mirror of
https://github.com/autc04/Retro68.git
synced 2024-11-28 05:51:04 +00:00
1198 lines
32 KiB
C
1198 lines
32 KiB
C
/* Tail call optimization on trees.
|
|
Copyright (C) 2003-2015 Free Software Foundation, Inc.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3, or (at your option)
|
|
any later version.
|
|
|
|
GCC is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "tm.h"
|
|
#include "hash-set.h"
|
|
#include "machmode.h"
|
|
#include "vec.h"
|
|
#include "double-int.h"
|
|
#include "input.h"
|
|
#include "alias.h"
|
|
#include "symtab.h"
|
|
#include "wide-int.h"
|
|
#include "inchash.h"
|
|
#include "tree.h"
|
|
#include "fold-const.h"
|
|
#include "stor-layout.h"
|
|
#include "tm_p.h"
|
|
#include "predict.h"
|
|
#include "hard-reg-set.h"
|
|
#include "function.h"
|
|
#include "dominance.h"
|
|
#include "cfg.h"
|
|
#include "basic-block.h"
|
|
#include "tree-ssa-alias.h"
|
|
#include "internal-fn.h"
|
|
#include "gimple-expr.h"
|
|
#include "is-a.h"
|
|
#include "gimple.h"
|
|
#include "gimple-iterator.h"
|
|
#include "gimplify-me.h"
|
|
#include "gimple-ssa.h"
|
|
#include "tree-cfg.h"
|
|
#include "tree-phinodes.h"
|
|
#include "stringpool.h"
|
|
#include "tree-ssanames.h"
|
|
#include "tree-into-ssa.h"
|
|
#include "hashtab.h"
|
|
#include "rtl.h"
|
|
#include "flags.h"
|
|
#include "statistics.h"
|
|
#include "real.h"
|
|
#include "fixed-value.h"
|
|
#include "insn-config.h"
|
|
#include "expmed.h"
|
|
#include "dojump.h"
|
|
#include "explow.h"
|
|
#include "calls.h"
|
|
#include "emit-rtl.h"
|
|
#include "varasm.h"
|
|
#include "stmt.h"
|
|
#include "expr.h"
|
|
#include "tree-dfa.h"
|
|
#include "gimple-pretty-print.h"
|
|
#include "except.h"
|
|
#include "tree-pass.h"
|
|
#include "langhooks.h"
|
|
#include "dbgcnt.h"
|
|
#include "target.h"
|
|
#include "cfgloop.h"
|
|
#include "common/common-target.h"
|
|
#include "hash-map.h"
|
|
#include "plugin-api.h"
|
|
#include "ipa-ref.h"
|
|
#include "cgraph.h"
|
|
#include "ipa-utils.h"
|
|
|
|
/* The file implements the tail recursion elimination. It is also used to
|
|
analyze the tail calls in general, passing the results to the rtl level
|
|
where they are used for sibcall optimization.
|
|
|
|
In addition to the standard tail recursion elimination, we handle the most
|
|
trivial cases of making the call tail recursive by creating accumulators.
|
|
For example the following function
|
|
|
|
int sum (int n)
|
|
{
|
|
if (n > 0)
|
|
return n + sum (n - 1);
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
is transformed into
|
|
|
|
int sum (int n)
|
|
{
|
|
int acc = 0;
|
|
|
|
while (n > 0)
|
|
acc += n--;
|
|
|
|
return acc;
|
|
}
|
|
|
|
To do this, we maintain two accumulators (a_acc and m_acc) that indicate
|
|
when we reach the return x statement, we should return a_acc + x * m_acc
|
|
instead. They are initially initialized to 0 and 1, respectively,
|
|
so the semantics of the function is obviously preserved. If we are
|
|
guaranteed that the value of the accumulator never change, we
|
|
omit the accumulator.
|
|
|
|
There are three cases how the function may exit. The first one is
|
|
handled in adjust_return_value, the other two in adjust_accumulator_values
|
|
(the second case is actually a special case of the third one and we
|
|
present it separately just for clarity):
|
|
|
|
1) Just return x, where x is not in any of the remaining special shapes.
|
|
We rewrite this to a gimple equivalent of return m_acc * x + a_acc.
|
|
|
|
2) return f (...), where f is the current function, is rewritten in a
|
|
classical tail-recursion elimination way, into assignment of arguments
|
|
and jump to the start of the function. Values of the accumulators
|
|
are unchanged.
|
|
|
|
3) return a + m * f(...), where a and m do not depend on call to f.
