init_sets (void)
|
||
{
|
||
struct tm_memopt_bitmaps *b
|
||
= XOBNEW (&tm_memopt_obstack.obstack, struct tm_memopt_bitmaps);
|
||
b->store_avail_in = BITMAP_ALLOC (&tm_memopt_obstack);
|
||
b->store_avail_out = BITMAP_ALLOC (&tm_memopt_obstack);
|
||
b->store_antic_in = BITMAP_ALLOC (&tm_memopt_obstack);
|
||
b->store_antic_out = BITMAP_ALLOC (&tm_memopt_obstack);
|
||
b->store_avail_out = BITMAP_ALLOC (&tm_memopt_obstack);
|
||
b->read_avail_in = BITMAP_ALLOC (&tm_memopt_obstack);
|
||
b->read_avail_out = BITMAP_ALLOC (&tm_memopt_obstack);
|
||
b->read_local = BITMAP_ALLOC (&tm_memopt_obstack);
|
||
b->store_local = BITMAP_ALLOC (&tm_memopt_obstack);
|
||
return b;
|
||
}
|
||
|
||
/* Free sets computed for each BB. */
|
||
|
||
static void
|
||
tm_memopt_free_sets (vec<basic_block> blocks)
|
||
{
|
||
size_t i;
|
||
basic_block bb;
|
||
|
||
for (i = 0; blocks.iterate (i, &bb); ++i)
|
||
bb->aux = NULL;
|
||
}
|
||
|
||
/* Clear the visited bit for every basic block in BLOCKS. */
|
||
|
||
static void
|
||
tm_memopt_clear_visited (vec<basic_block> blocks)
|
||
{
|
||
size_t i;
|
||
basic_block bb;
|
||
|
||
for (i = 0; blocks.iterate (i, &bb); ++i)
|
||
BB_VISITED_P (bb) = false;
|
||
}
|
||
|
||
/* Replace TM load/stores with hints for the runtime. We handle
|
||
things like read-after-write, write-after-read, read-after-read,
|
||
read-for-write, etc. */
|
||
|
||
static unsigned int
|
||
execute_tm_memopt (void)
|
||
{
|
||
struct tm_region *region;
|
||
vec<basic_block> bbs;
|
||
|
||
tm_memopt_value_id = 0;
|
||
tm_memopt_value_numbers = new hash_table<tm_memop_hasher> (10);
|
||
|
||
for (region = all_tm_regions; region; region = region->next)
|
||
{
|
||
/* All the TM stores/loads in the current region. */
|
||
size_t i;
|
||
basic_block bb;
|
||
|
||
bitmap_obstack_initialize (&tm_memopt_obstack);
|
||
|
||
/* Save all BBs for the current region. */
|
||
bbs = get_tm_region_blocks (region->entry_block,
|
||
region->exit_blocks,
|
||
region->irr_blocks,
|
||
NULL,
|
||
false);
|
||
|
||
/* Collect all the memory operations. */
|
||
for (i = 0; bbs.iterate (i, &bb); ++i)
|
||
{
|
||
bb->aux = tm_memopt_init_sets ();
|
||
tm_memopt_accumulate_memops (bb);
|
||
}
|
||
|
||
/* Solve data flow equations and transform each block accordingly. */
|
||
tm_memopt_clear_visited (bbs);
|
||
tm_memopt_compute_available (region, bbs);
|
||
tm_memopt_clear_visited (bbs);
|
||
tm_memopt_compute_antic (region, bbs);
|
||
tm_memopt_transform_blocks (bbs);
|
||
|
||
tm_memopt_free_sets (bbs);
|
||
bbs.release ();
|
||
bitmap_obstack_release (&tm_memopt_obstack);
|
||
tm_memopt_value_numbers->empty ();
|
||
}
|
||
|
||
delete tm_memopt_value_numbers;
|
||
tm_memopt_value_numbers = NULL;
|
||
return 0;
|
||
}
|
||
|
||
namespace {
|
||
|
||
const pass_data pass_data_tm_memopt =
|
||
{
|
||
GIMPLE_PASS, /* type */
|
||
"tmmemopt", /* name */
|
||
OPTGROUP_NONE, /* optinfo_flags */
|
||
TV_TRANS_MEM, /* tv_id */
|
||
( PROP_ssa | PROP_cfg ), /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
0, /* todo_flags_finish */
|
||
};
|
||
|
||
class pass_tm_memopt : public gimple_opt_pass
|
||
{
|
||
public:
|
||
pass_tm_memopt (gcc::context *ctxt)
|
||
: gimple_opt_pass (pass_data_tm_memopt, ctxt)
|
||
{}
|
||
|
||
/* opt_pass methods: */
|
||
virtual bool gate (function *) { return flag_tm && optimize > 0; }
|
||
virtual unsigned int execute (function *) { return execute_tm_memopt (); }
|
||
|
||
}; // class pass_tm_memopt
|
||
|
||
} // anon namespace
|
||
|
||
gimple_opt_pass *
|
||
make_pass_tm_memopt (gcc::context *ctxt)
|
||
{
|
||
return new pass_tm_memopt (ctxt);
|
||
}
|
||
|
||
|
||
/* Interprocedual analysis for the creation of transactional clones.
|
||
The aim of this pass is to find which functions are referenced in
|
||
a non-irrevocable transaction context, and for those over which
|
||
we have control (or user directive), create a version of the
|
||
function which uses only the transactional interface to reference
|
||
protected memories. This analysis proceeds in several steps:
|
||
|
||
(1) Collect the set of all possible transactional clones:
|
||
|
||
(a) For all local public functions marked tm_callable, push
|
||
it onto the tm_callee queue.
|
||
|
||
(b) For all local functions, scan for calls in transaction blocks.
|
||
Push the caller and callee onto the tm_caller and tm_callee
|
||
queues. Count the number of callers for each callee.
|
||
|
||
(c) For each local function on the callee list, assume we will
|
||
create a transactional clone. Push *all* calls onto the
|
||
callee queues; count the number of clone callers separately
|
||
to the number of original callers.
|
||
|
||
(2) Propagate irrevocable status up the dominator tree:
|
||
|
||
(a) Any external function on the callee list that is not marked
|
||
tm_callable is irrevocable. Push all callers of such onto
|
||
a worklist.
|
||
|
||
(b) For each function on the worklist, mark each block that
|
||
contains an irrevocable call. Use the AND operator to
|
||
propagate that mark up the dominator tree.
|
||
|
||
(c) If we reach the entry block for a possible transactional
|
||
clone, then the transactional clone is irrevocable, and
|
||
we should not create the clone after all. Push all
|
||
callers onto the worklist.
|
||
|
||
(d) Place tm_irrevocable calls at the beginning of the relevant
|
||
blocks. Special case here is the entry block for the entire
|
||
transaction region; there we mark it GTMA_DOES_GO_IRREVOCABLE for
|
||
the library to begin the region in serial mode. Decrement
|
||
the call count for all callees in the irrevocable region.
|
||
|
||
(3) Create the transactional clones:
|
||
|
||
Any tm_callee that still has a non-zero call count is cloned.
|
||
*/
|
||
|
||
/* This structure is stored in the AUX field of each cgraph_node. */
|
||
struct tm_ipa_cg_data
|
||
{
|
||
/* The clone of the function that got created. */
|
||
struct cgraph_node *clone;
|
||
|
||
/* The tm regions in the normal function. */
|
||
struct tm_region *all_tm_regions;
|
||
|
||
/* The blocks of the normal/clone functions that contain irrevocable
|
||
calls, or blocks that are post-dominated by irrevocable calls. */
|
||
bitmap irrevocable_blocks_normal;
|
||
bitmap irrevocable_blocks_clone;
|
||
|
||
/* The blocks of the normal function that are involved in transactions. */
|
||
bitmap transaction_blocks_normal;
|
||
|
||
/* The number of callers to the transactional clone of this function
|
||
from normal and transactional clones respectively. */
|
||
unsigned tm_callers_normal;
|
||
unsigned tm_callers_clone;
|
||
|
||
/* True if all calls to this function's transactional clone
|
||
are irrevocable. Also automatically true if the function
|
||
has no transactional clone. */
|
||
bool is_irrevocable;
|
||
|
||
/* Flags indicating the presence of this function in various queues. */
|
||
bool in_callee_queue;
|
||
bool in_worklist;
|
||
|
||
/* Flags indicating the kind of scan desired while in the worklist. */
|
||
bool want_irr_scan_normal;
|
||
};
|
||
|
||
typedef vec<cgraph_node *> cgraph_node_queue;
|
||
|
||
/* Return the ipa data associated with NODE, allocating zeroed memory
|
||
if necessary. TRAVERSE_ALIASES is true if we must traverse aliases
|
||
and set *NODE accordingly. */
|
||
|
||
static struct tm_ipa_cg_data *
|
||
get_cg_data (struct cgraph_node **node, bool traverse_aliases)
|
||
{
|
||
struct tm_ipa_cg_data *d;
|
||
|
||
if (traverse_aliases && (*node)->alias)
|
||
*node = (*node)->get_alias_target ();
|
||
|
||
d = (struct tm_ipa_cg_data *) (*node)->aux;
|
||
|
||
if (d == NULL)
|
||
{
|
||
d = (struct tm_ipa_cg_data *)
|
||
obstack_alloc (&tm_obstack.obstack, sizeof (*d));
|
||
(*node)->aux = (void *) d;
|
||
memset (d, 0, sizeof (*d));
|
||
}
|
||
|
||
return d;
|
||
}
|
||
|
||
/* Add NODE to the end of QUEUE, unless IN_QUEUE_P indicates that
|
||
it is already present. */
|
||
|
||
static void
|
||
maybe_push_queue (struct cgraph_node *node,
|
||
cgraph_node_queue *queue_p, bool *in_queue_p)
|
||
{
|
||
if (!*in_queue_p)
|
||
{
|
||
*in_queue_p = true;
|
||
queue_p->safe_push (node);
|
||
}
|
||
}
|
||
|
||
/* Duplicate the basic blocks in QUEUE for use in the uninstrumented
|
||
code path. QUEUE are the basic blocks inside the transaction
|
||
represented in REGION.