|
|
To preserve the semantics described before we want this to be rewritten
|
|
in such a way that we finally return
|
|
|
|
a_acc + (a + m * f(...)) * m_acc = (a_acc + a * m_acc) + (m * m_acc) * f(...).
|
|
|
|
I.e. we increase a_acc by a * m_acc, multiply m_acc by m and
|
|
eliminate the tail call to f. Special cases when the value is just
|
|
added or just multiplied are obtained by setting a = 0 or m = 1.
|
|
|
|
TODO -- it is possible to do similar tricks for other operations. */
|
|
|
|
/* A structure that describes the tailcall. */
|
|
|
|
struct tailcall
|
|
{
|
|
/* The iterator pointing to the call statement. */
|
|
gimple_stmt_iterator call_gsi;
|
|
|
|
/* True if it is a call to the current function. */
|
|
bool tail_recursion;
|
|
|
|
/* The return value of the caller is mult * f + add, where f is the return
|
|
value of the call. */
|
|
tree mult, add;
|
|
|
|
/* Next tailcall in the chain. */
|
|
struct tailcall *next;
|
|
};
|
|
|
|
/* The variables holding the value of multiplicative and additive
|
|
accumulator. */
|
|
static tree m_acc, a_acc;
|
|
|
|
static bool suitable_for_tail_opt_p (void);
|
|
static bool optimize_tail_call (struct tailcall *, bool);
|
|
static void eliminate_tail_call (struct tailcall *);
|
|
static void find_tail_calls (basic_block, struct tailcall **);
|
|
|
|
/* Returns false when the function is not suitable for tail call optimization
|
|
from some reason (e.g. if it takes variable number of arguments). */
|
|
|
|
static bool
|
|
suitable_for_tail_opt_p (void)
|
|
{
|
|
if (cfun->stdarg)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
/* Returns false when the function is not suitable for tail call optimization
|
|
from some reason (e.g. if it takes variable number of arguments).
|
|
This test must pass in addition to suitable_for_tail_opt_p in order to make
|
|
tail call discovery happen. */
|
|
|
|
static bool
|
|
suitable_for_tail_call_opt_p (void)
|
|
{
|
|
tree param;
|
|
|
|
/* alloca (until we have stack slot life analysis) inhibits
|
|
sibling call optimizations, but not tail recursion. */
|
|
if (cfun->calls_alloca)
|
|
return false;
|
|
|
|
/* If we are using sjlj exceptions, we may need to add a call to
|
|
_Unwind_SjLj_Unregister at exit of the function. Which means
|
|
that we cannot do any sibcall transformations. */
|
|
if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ
|
|
&& current_function_has_exception_handlers ())
|
|
return false;
|
|
|
|
/* Any function that calls setjmp might have longjmp called from
|
|
any called function. ??? We really should represent this
|
|
properly in the CFG so that this needn't be special cased. */
|
|
if (cfun->calls_setjmp)
|
|
return false;
|
|
|
|
/* ??? It is OK if the argument of a function is taken in some cases,
|
|
but not in all cases. See PR15387 and PR19616. Revisit for 4.1. */
|
|
for (param = DECL_ARGUMENTS (current_function_decl);
|
|
param;
|
|
param = DECL_CHAIN (param))
|
|
if (TREE_ADDRESSABLE (param))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Checks whether the expression EXPR in stmt AT is independent of the
|
|
statement pointed to by GSI (in a sense that we already know EXPR's value
|
|
at GSI). We use the fact that we are only called from the chain of
|
|
basic blocks that have only single successor. Returns the expression
|
|
containing the value of EXPR at GSI. */
|
|
|
|
static tree
|
|