|
||
|
||
Later in split_code_paths() we will add the conditional to choose
|
||
between the two alternatives. */
|
||
|
||
static void
|
||
ipa_uninstrument_transaction (struct tm_region *region,
|
||
vec<basic_block> queue)
|
||
{
|
||
gimple transaction = region->transaction_stmt;
|
||
basic_block transaction_bb = gimple_bb (transaction);
|
||
int n = queue.length ();
|
||
basic_block *new_bbs = XNEWVEC (basic_block, n);
|
||
|
||
copy_bbs (queue.address (), n, new_bbs, NULL, 0, NULL, NULL, transaction_bb,
|
||
true);
|
||
edge e = make_edge (transaction_bb, new_bbs[0], EDGE_TM_UNINSTRUMENTED);
|
||
add_phi_args_after_copy (new_bbs, n, e);
|
||
|
||
// Now we will have a GIMPLE_ATOMIC with 3 possible edges out of it.
|
||
// a) EDGE_FALLTHRU into the transaction
|
||
// b) EDGE_TM_ABORT out of the transaction
|
||
// c) EDGE_TM_UNINSTRUMENTED into the uninstrumented blocks.
|
||
|
||
free (new_bbs);
|
||
}
|
||
|
||
/* A subroutine of ipa_tm_scan_calls_transaction and ipa_tm_scan_calls_clone.
|
||
Queue all callees within block BB. */
|
||
|
||
static void
|
||
ipa_tm_scan_calls_block (cgraph_node_queue *callees_p,
|
||
basic_block bb, bool for_clone)
|
||
{
|
||
gimple_stmt_iterator gsi;
|
||
|
||
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
||
{
|
||
gimple stmt = gsi_stmt (gsi);
|
||
if (is_gimple_call (stmt) && !is_tm_pure_call (stmt))
|
||
{
|
||
tree fndecl = gimple_call_fndecl (stmt);
|
||
if (fndecl)
|
||
{
|
||
struct tm_ipa_cg_data *d;
|
||
unsigned *pcallers;
|
||
struct cgraph_node *node;
|
||
|
||
if (is_tm_ending_fndecl (fndecl))
|
||
continue;
|
||
if (find_tm_replacement_function (fndecl))
|
||
continue;
|
||
|
||
node = cgraph_node::get (fndecl);
|
||
gcc_assert (node != NULL);
|
||
d = get_cg_data (&node, true);
|
||
|
||
pcallers = (for_clone ? &d->tm_callers_clone
|
||
: &d->tm_callers_normal);
|
||
*pcallers += 1;
|
||
|
||
maybe_push_queue (node, callees_p, &d->in_callee_queue);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Scan all calls in NODE that are within a transaction region,
|
||
and push the resulting nodes into the callee queue. */
|
||
|
||
static void
|
||
ipa_tm_scan_calls_transaction (struct tm_ipa_cg_data *d,
|
||
cgraph_node_queue *callees_p)
|
||
{
|
||
struct tm_region *r;
|
||
|
||
d->transaction_blocks_normal = BITMAP_ALLOC (&tm_obstack);
|
||
d->all_tm_regions = all_tm_regions;
|
||
|
||
for (r = all_tm_regions; r; r = r->next)
|
||
{
|
||
vec<basic_block> bbs;
|
||
basic_block bb;
|
||
unsigned i;
|
||
|
||
bbs = get_tm_region_blocks (r->entry_block, r->exit_blocks, NULL,
|
||
d->transaction_blocks_normal, false);
|
||
|
||
// Generate the uninstrumented code path for this transaction.
|
||
ipa_uninstrument_transaction (r, bbs);
|
||
|
||
FOR_EACH_VEC_ELT (bbs, i, bb)
|
||
ipa_tm_scan_calls_block (callees_p, bb, false);
|
||
|
||
bbs.release ();
|
||
}
|
||
|
||
// ??? copy_bbs should maintain cgraph edges for the blocks as it is
|
||
// copying them, rather than forcing us to do this externally.
|
||
cgraph_edge::rebuild_edges ();
|
||
|
||
// ??? In ipa_uninstrument_transaction we don't try to update dominators
|
||
// because copy_bbs doesn't return a VEC like iterate_fix_dominators expects.
|
||
// Instead, just release dominators here so update_ssa recomputes them.
|
||
free_dominance_info (CDI_DOMINATORS);
|
||
|
||
// When building the uninstrumented code path, copy_bbs will have invoked
|
||
// create_new_def_for starting an "ssa update context". There is only one
|
||
// instance of this context, so resolve ssa updates before moving on to
|
||
// the next function.
|
||
update_ssa (TODO_update_ssa);
|
||
}
|
||
|
||
/* Scan all calls in NODE as if this is the transactional clone,
|
||
and push the destinations into the callee queue. */
|
||
|
||
static void
|
||
ipa_tm_scan_calls_clone (struct cgraph_node *node,
|
||
cgraph_node_queue *callees_p)
|
||
{
|
||
struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
|
||
basic_block bb;
|
||
|
||
FOR_EACH_BB_FN (bb, fn)
|
||
ipa_tm_scan_calls_block (callees_p, bb, true);
|
||
}
|
||
|
||
/* The function NODE has been detected to be irrevocable. Push all
|
||
of its callers onto WORKLIST for the purpose of re-scanning them. */
|
||
|
||
static void
|
||
ipa_tm_note_irrevocable (struct cgraph_node *node,
|
||
cgraph_node_queue *worklist_p)
|
||
{
|
||
struct tm_ipa_cg_data *d = get_cg_data (&node, true);
|
||
struct cgraph_edge *e;
|
||
|
||
d->is_irrevocable = true;
|
||
|
||
for (e = node->callers; e ; e = e->next_caller)
|
||
{
|
||
basic_block bb;
|
||
struct cgraph_node *caller;
|
||
|
||
/* Don't examine recursive calls. */
|
||
if (e->caller == node)
|
||
continue;
|
||
/* Even if we think we can go irrevocable, believe the user
|
||
above all. */
|
||
if (is_tm_safe_or_pure (e->caller->decl))
|
||
continue;
|
||
|
||
caller = e->caller;
|
||
d = get_cg_data (&caller, true);
|
||
|
||
/* Check if the callee is in a transactional region. If so,
|
||
schedule the function for normal re-scan as well. */
|
||
bb = gimple_bb (e->call_stmt);
|
||
gcc_assert (bb != NULL);
|
||
if (d->transaction_blocks_normal
|
||
&& bitmap_bit_p (d->transaction_blocks_normal, bb->index))
|
||
d->want_irr_scan_normal = true;
|
||
|
||
maybe_push_queue (caller, worklist_p, &d->in_worklist);
|
||
}
|
||
}
|
||
|
||
/* A subroutine of ipa_tm_scan_irr_blocks; return true iff any statement
|
||
within the block is irrevocable. */
|
||
|
||
static bool
|
||
ipa_tm_scan_irr_block (basic_block bb)
|
||
{
|
||
gimple_stmt_iterator gsi;
|
||
tree fn;
|
||
|
||
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
||
{
|
||
gimple stmt = gsi_stmt (gsi);
|
||
switch (gimple_code (stmt))
|
||
{
|
||
case GIMPLE_ASSIGN:
|
||
if (gimple_assign_single_p (stmt))
|
||
{
|
||
tree lhs = gimple_assign_lhs (stmt);
|
||
tree rhs = gimple_assign_rhs1 (stmt);
|
||
if (volatile_var_p (lhs) || volatile_var_p (rhs))
|
||
return true;
|
||
}
|
||
break;
|
||
|
||
case GIMPLE_CALL:
|
||
{
|
||
tree lhs = gimple_call_lhs (stmt);
|
||
if (lhs && volatile_var_p (lhs))
|
||
return true;
|
||
|
||
if (is_tm_pure_call (stmt))
|
||
break;
|
||
|
||
fn = gimple_call_fn (stmt);
|
||
|
||
/* Functions with the attribute are by definition irrevocable. */
|
||
if (is_tm_irrevocable (fn))
|
||
return true;
|
||
|
||
/* For direct function calls, go ahead and check for replacement
|
||
functions, or transitive irrevocable functions. For indirect
|
||
functions, we'll ask the runtime. */