independent_of_stmt_p (tree expr, gimple at, gimple_stmt_iterator gsi)
|
|
{
|
|
basic_block bb, call_bb, at_bb;
|
|
edge e;
|
|
edge_iterator ei;
|
|
|
|
if (is_gimple_min_invariant (expr))
|
|
return expr;
|
|
|
|
if (TREE_CODE (expr) != SSA_NAME)
|
|
return NULL_TREE;
|
|
|
|
/* Mark the blocks in the chain leading to the end. */
|
|
at_bb = gimple_bb (at);
|
|
call_bb = gimple_bb (gsi_stmt (gsi));
|
|
for (bb = call_bb; bb != at_bb; bb = single_succ (bb))
|
|
bb->aux = &bb->aux;
|
|
bb->aux = &bb->aux;
|
|
|
|
while (1)
|
|
{
|
|
at = SSA_NAME_DEF_STMT (expr);
|
|
bb = gimple_bb (at);
|
|
|
|
/* The default definition or defined before the chain. */
|
|
if (!bb || !bb->aux)
|
|
break;
|
|
|
|
if (bb == call_bb)
|
|
{
|
|
for (; !gsi_end_p (gsi); gsi_next (&gsi))
|
|
if (gsi_stmt (gsi) == at)
|
|
break;
|
|
|
|
if (!gsi_end_p (gsi))
|
|
expr = NULL_TREE;
|
|
break;
|
|
}
|
|
|
|
if (gimple_code (at) != GIMPLE_PHI)
|
|
{
|
|
expr = NULL_TREE;
|
|
break;
|
|
}
|
|
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
|
if (e->src->aux)
|
|
break;
|
|
gcc_assert (e);
|
|
|
|
expr = PHI_ARG_DEF_FROM_EDGE (at, e);
|
|
if (TREE_CODE (expr) != SSA_NAME)
|
|
{
|
|
/* The value is a constant. */
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Unmark the blocks. */
|
|
for (bb = call_bb; bb != at_bb; bb = single_succ (bb))
|
|
bb->aux = NULL;
|
|
bb->aux = NULL;
|
|
|
|
return expr;
|
|
}
|
|
|
|
/* Simulates the effect of an assignment STMT on the return value of the tail
|
|
recursive CALL passed in ASS_VAR. M and A are the multiplicative and the
|
|
additive factor for the real return value. */
|
|
|
|
static bool
|
|
process_assignment (gassign *stmt, gimple_stmt_iterator call, tree *m,
|
|
tree *a, tree *ass_var)
|
|
{
|
|
tree op0, op1 = NULL_TREE, non_ass_var = NULL_TREE;
|
|
tree dest = gimple_assign_lhs (stmt);
|
|
enum tree_code code = gimple_assign_rhs_code (stmt);
|
|
enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
|
|
tree src_var = gimple_assign_rhs1 (stmt);
|
|
|
|
/* See if this is a simple copy operation of an SSA name to the function
|
|
result. In that case we may have a simple tail call. Ignore type
|
|
conversions that can never produce extra code between the function
|
|
call and the function return. */
|
|
if ((rhs_class == GIMPLE_SINGLE_RHS || gimple_assign_cast_p (stmt))
|
|
&& (TREE_CODE (src_var) == SSA_NAME))
|
|
{
|
|
/* Reject a tailcall if the type conversion might need
|
|
additional code. */
|
|
if (gimple_assign_cast_p (stmt))
|
|
{
|
|
if (TYPE_MODE (TREE_TYPE (dest)) != TYPE_MODE (TREE_TYPE (src_var)))
|
|
return false;
|
|
|
|
/* Even if the type modes are the same, if the precision of the
|
|
type is smaller than mode's precision,
|
|
reduce_to_bit_field_precision would generate additional code. */
|
|
if (INTEGRAL_TYPE_P (TREE_TYPE (dest))
|
|
&& (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (dest)))
|
|
> TYPE_PRECISION (TREE_TYPE (dest))))
|
|
return false;
|
|
}
|
|
|
|
if (src_var != *ass_var)
|
|
return false;
|
|
|
|
*ass_var = dest;
|
|
return true;
|
|
}
|
|
|
|
switch (rhs_class)
|
|
{
|
|
case GIMPLE_BINARY_RHS:
|
|
op1 = gimple_assign_rhs2 (stmt);
|
|
|
|
/* Fall through. */
|
|
|
|
case GIMPLE_UNARY_RHS:
|
|
op0 = gimple_assign_rhs1 (stmt);
|
|
break;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
/* Accumulator optimizations will reverse the order of operations.
|
|
We can only do that for floating-point types if we're assuming
|
|
that addition and multiplication are associative. */
|
|
if (!flag_associative_math)
|
|
if (FLOAT_TYPE_P (TREE_TYPE (DECL_RESULT (current_function_decl))))
|
|
return false;
|
|
|
|
if (rhs_class == GIMPLE_UNARY_RHS)
|
|
;
|
|
else if (op0 == *ass_var
|
|
&& (non_ass_var = independent_of_stmt_p (op1, stmt, call)))
|
|
;
|
|
else if (op1 == *ass_var
|
|
&& (non_ass_var = independent_of_stmt_p (op0, stmt, call)))
|
|
;
|
|
else
|
|
return false;
|
|
|
|
switch (code)
|
|
{
|
|
case PLUS_EXPR:
|
|
*a = non_ass_var;
|
|
*ass_var = dest;
|
|
return true;
|
|
|
|
case POINTER_PLUS_EXPR:
|
|
if (op0 != *ass_var)
|
|
return false;
|
|
*a = non_ass_var;
|
|
*ass_var = dest;
|
|
return true;
|
|
|
|
case MULT_EXPR:
|
|
*m = non_ass_var;
|
|
*ass_var = dest;
|
|
return true;
|
|
|
|
case NEGATE_EXPR:
|
|
*m = build_minus_one_cst (TREE_TYPE (op0));
|
|
*ass_var = dest;
|
|
return true;
|
|
|
|
case MINUS_EXPR:
|
|
if (*ass_var == op0)
|
|
*a = fold_build1 (NEGATE_EXPR, TREE_TYPE (non_ass_var), non_ass_var);
|
|
else
|
|
{
|
|
*m = build_minus_one_cst (TREE_TYPE (non_ass_var));
|
|
*a = fold_build1 (NEGATE_EXPR, TREE_TYPE (non_ass_var), non_ass_var);
|
|
}
|
|
|
|
*ass_var = dest;
|
|
return true;
|
|
|
|
/* TODO -- Handle POINTER_PLUS_EXPR. */
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Propagate VAR through phis on edge E. */
|
|
|
|
static tree
|
|
propagate_through_phis (tree var, edge e)
|
|
{
|
|
basic_block dest = e->dest;
|
|
gphi_iterator gsi;
|
|
|
|
for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
gphi *phi = gsi.phi ();
|
|
if (PHI_ARG_DEF_FROM_EDGE (phi, e) == var)
|
|
return PHI_RESULT (phi);
|
|
}
|
|
return var;
|
|
}
|
|
|
|
/* Finds tailcalls falling into basic block BB. The list of found tailcalls is
|
|
added to the start of RET. */
|
|
|
|
static void
|
|
find_tail_calls (basic_block bb, struct tailcall **ret)
|
|
{
|
|
tree ass_var = NULL_TREE, ret_var, func, param;
|
|
gimple stmt;
|
|
gcall *call = NULL;
|
|
gimple_stmt_iterator gsi, agsi;
|
|
bool tail_recursion;
|
|
struct tailcall *nw;
|
|
edge e;
|
|
tree m, a;
|
|
basic_block abb;
|
|
size_t idx;
|
|
tree var;
|
|
|
|
if (!single_succ_p (bb))
|
|
return;
|
|
|
|
for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
|
|
{
|
|
stmt = gsi_stmt (gsi);
|
|
|
|
/* Ignore labels, returns, clobbers and debug stmts. */
|
|
if (gimple_code (stmt) == GIMPLE_LABEL
|
|
|| gimple_code (stmt) == GIMPLE_RETURN
|
|
|| gimple_clobber_p (stmt)
|
|
|| is_gimple_debug (stmt))
|
|
continue;
|
|
|
|
/* Check for a call. */
|
|
if (is_gimple_call (stmt))
|
|
{
|
|
call = as_a <gcall *> (stmt);
|
|
ass_var = gimple_call_lhs (call);
|
|
break;
|
|
}
|
|
|
|
/* If the statement references memory or volatile operands, fail. */
|
|
if (gimple_references_memory_p (stmt)
|
|
|| gimple_has_volatile_ops (stmt))
|
|
return;
|
|
}
|
|
|
|
if (gsi_end_p (gsi))
|
|
{
|
|
edge_iterator ei;
|
|
/* Recurse to the predecessors. */
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
|
find_tail_calls (e->src, ret);
|
|
|
|
return;
|
|
}
|
|
|
|
/* If the LHS of our call is not just a simple register, we can't
|
|
transform this into a tail or sibling call. This situation happens,
|
|
in (e.g.) "*p = foo()" where foo returns a struct. In this case
|
|
we won't have a temporary here, but we need to carry out the side
|
|
effect anyway, so tailcall is impossible.