|
||
if (TREE_CODE (fn) == ADDR_EXPR)
|
||
{
|
||
struct tm_ipa_cg_data *d;
|
||
struct cgraph_node *node;
|
||
|
||
fn = TREE_OPERAND (fn, 0);
|
||
if (is_tm_ending_fndecl (fn))
|
||
break;
|
||
if (find_tm_replacement_function (fn))
|
||
break;
|
||
|
||
node = cgraph_node::get (fn);
|
||
d = get_cg_data (&node, true);
|
||
|
||
/* Return true if irrevocable, but above all, believe
|
||
the user. */
|
||
if (d->is_irrevocable
|
||
&& !is_tm_safe_or_pure (fn))
|
||
return true;
|
||
}
|
||
break;
|
||
}
|
||
|
||
case GIMPLE_ASM:
|
||
/* ??? The Approved Method of indicating that an inline
|
||
assembly statement is not relevant to the transaction
|
||
is to wrap it in a __tm_waiver block. This is not
|
||
yet implemented, so we can't check for it. */
|
||
if (is_tm_safe (current_function_decl))
|
||
{
|
||
tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
|
||
SET_EXPR_LOCATION (t, gimple_location (stmt));
|
||
error ("%Kasm not allowed in %<transaction_safe%> function", t);
|
||
}
|
||
return true;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* For each of the blocks seeded witin PQUEUE, walk the CFG looking
|
||
for new irrevocable blocks, marking them in NEW_IRR. Don't bother
|
||
scanning past OLD_IRR or EXIT_BLOCKS. */
|
||
|
||
static bool
|
||
ipa_tm_scan_irr_blocks (vec<basic_block> *pqueue, bitmap new_irr,
|
||
bitmap old_irr, bitmap exit_blocks)
|
||
{
|
||
bool any_new_irr = false;
|
||
edge e;
|
||
edge_iterator ei;
|
||
bitmap visited_blocks = BITMAP_ALLOC (NULL);
|
||
|
||
do
|
||
{
|
||
basic_block bb = pqueue->pop ();
|
||
|
||
/* Don't re-scan blocks we know already are irrevocable. */
|
||
if (old_irr && bitmap_bit_p (old_irr, bb->index))
|
||
continue;
|
||
|
||
if (ipa_tm_scan_irr_block (bb))
|
||
{
|
||
bitmap_set_bit (new_irr, bb->index);
|
||
any_new_irr = true;
|
||
}
|
||
else if (exit_blocks == NULL || !bitmap_bit_p (exit_blocks, bb->index))
|
||
{
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
if (!bitmap_bit_p (visited_blocks, e->dest->index))
|
||
{
|
||
bitmap_set_bit (visited_blocks, e->dest->index);
|
||
pqueue->safe_push (e->dest);
|
||
}
|
||
}
|
||
}
|
||
while (!pqueue->is_empty ());
|
||
|
||
BITMAP_FREE (visited_blocks);
|
||
|
||
return any_new_irr;
|
||
}
|
||
|
||
/* Propagate the irrevocable property both up and down the dominator tree.
|
||
BB is the current block being scanned; EXIT_BLOCKS are the edges of the
|
||
TM regions; OLD_IRR are the results of a previous scan of the dominator
|
||
tree which has been fully propagated; NEW_IRR is the set of new blocks
|
||
which are gaining the irrevocable property during the current scan. */
|
||
|
||
static void
|
||
ipa_tm_propagate_irr (basic_block entry_block, bitmap new_irr,
|
||
bitmap old_irr, bitmap exit_blocks)
|
||
{
|
||
vec<basic_block> bbs;
|
||
bitmap all_region_blocks;
|
||
|
||
/* If this block is in the old set, no need to rescan. */
|
||
if (old_irr && bitmap_bit_p (old_irr, entry_block->index))
|
||
return;
|
||
|
||
all_region_blocks = BITMAP_ALLOC (&tm_obstack);
|
||
bbs = get_tm_region_blocks (entry_block, exit_blocks, NULL,
|
||
all_region_blocks, false);
|
||
do
|
||
{
|
||
basic_block bb = bbs.pop ();
|
||
bool this_irr = bitmap_bit_p (new_irr, bb->index);
|
||
bool all_son_irr = false;
|
||
edge_iterator ei;
|
||
edge e;
|
||
|
||
/* Propagate up. If my children are, I am too, but we must have
|
||
at least one child that is. */
|
||
if (!this_irr)
|
||
{
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
{
|
||
if (!bitmap_bit_p (new_irr, e->dest->index))
|
||
{
|
||
all_son_irr = false;
|
||
break;
|
||
}
|
||
else
|
||
all_son_irr = true;
|
||
}
|
||
if (all_son_irr)
|
||
{
|
||
/* Add block to new_irr if it hasn't already been processed. */
|
||
if (!old_irr || !bitmap_bit_p (old_irr, bb->index))
|
||
{
|
||
bitmap_set_bit (new_irr, bb->index);
|
||
this_irr = true;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Propagate down to everyone we immediately dominate. */
|
||
if (this_irr)
|
||
{
|
||
basic_block son;
|
||
for (son = first_dom_son (CDI_DOMINATORS, bb);
|
||
son;
|
||
son = next_dom_son (CDI_DOMINATORS, son))
|
||
{
|
||
/* Make sure block is actually in a TM region, and it
|
||
isn't already in old_irr. */
|
||
if ((!old_irr || !bitmap_bit_p (old_irr, son->index))
|
||
&& bitmap_bit_p (all_region_blocks, son->index))
|
||
bitmap_set_bit (new_irr, son->index);
|
||
}
|
||
}
|
||
}
|
||
while (!bbs.is_empty ());
|
||
|
||
BITMAP_FREE (all_region_blocks);
|
||
bbs.release ();
|
||
}
|
||
|
||
static void
|
||
ipa_tm_decrement_clone_counts (basic_block bb, bool for_clone)
|
||
{
|
||
gimple_stmt_iterator gsi;
|
||
|
||
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
||
{
|
||
gimple stmt = gsi_stmt (gsi);
|
||
if (is_gimple_call (stmt) && !is_tm_pure_call (stmt))
|
||
{
|
||
tree fndecl = gimple_call_fndecl (stmt);
|
||
if (fndecl)
|
||
{
|
||
struct tm_ipa_cg_data *d;
|
||
unsigned *pcallers;
|
||
struct cgraph_node *tnode;
|
||
|
||
if (is_tm_ending_fndecl (fndecl))
|
||
continue;
|
||
if (find_tm_replacement_function (fndecl))
|
||
continue;
|
||
|
||
tnode = cgraph_node::get (fndecl);
|
||
d = get_cg_data (&tnode, true);
|
||
|
||
pcallers = (for_clone ? &d->tm_callers_clone
|
||
: &d->tm_callers_normal);
|
||
|
||
gcc_assert (*pcallers > 0);
|
||
*pcallers -= 1;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* (Re-)Scan the transaction blocks in NODE for calls to irrevocable functions,
|
||
as well as other irrevocable actions such as inline assembly. Mark all
|
||
such blocks as irrevocable and decrement the number of calls to
|
||
transactional clones. Return true if, for the transactional clone, the
|
||
entire function is irrevocable. */
|
||
|
||
static bool
|
||
ipa_tm_scan_irr_function (struct cgraph_node *node, bool for_clone)
|
||
{
|
||
struct tm_ipa_cg_data *d;
|
||
bitmap new_irr, old_irr;
|
||
bool ret = false;
|
||
|
||
/* Builtin operators (operator new, and such). */
|
||
if (DECL_STRUCT_FUNCTION (node->decl) == NULL
|
||
|| DECL_STRUCT_FUNCTION (node->decl)->cfg == NULL)
|
||
return false;
|
||
|
||
push_cfun (DECL_STRUCT_FUNCTION (node->decl));
|
||
calculate_dominance_info (CDI_DOMINATORS);
|
||
|
||
d = get_cg_data (&node, true);
|
||
auto_vec<basic_block, 10> queue;
|
||
new_irr = BITMAP_ALLOC (&tm_obstack);
|
||
|
||
/* Scan each tm region, propagating irrevocable status through the tree. */
|
||
if (for_clone)
|
||
{
|
||
old_irr = d->irrevocable_blocks_clone;
|
||
queue.quick_push (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
|
||
if (ipa_tm_scan_irr_blocks (&queue, new_irr, old_irr, NULL))
|
||
{
|
||
ipa_tm_propagate_irr (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
|
||
new_irr,
|
||
old_irr, NULL);
|
||
ret = bitmap_bit_p (new_irr,
|
||
single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun))->index);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
struct tm_region *region;
|
||
|
||
old_irr = d->irrevocable_blocks_normal;
|
||
for (region = d->all_tm_regions; region; region = region->next)
|
||
{
|
||
queue.quick_push (region->entry_block);
|
||
if (ipa_tm_scan_irr_blocks (&queue, new_irr, old_irr,
|
||
region->exit_blocks))
|
||
ipa_tm_propagate_irr (region->entry_block, new_irr, old_irr,
|
||
region->exit_blocks);
|
||
}
|
||
}
|
||
|
||
/* If we found any new irrevocable blocks, reduce the call count for
|
||
transactional clones within the irrevocable blocks. Save the new
|
||
set of irrevocable blocks for next time. */
|
||
if (!bitmap_empty_p (new_irr))
|
||
{
|
||
bitmap_iterator bmi;
|
||
unsigned i;
|
||
|
||
EXECUTE_IF_SET_IN_BITMAP (new_irr, 0, i, bmi)
|
||
ipa_tm_decrement_clone_counts (BASIC_BLOCK_FOR_FN (cfun, i),
|
||
for_clone);
|
||
|
||
if (old_irr)
|
||
{
|
||
bitmap_ior_into (old_irr, new_irr);
|
||
BITMAP_FREE (new_irr);
|
||
}
|
||
else if (for_clone)
|
||
d->irrevocable_blocks_clone = new_irr;
|
||
else
|
||
d->irrevocable_blocks_normal = new_irr;
|
||
|
||
if (dump_file && new_irr)
|
||
{
|
||
const char *dname;
|
||
bitmap_iterator bmi;
|
||
unsigned i;
|
||
|
||
dname = lang_hooks.decl_printable_name (current_function_decl, 2);
|
||
EXECUTE_IF_SET_IN_BITMAP (new_irr, 0, i, bmi)
|
||
fprintf (dump_file, "%s: bb %d goes irrevocable\n", dname, i);
|
||
}
|
||
}
|
||
else
|
||
BITMAP_FREE (new_irr);
|
||
|
||
pop_cfun ();
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Return true if, for the transactional clone of NODE, any call
|
||
may enter irrevocable mode. */
|
||
|
||
static bool
|
||
ipa_tm_mayenterirr_function (struct cgraph_node *node)
|
||
{
|
||
struct tm_ipa_cg_data *d;
|
||
tree decl;
|
||
unsigned flags;
|
||
|
||
d = get_cg_data (&node, true);
|
||
decl = node->decl;
|
||
flags = flags_from_decl_or_type (decl);
|
||
|
||
/* Handle some TM builtins. Ordinarily these aren't actually generated
|
||
at this point, but handling these functions when written in by the
|
||
user makes it easier to build unit tests. */
|
||
if (flags & ECF_TM_BUILTIN)
|
||
return false;
|
||
|
||
/* Filter out all functions that are marked. */
|
||
if (flags & ECF_TM_PURE)
|
||
return false;
|
||
if (is_tm_safe (decl))
|
||
return false;
|
||
if (is_tm_irrevocable (decl))
|
||
return true;
|
||
if (is_tm_callable (decl))
|
||
return true;
|
||
if (find_tm_replacement_function (decl))
|
||
return true;
|
||
|
||
/* If we aren't seeing the final version of the function we don't
|
||
know what it will contain at runtime. */
|
||
if (node->get_availability () < AVAIL_AVAILABLE)
|
||
return true;
|
||
|
||
/* If the function must go irrevocable, then of course true. */
|
||
if (d->is_irrevocable)
|
||
return true;
|
||
|
||
/* If there are any blocks marked irrevocable, then the function
|
||
as a whole may enter irrevocable. */
|
||
if (d->irrevocable_blocks_clone)
|
||
return true;
|
||
|
||
/* We may have previously marked this function as tm_may_enter_irr;
|
||
see pass_diagnose_tm_blocks. */
|
||
if (node->local.tm_may_enter_irr)
|
||
return true;
|
||
|
||
/* Recurse on the main body for aliases. In general, this will
|
||
result in one of the bits above being set so that we will not
|
||
have to recurse next time. */
|
||
if (node->alias)
|
||
return ipa_tm_mayenterirr_function (cgraph_node::get (node->thunk.alias));
|
||
|
||
/* What remains is unmarked local functions without items that force
|
||
the function to go irrevocable. */
|
||
return false;
|
||
}
|
||
|
||
/* Diagnose calls from transaction_safe functions to unmarked
|
||
functions that are determined to not be safe. */
|
||
|
||
static void
|
||
ipa_tm_diagnose_tm_safe (struct cgraph_node *node)
|
||
{
|
||
struct cgraph_edge *e;
|
||
|
||
for (e = node->callees; e ; e = e->next_callee)
|
||
if (!is_tm_callable (e->callee->decl)
|
||
&& e->callee->local.tm_may_enter_irr)
|
||
error_at (gimple_location (e->call_stmt),
|
||
"unsafe function call %qD within "
|
||
"%<transaction_safe%> function", e->callee->decl);
|
||
}
|
||
|
||
/* Diagnose call from atomic transactions to unmarked functions
|
||
that are determined to not be safe. */
|
||
|
||
static void
|
||
ipa_tm_diagnose_transaction (struct cgraph_node *node,
|
||
struct tm_region *all_tm_regions)
|
||
{
|
||
struct tm_region *r;
|
||
|
||
for (r = all_tm_regions; r ; r = r->next)
|
||
if (gimple_transaction_subcode (r->get_transaction_stmt ())
|
||
& GTMA_IS_RELAXED)
|
||
{
|
||
/* Atomic transactions can be nested inside relaxed. */
|
||
if (r->inner)
|
||
ipa_tm_diagnose_transaction (node, r->inner);
|
||
}
|
||
else
|
||
{
|
||
vec<basic_block> bbs;
|
||
gimple_stmt_iterator gsi;
|
||
basic_block bb;
|
||
size_t i;
|
||
|
||
bbs = get_tm_region_blocks (r->entry_block, r->exit_blocks,
|
||
r->irr_blocks, NULL, false);
|
||
|
||
for (i = 0; bbs.iterate (i, &bb); ++i)
|
||
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
||
{
|
||
gimple stmt = gsi_stmt (gsi);
|
||
tree fndecl;
|
||
|
||
if (gimple_code (stmt) == GIMPLE_ASM)
|
||
{
|
||
error_at (gimple_location (stmt),
|
||
"asm not allowed in atomic transaction");
|
||
continue;
|
||
}
|
||
|
||
if (!is_gimple_call (stmt))
|
||
continue;
|
||
fndecl = gimple_call_fndecl (stmt);
|
||
|
||
/* Indirect function calls have been diagnosed already. */
|
||
if (!fndecl)
|
||
continue;
|
||
|
||
/* Stop at the end of the transaction. */
|
||
if (is_tm_ending_fndecl (fndecl))
|
||
{
|
||
if (bitmap_bit_p (r->exit_blocks, bb->index))
|
||
break;
|
||
continue;
|
||
}
|
||
|
||
/* Marked functions have been diagnosed already. */
|
||
if (is_tm_pure_call (stmt))
|
||
continue;
|
||
if (is_tm_callable (fndecl))
|
||
continue;
|
||
|
||
if (cgraph_node::local_info (fndecl)->tm_may_enter_irr)
|
||
error_at (gimple_location (stmt),
|
||
"unsafe function call %qD within "
|
||
"atomic transaction", fndecl);
|
||
}
|
||
|
||
bbs.release ();
|
||
}
|
||
}
|
||
|
||
/* Return a transactional mangled name for the DECL_ASSEMBLER_NAME in
|
||