|
|
|
|
??? In some situations (when the struct is returned in memory via
|
|
invisible argument) we could deal with this, e.g. by passing 'p'
|
|
itself as that argument to foo, but it's too early to do this here,
|
|
and expand_call() will not handle it anyway. If it ever can, then
|
|
we need to revisit this here, to allow that situation. */
|
|
if (ass_var && !is_gimple_reg (ass_var))
|
|
return;
|
|
|
|
/* We found the call, check whether it is suitable. */
|
|
tail_recursion = false;
|
|
func = gimple_call_fndecl (call);
|
|
if (func
|
|
&& !DECL_BUILT_IN (func)
|
|
&& recursive_call_p (current_function_decl, func))
|
|
{
|
|
tree arg;
|
|
|
|
for (param = DECL_ARGUMENTS (func), idx = 0;
|
|
param && idx < gimple_call_num_args (call);
|
|
param = DECL_CHAIN (param), idx ++)
|
|
{
|
|
arg = gimple_call_arg (call, idx);
|
|
if (param != arg)
|
|
{
|
|
/* Make sure there are no problems with copying. The parameter
|
|
have a copyable type and the two arguments must have reasonably
|
|
equivalent types. The latter requirement could be relaxed if
|
|
we emitted a suitable type conversion statement. */
|
|
if (!is_gimple_reg_type (TREE_TYPE (param))
|
|
|| !useless_type_conversion_p (TREE_TYPE (param),
|
|
TREE_TYPE (arg)))
|
|
break;
|
|
|
|
/* The parameter should be a real operand, so that phi node
|
|
created for it at the start of the function has the meaning
|
|
of copying the value. This test implies is_gimple_reg_type
|
|
from the previous condition, however this one could be
|
|
relaxed by being more careful with copying the new value
|
|
of the parameter (emitting appropriate GIMPLE_ASSIGN and
|
|
updating the virtual operands). */
|
|
if (!is_gimple_reg (param))
|
|
break;
|
|
}
|
|
}
|
|
if (idx == gimple_call_num_args (call) && !param)
|
|
tail_recursion = true;
|
|
}
|
|
|
|
/* Make sure the tail invocation of this function does not refer
|
|
to local variables. */
|
|
FOR_EACH_LOCAL_DECL (cfun, idx, var)
|
|
{
|
|
if (TREE_CODE (var) != PARM_DECL
|
|
&& auto_var_in_fn_p (var, cfun->decl)
|
|
&& (ref_maybe_used_by_stmt_p (call, var)
|
|
|| call_may_clobber_ref_p (call, var)))
|
|
return;
|
|
}
|
|
|
|
/* Now check the statements after the call. None of them has virtual
|
|
operands, so they may only depend on the call through its return
|
|
value. The return value should also be dependent on each of them,
|
|
since we are running after dce. */
|
|
m = NULL_TREE;
|
|
a = NULL_TREE;
|
|
|
|
abb = bb;
|
|
agsi = gsi;
|
|
while (1)
|
|
{
|
|
tree tmp_a = NULL_TREE;
|
|
tree tmp_m = NULL_TREE;
|
|
gsi_next (&agsi);
|
|
|
|
while (gsi_end_p (agsi))
|
|
{
|
|
ass_var = propagate_through_phis (ass_var, single_succ_edge (abb));
|
|
abb = single_succ (abb);
|
|
agsi = gsi_start_bb (abb);
|
|
}
|
|
|
|
stmt = gsi_stmt (agsi);
|
|
|
|
if (gimple_code (stmt) == GIMPLE_LABEL)
|
|
continue;
|
|
|
|
if (gimple_code (stmt) == GIMPLE_RETURN)
|
|
break;
|
|
|
|
if (gimple_clobber_p (stmt))
|
|
continue;
|
|
|
|
if (is_gimple_debug (stmt))
|
|
continue;
|
|
|
|
if (gimple_code (stmt) != GIMPLE_ASSIGN)
|
|
return;
|
|
|
|
/* This is a gimple assign. */
|
|
if (! process_assignment (as_a <gassign *> (stmt), gsi, &tmp_m,
|
|
&tmp_a, &ass_var))
|
|
return;
|
|
|
|
if (tmp_a)
|
|
{
|
|
tree type = TREE_TYPE (tmp_a);
|
|
if (a)
|
|
a = fold_build2 (PLUS_EXPR, type, fold_convert (type, a), tmp_a);