OLD_DECL. The returned value is a freshly malloced pointer that
|
||
should be freed by the caller. */
|
||
|
||
static tree
|
||
tm_mangle (tree old_asm_id)
|
||
{
|
||
const char *old_asm_name;
|
||
char *tm_name;
|
||
void *alloc = NULL;
|
||
struct demangle_component *dc;
|
||
tree new_asm_id;
|
||
|
||
/* Determine if the symbol is already a valid C++ mangled name. Do this
|
||
even for C, which might be interfacing with C++ code via appropriately
|
||
ugly identifiers. */
|
||
/* ??? We could probably do just as well checking for "_Z" and be done. */
|
||
old_asm_name = IDENTIFIER_POINTER (old_asm_id);
|
||
dc = cplus_demangle_v3_components (old_asm_name, DMGL_NO_OPTS, &alloc);
|
||
|
||
if (dc == NULL)
|
||
{
|
||
char length[8];
|
||
|
||
do_unencoded:
|
||
sprintf (length, "%u", IDENTIFIER_LENGTH (old_asm_id));
|
||
tm_name = concat ("_ZGTt", length, old_asm_name, NULL);
|
||
}
|
||
else
|
||
{
|
||
old_asm_name += 2; /* Skip _Z */
|
||
|
||
switch (dc->type)
|
||
{
|
||
case DEMANGLE_COMPONENT_TRANSACTION_CLONE:
|
||
case DEMANGLE_COMPONENT_NONTRANSACTION_CLONE:
|
||
/* Don't play silly games, you! */
|
||
goto do_unencoded;
|
||
|
||
case DEMANGLE_COMPONENT_HIDDEN_ALIAS:
|
||
/* I'd really like to know if we can ever be passed one of
|
||
these from the C++ front end. The Logical Thing would
|
||
seem that hidden-alias should be outer-most, so that we
|
||
get hidden-alias of a transaction-clone and not vice-versa. */
|
||
old_asm_name += 2;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
tm_name = concat ("_ZGTt", old_asm_name, NULL);
|
||
}
|
||
free (alloc);
|
||
|
||
new_asm_id = get_identifier (tm_name);
|
||
free (tm_name);
|
||
|
||
return new_asm_id;
|
||
}
|
||
|
||
static inline void
|
||
ipa_tm_mark_force_output_node (struct cgraph_node *node)
|
||
{
|
||
node->mark_force_output ();
|
||
node->analyzed = true;
|
||
}
|
||
|
||
static inline void
|
||
ipa_tm_mark_forced_by_abi_node (struct cgraph_node *node)
|
||
{
|
||
node->forced_by_abi = true;
|
||
node->analyzed = true;
|
||
}
|
||
|
||
/* Callback data for ipa_tm_create_version_alias. */
|
||
struct create_version_alias_info
|
||
{
|
||
struct cgraph_node *old_node;
|
||
tree new_decl;
|
||
};
|
||
|
||
/* A subroutine of ipa_tm_create_version, called via
|
||
cgraph_for_node_and_aliases. Create new tm clones for each of
|
||
the existing aliases. */
|
||
static bool
|
||
ipa_tm_create_version_alias (struct cgraph_node *node, void *data)
|
||
{
|
||
struct create_version_alias_info *info
|
||
= (struct create_version_alias_info *)data;
|
||
tree old_decl, new_decl, tm_name;
|
||
struct cgraph_node *new_node;
|
||
|
||
if (!node->cpp_implicit_alias)
|
||
return false;
|
||
|
||
old_decl = node->decl;
|
||
tm_name = tm_mangle (DECL_ASSEMBLER_NAME (old_decl));
|
||
new_decl = build_decl (DECL_SOURCE_LOCATION (old_decl),
|
||
TREE_CODE (old_decl), tm_name,
|
||
TREE_TYPE (old_decl));
|
||
|
||
SET_DECL_ASSEMBLER_NAME (new_decl, tm_name);
|
||
SET_DECL_RTL (new_decl, NULL);
|
||
|
||
/* Based loosely on C++'s make_alias_for(). */
|
||
TREE_PUBLIC (new_decl) = TREE_PUBLIC (old_decl);
|
||
DECL_CONTEXT (new_decl) = DECL_CONTEXT (old_decl);
|
||
DECL_LANG_SPECIFIC (new_decl) = DECL_LANG_SPECIFIC (old_decl);
|
||
TREE_READONLY (new_decl) = TREE_READONLY (old_decl);
|
||
DECL_EXTERNAL (new_decl) = 0;
|
||
DECL_ARTIFICIAL (new_decl) = 1;
|
||
TREE_ADDRESSABLE (new_decl) = 1;
|
||
TREE_USED (new_decl) = 1;
|
||
TREE_SYMBOL_REFERENCED (tm_name) = 1;
|
||
|
||
/* Perform the same remapping to the comdat group. */
|
||
if (DECL_ONE_ONLY (new_decl))
|
||
varpool_node::get (new_decl)->set_comdat_group
|
||
(tm_mangle (decl_comdat_group_id (old_decl)));
|
||
|
||
new_node = cgraph_node::create_same_body_alias (new_decl, info->new_decl);
|
||
new_node->tm_clone = true;
|
||
new_node->externally_visible = info->old_node->externally_visible;
|
||
new_node->no_reorder = info->old_node->no_reorder;
|
||
/* ?? Do not traverse aliases here. */
|
||
get_cg_data (&node, false)->clone = new_node;
|
||
|
||
record_tm_clone_pair (old_decl, new_decl);
|
||
|
||
if (info->old_node->force_output
|
||
|| info->old_node->ref_list.first_referring ())
|
||
ipa_tm_mark_force_output_node (new_node);
|
||
if (info->old_node->forced_by_abi)
|
||
ipa_tm_mark_forced_by_abi_node (new_node);
|
||
return false;
|
||
}
|
||
|
||
/* Create a copy of the function (possibly declaration only) of OLD_NODE,
|
||
appropriate for the transactional clone. */
|
||
|
||
static void
|
||
ipa_tm_create_version (struct cgraph_node *old_node)
|
||
{
|
||
tree new_decl, old_decl, tm_name;
|
||
struct cgraph_node *new_node;
|
||
|
||
old_decl = old_node->decl;
|
||
new_decl = copy_node (old_decl);
|
||
|
||
/* DECL_ASSEMBLER_NAME needs to be set before we call
|
||
cgraph_copy_node_for_versioning below, because cgraph_node will
|
||
fill the assembler_name_hash. */
|
||
tm_name = tm_mangle (DECL_ASSEMBLER_NAME (old_decl));
|
||
SET_DECL_ASSEMBLER_NAME (new_decl, tm_name);
|
||
SET_DECL_RTL (new_decl, NULL);
|
||
TREE_SYMBOL_REFERENCED (tm_name) = 1;
|
||
|
||
/* Perform the same remapping to the comdat group. */
|
||
if (DECL_ONE_ONLY (new_decl))
|
||
varpool_node::get (new_decl)->set_comdat_group
|
||
(tm_mangle (DECL_COMDAT_GROUP (old_decl)));
|
||
|
||
gcc_assert (!old_node->ipa_transforms_to_apply.exists ());
|
||
new_node = old_node->create_version_clone (new_decl, vNULL, NULL);
|
||
new_node->local.local = false;
|
||
new_node->externally_visible = old_node->externally_visible;
|
||
new_node->lowered = true;
|
||
new_node->tm_clone = 1;
|
||
if (!old_node->implicit_section)
|
||
new_node->set_section (old_node->get_section ());
|
||
get_cg_data (&old_node, true)->clone = new_node;
|
||
|
||
if (old_node->get_availability () >= AVAIL_INTERPOSABLE)
|
||
{
|
||
/* Remap extern inline to static inline. */
|
||
/* ??? Is it worth trying to use make_decl_one_only? */
|
||
if (DECL_DECLARED_INLINE_P (new_decl) && DECL_EXTERNAL (new_decl))
|
||
{
|
||
DECL_EXTERNAL (new_decl) = 0;
|
||
TREE_PUBLIC (new_decl) = 0;
|
||
DECL_WEAK (new_decl) = 0;
|
||
}
|
||
|
||
tree_function_versioning (old_decl, new_decl,
|
||
NULL, false, NULL,
|
||
false, NULL, NULL);
|
||
}
|
||
|
||
record_tm_clone_pair (old_decl, new_decl);
|
||
|
||
symtab->call_cgraph_insertion_hooks (new_node);
|
||
if (old_node->force_output
|
||
|| old_node->ref_list.first_referring ())
|
||
ipa_tm_mark_force_output_node (new_node);
|
||
if (old_node->forced_by_abi)
|
||
ipa_tm_mark_forced_by_abi_node (new_node);
|
||
|
||
/* Do the same thing, but for any aliases of the original node. */
|
||
{
|
||
struct create_version_alias_info data;
|
||
data.old_node = old_node;
|
||
data.new_decl = new_decl;
|
||
old_node->call_for_symbol_thunks_and_aliases (ipa_tm_create_version_alias,
|
||
&data, true);
|
||
}
|
||
}
|
||
|
||
/* Construct a call to TM_IRREVOCABLE and insert it at the beginning of BB. */
|
||
|
||
static void
|
||
ipa_tm_insert_irr_call (struct cgraph_node *node, struct tm_region *region,
|
||
basic_block bb)
|
||
{
|
||
gimple_stmt_iterator gsi;
|
||
gcall *g;
|
||
|
||
transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
|
||
|
||
g = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_IRREVOCABLE),
|
||
1, build_int_cst (NULL_TREE, MODE_SERIALIRREVOCABLE));
|
||
|
||
split_block_after_labels (bb);
|
||
gsi = gsi_after_labels (bb);
|
||
gsi_insert_before (&gsi, g, GSI_SAME_STMT);
|
||
|
||
node->create_edge (cgraph_node::get_create
|
||
(builtin_decl_explicit (BUILT_IN_TM_IRREVOCABLE)),
|
||
g, 0,
|
||
compute_call_stmt_bb_frequency (node->decl,
|
||
gimple_bb (g)));
|
||
}
|
||
|
||
/* Construct a call to TM_GETTMCLONE and insert it before GSI. */
|
||
|
||
static bool
|
||
ipa_tm_insert_gettmclone_call (struct cgraph_node *node,
|
||
struct tm_region *region,
|
||
gimple_stmt_iterator *gsi, gcall *stmt)
|
||
{
|
||
tree gettm_fn, ret, old_fn, callfn;
|
||
gcall *g;
|
||
gassign *g2;
|
||
bool safe;
|
||
|
||
old_fn = gimple_call_fn (stmt);
|
||
|
||
if (TREE_CODE (old_fn) == ADDR_EXPR)
|
||
{
|
||
tree fndecl = TREE_OPERAND (old_fn, 0);
|
||
tree clone = get_tm_clone_pair (fndecl);
|
||
|
||
/* By transforming the call into a TM_GETTMCLONE, we are
|
||
technically taking the address of the original function and
|
||
its clone. Explain this so inlining will know this function
|
||
is needed. */
|
||
cgraph_node::get (fndecl)->mark_address_taken () ;
|
||
if (clone)
|
||
cgraph_node::get (clone)->mark_address_taken ();
|
||
}
|
||
|
||
safe = is_tm_safe (TREE_TYPE (old_fn));
|
||
gettm_fn = builtin_decl_explicit (safe ? BUILT_IN_TM_GETTMCLONE_SAFE
|
||
: BUILT_IN_TM_GETTMCLONE_IRR);
|
||
ret = create_tmp_var (ptr_type_node);
|
||
|
||
if (!safe)
|
||
transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
|
||
|
||
/* Discard OBJ_TYPE_REF, since we weren't able to fold it. */
|
||
if (TREE_CODE (old_fn) == OBJ_TYPE_REF)
|
||
old_fn = OBJ_TYPE_REF_EXPR (old_fn);
|
||
|
||
g = gimple_build_call (gettm_fn, 1, old_fn);
|
||
ret = make_ssa_name (ret, g);
|
||
gimple_call_set_lhs (g, ret);
|
||
|
||
gsi_insert_before (gsi, g, GSI_SAME_STMT);
|
||
|
||
node->create_edge (cgraph_node::get_create (gettm_fn), g, 0,
|
||
compute_call_stmt_bb_frequency (node->decl,
|
||
gimple_bb (g)));
|
||
|
||
/* Cast return value from tm_gettmclone* into appropriate function
|
||
pointer. */
|
||
callfn = create_tmp_var (TREE_TYPE (old_fn));
|
||
g2 = gimple_build_assign (callfn,
|
||
fold_build1 (NOP_EXPR, TREE_TYPE (callfn), ret));
|
||
callfn = make_ssa_name (callfn, g2);
|
||
gimple_assign_set_lhs (g2, callfn);
|
||
gsi_insert_before (gsi, g2, GSI_SAME_STMT);
|
||
|
||
/* ??? This is a hack to preserve the NOTHROW bit on the call,
|
||
which we would have derived from the decl. Failure to save
|
||
this bit means we might have to split the basic block. */
|
||
if (gimple_call_nothrow_p (stmt))
|
||
gimple_call_set_nothrow (stmt, true);
|
||
|
||
gimple_call_set_fn (stmt, callfn);
|
||
|
||
/* Discarding OBJ_TYPE_REF above may produce incompatible LHS and RHS
|
||
for a call statement. Fix it. */
|
||
{
|
||
tree lhs = gimple_call_lhs (stmt);
|
||
tree rettype = TREE_TYPE (gimple_call_fntype (stmt));
|
||
if (lhs
|
||
&& !useless_type_conversion_p (TREE_TYPE (lhs), rettype))
|
||
{
|
||
tree temp;
|
||
|
||
temp = create_tmp_reg (rettype);
|
||
gimple_call_set_lhs (stmt, temp);
|
||
|
||
g2 = gimple_build_assign (lhs,
|
||
fold_build1 (VIEW_CONVERT_EXPR,
|
||
TREE_TYPE (lhs), temp));
|
||
gsi_insert_after (gsi, g2, GSI_SAME_STMT);
|
||
}
|
||
}
|
||
|
||
update_stmt (stmt);
|
||
cgraph_edge *e = cgraph_node::get (current_function_decl)->get_edge (stmt);
|
||
if (e && e->indirect_info)
|
||
e->indirect_info->polymorphic = false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Helper function for ipa_tm_transform_calls*. Given a call
|
||
statement in GSI which resides inside transaction REGION, redirect
|
||
the call to either its wrapper function, or its clone. */
|
||
|
||
static void
|
||
ipa_tm_transform_calls_redirect (struct cgraph_node *node,
|
||
struct tm_region *region,
|
||
gimple_stmt_iterator *gsi,
|
||
bool *need_ssa_rename_p)
|
||
{
|
||
gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi));
|
||
struct cgraph_node *new_node;
|
||
struct cgraph_edge *e = node->get_edge (stmt);
|
||
tree fndecl = gimple_call_fndecl (stmt);
|
||
|
||
/* For indirect calls, pass the address through the runtime. */
|
||
if (fndecl == NULL)
|
||
{
|
||
*need_ssa_rename_p |=
|
||
ipa_tm_insert_gettmclone_call (node, region, gsi, stmt);
|
||
return;
|
||
}
|
||
|
||
/* Handle some TM builtins. Ordinarily these aren't actually generated
|
||
at this point, but handling these functions when written in by the
|
||
user makes it easier to build unit tests. */
|
||
if (flags_from_decl_or_type (fndecl) & ECF_TM_BUILTIN)
|
||
return;
|
||
|
||
/* Fixup recursive calls inside clones. */
|
||
/* ??? Why did cgraph_copy_node_for_versioning update the call edges
|
||
for recursion but not update the call statements themselves? */
|
||
if (e->caller == e->callee && decl_is_tm_clone (current_function_decl))
|
||
{
|
||
gimple_call_set_fndecl (stmt, current_function_decl);
|
||
return;
|
||
}
|
||
|
||
/* If there is a replacement, use it. */
|
||
fndecl = find_tm_replacement_function (fndecl);
|
||
if (fndecl)
|
||
{
|
||
new_node = cgraph_node::get_create (fndecl);
|
||
|
||
/* ??? Mark all transaction_wrap functions tm_may_enter_irr.
|
||
|
||
We can't do this earlier in record_tm_replacement because
|
||
cgraph_remove_unreachable_nodes is called before we inject
|
||
references to the node. Further, we can't do this in some
|
||
nice central place in ipa_tm_execute because we don't have
|
||
the exact list of wrapper functions that would be used.
|
||
Marking more wrappers than necessary results in the creation
|
||
of unnecessary cgraph_nodes, which can cause some of the
|
||
other IPA passes to crash.