|
|
else
|
|
a = tmp_a;
|
|
}
|
|
if (tmp_m)
|
|
{
|
|
tree type = TREE_TYPE (tmp_m);
|
|
if (m)
|
|
m = fold_build2 (MULT_EXPR, type, fold_convert (type, m), tmp_m);
|
|
else
|
|
m = tmp_m;
|
|
|
|
if (a)
|
|
a = fold_build2 (MULT_EXPR, type, fold_convert (type, a), tmp_m);
|
|
}
|
|
}
|
|
|
|
/* See if this is a tail call we can handle. */
|
|
ret_var = gimple_return_retval (as_a <greturn *> (stmt));
|
|
|
|
/* We may proceed if there either is no return value, or the return value
|
|
is identical to the call's return. */
|
|
if (ret_var
|
|
&& (ret_var != ass_var))
|
|
return;
|
|
|
|
/* If this is not a tail recursive call, we cannot handle addends or
|
|
multiplicands. */
|
|
if (!tail_recursion && (m || a))
|
|
return;
|
|
|
|
/* For pointers only allow additions. */
|
|
if (m && POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (current_function_decl))))
|
|
return;
|
|
|
|
nw = XNEW (struct tailcall);
|
|
|
|
nw->call_gsi = gsi;
|
|
|
|
nw->tail_recursion = tail_recursion;
|
|
|
|
nw->mult = m;
|
|
nw->add = a;
|
|
|
|
nw->next = *ret;
|
|
*ret = nw;
|
|
}
|
|
|
|
/* Helper to insert PHI_ARGH to the phi of VAR in the destination of edge E. */
|
|
|
|
static void
|
|
add_successor_phi_arg (edge e, tree var, tree phi_arg)
|
|
{
|
|
gphi_iterator gsi;
|
|
|
|
for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
if (PHI_RESULT (gsi.phi ()) == var)
|
|
break;
|
|
|
|
gcc_assert (!gsi_end_p (gsi));
|
|
add_phi_arg (gsi.phi (), phi_arg, e, UNKNOWN_LOCATION);
|
|
}
|
|
|
|
/* Creates a GIMPLE statement which computes the operation specified by
|
|
CODE, ACC and OP1 to a new variable with name LABEL and inserts the
|
|
statement in the position specified by GSI. Returns the
|
|
tree node of the statement's result. */
|
|
|
|
static tree
|
|
adjust_return_value_with_ops (enum tree_code code, const char *label,
|
|
tree acc, tree op1, gimple_stmt_iterator gsi)
|
|
{
|
|
|
|
tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl));
|
|
tree result = make_temp_ssa_name (ret_type, NULL, label);
|
|
gassign *stmt;
|
|
|
|
if (POINTER_TYPE_P (ret_type))
|
|
{
|
|
gcc_assert (code == PLUS_EXPR && TREE_TYPE (acc) == sizetype);
|
|
code = POINTER_PLUS_EXPR;
|
|
}
|
|
if (types_compatible_p (TREE_TYPE (acc), TREE_TYPE (op1))
|
|
&& code != POINTER_PLUS_EXPR)
|
|
stmt = gimple_build_assign (result, code, acc, op1);
|
|
else
|
|
{
|
|
tree tem;
|
|
if (code == POINTER_PLUS_EXPR)
|
|
tem = fold_build2 (code, TREE_TYPE (op1), op1, acc);
|
|
else
|
|
tem = fold_build2 (code, TREE_TYPE (op1),
|
|
fold_convert (TREE_TYPE (op1), acc), op1);
|
|
tree rhs = fold_convert (ret_type, tem);
|
|
rhs = force_gimple_operand_gsi (&gsi, rhs,
|
|
false, NULL, true, GSI_SAME_STMT);
|
|
stmt = gimple_build_assign (result, rhs);
|
|
}
|
|
|
|
gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
|
|
return result;
|
|
}
|
|
|
|
/* Creates a new GIMPLE statement that adjusts the value of accumulator ACC by
|
|
the computation specified by CODE and OP1 and insert the statement
|
|
at the position specified by GSI as a new statement. Returns new SSA name
|
|
of updated accumulator. */
|
|
|
|
static tree
|
|
update_accumulator_with_ops (enum tree_code code, tree acc, tree op1,
|
|
gimple_stmt_iterator gsi)
|
|
{
|
|
gassign *stmt;
|
|
tree var = copy_ssa_name (acc);
|
|
if (types_compatible_p (TREE_TYPE (acc), TREE_TYPE (op1)))