|
||
|
||
We do need to mark these nodes so that we get the proper
|
||
result in expand_call_tm. */
|
||
/* ??? This seems broken. How is it that we're marking the
|
||
CALLEE as may_enter_irr? Surely we should be marking the
|
||
CALLER. Also note that find_tm_replacement_function also
|
||
contains mappings into the TM runtime, e.g. memcpy. These
|
||
we know won't go irrevocable. */
|
||
new_node->local.tm_may_enter_irr = 1;
|
||
}
|
||
else
|
||
{
|
||
struct tm_ipa_cg_data *d;
|
||
struct cgraph_node *tnode = e->callee;
|
||
|
||
d = get_cg_data (&tnode, true);
|
||
new_node = d->clone;
|
||
|
||
/* As we've already skipped pure calls and appropriate builtins,
|
||
and we've already marked irrevocable blocks, if we can't come
|
||
up with a static replacement, then ask the runtime. */
|
||
if (new_node == NULL)
|
||
{
|
||
*need_ssa_rename_p |=
|
||
ipa_tm_insert_gettmclone_call (node, region, gsi, stmt);
|
||
return;
|
||
}
|
||
|
||
fndecl = new_node->decl;
|
||
}
|
||
|
||
e->redirect_callee (new_node);
|
||
gimple_call_set_fndecl (stmt, fndecl);
|
||
}
|
||
|
||
/* Helper function for ipa_tm_transform_calls. For a given BB,
|
||
install calls to tm_irrevocable when IRR_BLOCKS are reached,
|
||
redirect other calls to the generated transactional clone. */
|
||
|
||
static bool
|
||
ipa_tm_transform_calls_1 (struct cgraph_node *node, struct tm_region *region,
|
||
basic_block bb, bitmap irr_blocks)
|
||
{
|
||
gimple_stmt_iterator gsi;
|
||
bool need_ssa_rename = false;
|
||
|
||
if (irr_blocks && bitmap_bit_p (irr_blocks, bb->index))
|
||
{
|
||
ipa_tm_insert_irr_call (node, region, bb);
|
||
return true;
|
||
}
|
||
|
||
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
||
{
|
||
gimple stmt = gsi_stmt (gsi);
|
||
|
||
if (!is_gimple_call (stmt))
|
||
continue;
|
||
if (is_tm_pure_call (stmt))
|
||
continue;
|
||
|
||
/* Redirect edges to the appropriate replacement or clone. */
|
||
ipa_tm_transform_calls_redirect (node, region, &gsi, &need_ssa_rename);
|
||
}
|
||
|
||
return need_ssa_rename;
|
||
}
|
||
|
||
/* Walk the CFG for REGION, beginning at BB. Install calls to
|
||
tm_irrevocable when IRR_BLOCKS are reached, redirect other calls to
|
||
the generated transactional clone. */
|
||
|
||
static bool
|
||
ipa_tm_transform_calls (struct cgraph_node *node, struct tm_region *region,
|
||
basic_block bb, bitmap irr_blocks)
|
||
{
|
||
bool need_ssa_rename = false;
|
||
edge e;
|
||
edge_iterator ei;
|
||
auto_vec<basic_block> queue;
|
||
bitmap visited_blocks = BITMAP_ALLOC (NULL);
|
||
|
||
queue.safe_push (bb);
|
||
do
|
||
{
|
||
bb = queue.pop ();
|
||
|
||
need_ssa_rename |=
|
||
ipa_tm_transform_calls_1 (node, region, bb, irr_blocks);
|
||
|
||
if (irr_blocks && bitmap_bit_p (irr_blocks, bb->index))
|
||
continue;
|
||
|
||
if (region && bitmap_bit_p (region->exit_blocks, bb->index))
|
||
continue;
|
||
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
if (!bitmap_bit_p (visited_blocks, e->dest->index))
|
||
{
|
||
bitmap_set_bit (visited_blocks, e->dest->index);
|
||
queue.safe_push (e->dest);
|
||
}
|
||
}
|
||
while (!queue.is_empty ());
|
||
|
||
BITMAP_FREE (visited_blocks);
|
||
|
||
return need_ssa_rename;
|
||
}
|
||
|
||
/* Transform the calls within the TM regions within NODE. */
|
||
|
||
static void
|
||
ipa_tm_transform_transaction (struct cgraph_node *node)
|
||
{
|
||
struct tm_ipa_cg_data *d;
|
||
struct tm_region *region;
|
||
bool need_ssa_rename = false;
|
||
|
||
d = get_cg_data (&node, true);
|
||
|
||
push_cfun (DECL_STRUCT_FUNCTION (node->decl));
|
||
calculate_dominance_info (CDI_DOMINATORS);
|
||
|
||
for (region = d->all_tm_regions; region; region = region->next)
|
||
{
|
||
/* If we're sure to go irrevocable, don't transform anything. */
|
||
if (d->irrevocable_blocks_normal
|
||
&& bitmap_bit_p (d->irrevocable_blocks_normal,
|
||
region->entry_block->index))
|
||
{
|
||
transaction_subcode_ior (region, GTMA_DOES_GO_IRREVOCABLE
|
||
| GTMA_MAY_ENTER_IRREVOCABLE
|
||
| GTMA_HAS_NO_INSTRUMENTATION);
|
||
continue;
|
||
}
|
||
|
||
need_ssa_rename |=
|
||
ipa_tm_transform_calls (node, region, region->entry_block,
|
||
d->irrevocable_blocks_normal);
|
||
}
|
||
|
||
if (need_ssa_rename)
|
||
update_ssa (TODO_update_ssa_only_virtuals);
|
||
|
||
pop_cfun ();
|
||
}
|
||
|
||
/* Transform the calls within the transactional clone of NODE. */
|
||
|
||
static void
|
||
ipa_tm_transform_clone (struct cgraph_node *node)
|
||
{
|
||
struct tm_ipa_cg_data *d;
|
||
bool need_ssa_rename;
|
||
|
||
d = get_cg_data (&node, true);
|
||
|
||
/* If this function makes no calls and has no irrevocable blocks,
|
||
then there's nothing to do. */
|
||
/* ??? Remove non-aborting top-level transactions. */
|
||
if (!node->callees && !node->indirect_calls && !d->irrevocable_blocks_clone)
|
||
return;
|
||
|
||
push_cfun (DECL_STRUCT_FUNCTION (d->clone->decl));
|
||
calculate_dominance_info (CDI_DOMINATORS);
|
||
|
||
need_ssa_rename =
|
||
ipa_tm_transform_calls (d->clone, NULL,
|
||
single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
|
||
d->irrevocable_blocks_clone);
|
||
|
||
if (need_ssa_rename)
|
||
update_ssa (TODO_update_ssa_only_virtuals);
|
||
|
||
pop_cfun ();
|
||
}
|
||
|
||
/* Main entry point for the transactional memory IPA pass. */
|
||
|
||
static unsigned int
|
||
ipa_tm_execute (void)
|
||
{
|
||
cgraph_node_queue tm_callees = cgraph_node_queue ();
|
||
/* List of functions that will go irrevocable. */
|
||
cgraph_node_queue irr_worklist = cgraph_node_queue ();
|
||
|
||
struct cgraph_node *node;
|
||
struct tm_ipa_cg_data *d;
|
||
enum availability a;
|
||
unsigned int i;
|
||
|
||
#ifdef ENABLE_CHECKING
|
||
cgraph_node::verify_cgraph_nodes ();
|
||
#endif
|
||
|
||
bitmap_obstack_initialize (&tm_obstack);
|
||
initialize_original_copy_tables ();
|
||
|
||
/* For all local functions marked tm_callable, queue them. */
|
||
FOR_EACH_DEFINED_FUNCTION (node)
|
||
if (is_tm_callable (node->decl)
|
||
&& node->get_availability () >= AVAIL_INTERPOSABLE)
|
||
{
|
||
d = get_cg_data (&node, true);
|
||
maybe_push_queue (node, &tm_callees, &d->in_callee_queue);
|
||
}
|
||
|
||
/* For all local reachable functions... */
|
||
FOR_EACH_DEFINED_FUNCTION (node)
|
||
if (node->lowered
|
||
&& node->get_availability () >= AVAIL_INTERPOSABLE)
|
||
{
|
||
/* ... marked tm_pure, record that fact for the runtime by
|
||
indicating that the pure function is its own tm_callable.
|
||
No need to do this if the function's address can't be taken. */
|
||
if (is_tm_pure (node->decl))
|
||
{
|
||
if (!node->local.local)
|
||
record_tm_clone_pair (node->decl, node->decl);
|
||
continue;
|
||
}
|
||
|
||
push_cfun (DECL_STRUCT_FUNCTION (node->decl));
|
||
calculate_dominance_info (CDI_DOMINATORS);
|
||
|
||
tm_region_init (NULL);
|
||
if (all_tm_regions)
|
||
{
|
||
d = get_cg_data (&node, true);
|
||
|
||
/* Scan for calls that are in each transaction, and
|
||
generate the uninstrumented code path. */
|
||
ipa_tm_scan_calls_transaction (d, &tm_callees);
|
||
|
||
/* Put it in the worklist so we can scan the function
|
||
later (ipa_tm_scan_irr_function) and mark the
|
||
irrevocable blocks. */
|
||
maybe_push_queue (node, &irr_worklist, &d->in_worklist);
|
||
d->want_irr_scan_normal = true;
|
||
}
|
||
|
||
pop_cfun ();
|
||
}
|
||
|
||
/* For every local function on the callee list, scan as if we will be
|
||
creating a transactional clone, queueing all new functions we find
|
||
along the way. */
|
||
for (i = 0; i < tm_callees.length (); ++i)
|
||
{
|
||
node = tm_callees[i];
|
||
a = node->get_availability ();
|
||
d = get_cg_data (&node, true);
|
||
|
||
/* Put it in the worklist so we can scan the function later
|
||
(ipa_tm_scan_irr_function) and mark the irrevocable
|
||
blocks. */
|
||
maybe_push_queue (node, &irr_worklist, &d->in_worklist);
|
||
|
||
/* Some callees cannot be arbitrarily cloned. These will always be
|
||
irrevocable. Mark these now, so that we need not scan them. */
|
||
if (is_tm_irrevocable (node->decl))
|
||
ipa_tm_note_irrevocable (node, &irr_worklist);
|
||
else if (a <= AVAIL_NOT_AVAILABLE
|
||
&& !is_tm_safe_or_pure (node->decl))
|
||
ipa_tm_note_irrevocable (node, &irr_worklist);
|
||
else if (a >= AVAIL_INTERPOSABLE)
|
||
{
|
||
if (!tree_versionable_function_p (node->decl))
|
||
ipa_tm_note_irrevocable (node, &irr_worklist);
|
||
else if (!d->is_irrevocable)
|
||
{
|
||
/* If this is an alias, make sure its base is queued as well.
|
||
we need not scan the callees now, as the base will do. */
|
||
if (node->alias)
|
||
{
|
||
node = cgraph_node::get (node->thunk.alias);
|
||
d = get_cg_data (&node, true);
|
||
maybe_push_queue (node, &tm_callees, &d->in_callee_queue);
|
||
continue;
|
||
}
|
||
|
||
/* Add all nodes called by this function into
|
||
tm_callees as well. */
|
||
ipa_tm_scan_calls_clone (node, &tm_callees);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Iterate scans until no more work to be done. Prefer not to use
|
||
vec::pop because the worklist tends to follow a breadth-first
|
||
search of the callgraph, which should allow convergance with a
|
||
minimum number of scans. But we also don't want the worklist
|
||
array to grow without bound, so we shift the array up periodically. */
|
||
for (i = 0; i < irr_worklist.length (); ++i)
|
||
{
|
||
if (i > 256 && i == irr_worklist.length () / 8)
|
||
{
|
||
irr_worklist.block_remove (0, i);
|
||
i = 0;
|
||
}
|
||
|
||
node = irr_worklist[i];
|
||
d = get_cg_data (&node, true);
|
||
d->in_worklist = false;
|
||
|
||
if (d->want_irr_scan_normal)
|
||
{
|
||
d->want_irr_scan_normal = false;
|
||
ipa_tm_scan_irr_function (node, false);
|
||
}
|
||
if (d->in_callee_queue && ipa_tm_scan_irr_function (node, true))
|
||
ipa_tm_note_irrevocable (node, &irr_worklist);
|
||
}
|
||
|
||
/* For every function on the callee list, collect the tm_may_enter_irr
|
||
bit on the node. */
|
||
irr_worklist.truncate (0);
|
||
for (i = 0; i < tm_callees.length (); ++i)
|
||
{
|
||
node = tm_callees[i];
|
||
if (ipa_tm_mayenterirr_function (node))
|
||
{
|
||
d = get_cg_data (&node, true);
|
||
gcc_assert (d->in_worklist == false);
|
||
maybe_push_queue (node, &irr_worklist, &d->in_worklist);
|
||
}
|
||
}
|
||
|
||
/* Propagate the tm_may_enter_irr bit to callers until stable. */
|
||
for (i = 0; i < irr_worklist.length (); ++i)
|
||
{
|
||
struct cgraph_node *caller;
|
||
struct cgraph_edge *e;
|
||
struct ipa_ref *ref;
|
||
|
||
if (i > 256 && i == irr_worklist.length () / 8)
|
||
{
|
||
irr_worklist.block_remove (0, i);
|
||
i = 0;
|
||
}
|
||
|
||
node = irr_worklist[i];
|
||
d = get_cg_data (&node, true);
|
||
d->in_worklist = false;
|
||
node->local.tm_may_enter_irr = true;
|
||
|
||
/* Propagate back to normal callers. */
|
||
for (e = node->callers; e ; e = e->next_caller)
|
||
{
|
||
caller = e->caller;
|
||
if (!is_tm_safe_or_pure (caller->decl)
|
||
&& !caller->local.tm_may_enter_irr)
|
||
{
|
||
d = get_cg_data (&caller, true);
|
||
maybe_push_queue (caller, &irr_worklist, &d->in_worklist);
|
||
}
|
||
}
|
||
|
||
/* Propagate back to referring aliases as well. */
|
||
FOR_EACH_ALIAS (node, ref)
|
||
{
|
||
caller = dyn_cast<cgraph_node *> (ref->referring);
|
||
if (!caller->local.tm_may_enter_irr)
|
||
{
|
||
/* ?? Do not traverse aliases here. */
|
||
d = get_cg_data (&caller, false);
|
||
maybe_push_queue (caller, &irr_worklist, &d->in_worklist);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Now validate all tm_safe functions, and all atomic regions in
|
||
other functions. */
|
||
FOR_EACH_DEFINED_FUNCTION (node)
|
||
if (node->lowered
|
||
&& node->get_availability () >= AVAIL_INTERPOSABLE)
|
||
{
|
||
d = get_cg_data (&node, true);
|
||
if (is_tm_safe (node->decl))
|
||
ipa_tm_diagnose_tm_safe (node);
|
||
else if (d->all_tm_regions)
|
||
ipa_tm_diagnose_transaction (node, d->all_tm_regions);
|
||
}
|
||
|
||
/* Create clones. Do those that are not irrevocable and have a
|
||
positive call count. Do those publicly visible functions that
|
||
the user directed us to clone. */
|
||
for (i = 0; i < tm_callees.length (); ++i)
|
||
{
|
||
bool doit = false;
|
||
|
||
node = tm_callees[i];
|
||
if (node->cpp_implicit_alias)
|
||
continue;
|
||
|
||
a = node->get_availability ();
|
||
d = get_cg_data (&node, true);
|
||
|
||
if (a <= AVAIL_NOT_AVAILABLE)
|
||
doit = is_tm_callable (node->decl);
|
||
else if (a <= AVAIL_AVAILABLE && is_tm_callable (node->decl))
|
||
doit = true;
|
||
else if (!d->is_irrevocable
|
||
&& d->tm_callers_normal + d->tm_callers_clone > 0)
|
||
doit = true;
|
||
|
||
if (doit)
|
||
ipa_tm_create_version (node);
|
||
}
|
||
|
||
/* Redirect calls to the new clones, and insert irrevocable marks. */
|
||
for (i = 0; i < tm_callees.length (); ++i)
|
||
{
|
||
node = tm_callees[i];
|
||
if (node->analyzed)
|
||
{
|
||
d = get_cg_data (&node, true);
|
||
if (d->clone)
|
||
ipa_tm_transform_clone (node);
|
||
}
|
||
}
|
||
FOR_EACH_DEFINED_FUNCTION (node)
|
||
if (node->lowered
|
||
&& node->get_availability () >= AVAIL_INTERPOSABLE)
|
||
{
|
||
d = get_cg_data (&node, true);
|
||
if (d->all_tm_regions)
|
||
ipa_tm_transform_transaction (node);
|
||
}
|
||
|
||
/* Free and clear all data structures. */
|
||
tm_callees.release ();
|
||
irr_worklist.release ();
|
||
bitmap_obstack_release (&tm_obstack);
|
||
free_original_copy_tables ();
|
||
|
||
FOR_EACH_FUNCTION (node)
|
||
node->aux = NULL;
|
||
|
||
#ifdef ENABLE_CHECKING
|
||
cgraph_node::verify_cgraph_nodes ();
|
||
#endif
|
||
|
||
return 0;
|
||
}
|
||
|
||
namespace {
|
||
|
||
const pass_data pass_data_ipa_tm =
|
||
{
|
||
SIMPLE_IPA_PASS, /* type */
|
||
"tmipa", /* name */
|
||
OPTGROUP_NONE, /* optinfo_flags */
|
||
TV_TRANS_MEM, /* tv_id */
|
||
( PROP_ssa | PROP_cfg ), /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
0, /* todo_flags_finish */
|
||
};
|
||
|
||
class pass_ipa_tm : public simple_ipa_opt_pass
|
||
{
|
||
public:
|
||
pass_ipa_tm (gcc::context *ctxt)
|
||
: simple_ipa_opt_pass (pass_data_ipa_tm, ctxt)
|
||
{}
|
||
|
||
/* opt_pass methods: */
|
||
virtual bool gate (function *) { return flag_tm; }
|
||
virtual unsigned int execute (function *) { return ipa_tm_execute (); }
|
||
|
||
}; // class pass_ipa_tm
|
||
|
||
} // anon namespace
|
||
|
||
simple_ipa_opt_pass *
|
||
make_pass_ipa_tm (gcc::context *ctxt)
|
||
{
|
||
return new pass_ipa_tm (ctxt);
|
||
}
|
||
|
||
#include "gt-trans-mem.h"
|