|
|
stmt = gimple_build_assign (var, code, acc, op1);
|
|
else
|
|
{
|
|
tree rhs = fold_convert (TREE_TYPE (acc),
|
|
fold_build2 (code,
|
|
TREE_TYPE (op1),
|
|
fold_convert (TREE_TYPE (op1), acc),
|
|
op1));
|
|
rhs = force_gimple_operand_gsi (&gsi, rhs,
|
|
false, NULL, false, GSI_CONTINUE_LINKING);
|
|
stmt = gimple_build_assign (var, rhs);
|
|
}
|
|
gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
|
|
return var;
|
|
}
|
|
|
|
/* Adjust the accumulator values according to A and M after GSI, and update
|
|
the phi nodes on edge BACK. */
|
|
|
|
static void
|
|
adjust_accumulator_values (gimple_stmt_iterator gsi, tree m, tree a, edge back)
|
|
{
|
|
tree var, a_acc_arg, m_acc_arg;
|
|
|
|
if (m)
|
|
m = force_gimple_operand_gsi (&gsi, m, true, NULL, true, GSI_SAME_STMT);
|
|
if (a)
|
|
a = force_gimple_operand_gsi (&gsi, a, true, NULL, true, GSI_SAME_STMT);
|
|
|
|
a_acc_arg = a_acc;
|
|
m_acc_arg = m_acc;
|
|
if (a)
|
|
{
|
|
if (m_acc)
|
|
{
|
|
if (integer_onep (a))
|
|
var = m_acc;
|
|
else
|
|
var = adjust_return_value_with_ops (MULT_EXPR, "acc_tmp", m_acc,
|
|
a, gsi);
|
|
}
|
|
else
|
|
var = a;
|
|
|
|
a_acc_arg = update_accumulator_with_ops (PLUS_EXPR, a_acc, var, gsi);
|
|
}
|
|
|
|
if (m)
|
|
m_acc_arg = update_accumulator_with_ops (MULT_EXPR, m_acc, m, gsi);
|
|
|
|
if (a_acc)
|
|
add_successor_phi_arg (back, a_acc, a_acc_arg);
|
|
|
|
if (m_acc)
|
|
add_successor_phi_arg (back, m_acc, m_acc_arg);
|
|
}
|
|
|
|
/* Adjust value of the return at the end of BB according to M and A
|
|
accumulators. */
|
|
|
|
static void
|
|
adjust_return_value (basic_block bb, tree m, tree a)
|
|
{
|
|
tree retval;
|
|
greturn *ret_stmt = as_a <greturn *> (gimple_seq_last_stmt (bb_seq (bb)));
|
|
gimple_stmt_iterator gsi = gsi_last_bb (bb);
|
|
|
|
gcc_assert (gimple_code (ret_stmt) == GIMPLE_RETURN);
|
|
|
|
retval = gimple_return_retval (ret_stmt);
|
|
if (!retval || retval == error_mark_node)
|
|
return;
|
|
|
|
if (m)
|
|
retval = adjust_return_value_with_ops (MULT_EXPR, "mul_tmp", m_acc, retval,
|
|
gsi);
|
|
if (a)
|
|
retval = adjust_return_value_with_ops (PLUS_EXPR, "acc_tmp", a_acc, retval,
|
|
gsi);
|
|
gimple_return_set_retval (ret_stmt, retval);
|
|
update_stmt (ret_stmt);
|
|
}
|
|
|
|
/* Subtract COUNT and FREQUENCY from the basic block and it's
|
|
outgoing edge. */
|
|
static void
|
|
decrease_profile (basic_block bb, gcov_type count, int frequency)
|
|
{
|
|
edge e;
|
|
bb->count -= count;
|
|
if (bb->count < 0)
|
|
bb->count = 0;
|
|
bb->frequency -= frequency;
|
|
if (bb->frequency < 0)
|
|
bb->frequency = 0;
|
|
if (!single_succ_p (bb))
|
|
{
|
|
gcc_assert (!EDGE_COUNT (bb->succs));
|
|
return;
|
|
}
|
|
e = single_succ_edge (bb);
|
|
e->count -= count;
|
|
if (e->count < 0)
|
|
e->count = 0;
|
|
}
|
|
|
|
/* Returns true if argument PARAM of the tail recursive call needs to be copied
|
|
when the call is eliminated. */
|
|
|
|
static bool
|
|
arg_needs_copy_p (tree param)
|
|
{
|
|
tree def;
|
|
|
|
if (!is_gimple_reg (param))
|
|
return false;
|
|
|
|
/* Parameters that are only defined but never used need not be copied. */
|
|
def = ssa_default_def (cfun, param);
|
|
if (!def)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Eliminates tail call described by T. TMP_VARS is a list of
|
|
temporary variables used to copy the function arguments. */
|
|
|
|
static void
|
|
eliminate_tail_call (struct tailcall *t)
|
|
{
|
|
tree param, rslt;
|
|
gimple stmt, call;
|
|
tree arg;
|
|
size_t idx;
|
|
basic_block bb, first;
|
|
edge e;
|
|
gphi *phi;
|
|
gphi_iterator gpi;
|
|
gimple_stmt_iterator gsi;
|
|
gimple orig_stmt;
|
|
|
|
stmt = orig_stmt = gsi_stmt (t->call_gsi);
|
|
bb = gsi_bb (t->call_gsi);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Eliminated tail recursion in bb %d : ",
|
|
bb->index);
|
|
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
gcc_assert (is_gimple_call (stmt));
|
|
|
|
first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
|
|
|
|
/* Remove the code after call_gsi that will become unreachable. The
|
|
possibly unreachable code in other blocks is removed later in
|
|
cfg cleanup. */
|
|
gsi = t->call_gsi;
|
|
gsi_next (&gsi);
|
|
while (!gsi_end_p (gsi))
|
|
{
|
|
gimple t = gsi_stmt (gsi);
|
|
/* Do not remove the return statement, so that redirect_edge_and_branch
|
|
sees how the block ends. */
|
|
if (gimple_code (t) == GIMPLE_RETURN)
|
|
break;
|
|
|
|
gsi_remove (&gsi, true);
|
|
release_defs (t);
|
|
}
|
|
|
|
/* Number of executions of function has reduced by the tailcall. */
|
|
e = single_succ_edge (gsi_bb (t->call_gsi));
|
|
decrease_profile (EXIT_BLOCK_PTR_FOR_FN (cfun), e->count, EDGE_FREQUENCY (e));
|
|
decrease_profile (ENTRY_BLOCK_PTR_FOR_FN (cfun), e->count,
|
|
EDGE_FREQUENCY (e));
|
|
if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
|
|
decrease_profile (e->dest, e->count, EDGE_FREQUENCY (e));
|
|
|
|
/* Replace the call by a jump to the start of function. */
|
|
e = redirect_edge_and_branch (single_succ_edge (gsi_bb (t->call_gsi)),
|
|
first);
|
|
gcc_assert (e);
|
|
PENDING_STMT (e) = NULL;
|
|
|
|
/* Add phi node entries for arguments. The ordering of the phi nodes should
|
|
be the same as the ordering of the arguments. */
|
|
for (param = DECL_ARGUMENTS (current_function_decl),
|
|
idx = 0, gpi = gsi_start_phis (first);
|
|
param;
|
|
param = DECL_CHAIN (param), idx++)
|
|
{
|
|
if (!arg_needs_copy_p (param))
|
|
continue;
|
|
|
|
arg = gimple_call_arg (stmt, idx);
|
|
phi = gpi.phi ();
|
|
gcc_assert (param == SSA_NAME_VAR (PHI_RESULT (phi)));
|
|
|
|
add_phi_arg (phi, arg, e, gimple_location (stmt));
|
|
gsi_next (&gpi);
|
|
}
|
|
|
|
/* Update the values of accumulators. */
|
|
adjust_accumulator_values (t->call_gsi, t->mult, t->add, e);
|
|
|
|
call = gsi_stmt (t->call_gsi);
|
|
rslt = gimple_call_lhs (call);
|
|
if (rslt != NULL_TREE)
|
|
{
|
|
/* Result of the call will no longer be defined. So adjust the
|
|
SSA_NAME_DEF_STMT accordingly. */
|
|
SSA_NAME_DEF_STMT (rslt) = gimple_build_nop ();
|
|
}
|
|
|
|
gsi_remove (&t->call_gsi, true);
|
|
release_defs (call);
|
|
}
|
|
|
|
/* Optimizes the tailcall described by T. If OPT_TAILCALLS is true, also
|
|
mark the tailcalls for the sibcall optimization. */
|
|
|
|
static bool
|
|
optimize_tail_call (struct tailcall *t, bool opt_tailcalls)
|
|
{
|
|
if (t->tail_recursion)
|
|
{
|
|
eliminate_tail_call (t);
|
|
return true;
|
|
}
|
|
|
|
if (opt_tailcalls)
|
|
{
|
|
gcall *stmt = as_a <gcall *> (gsi_stmt (t->call_gsi));
|
|
|
|
gimple_call_set_tail (stmt, true);
|
|
cfun->tail_call_marked = true;
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Found tail call ");
|
|
print_gimple_stmt (dump_file, stmt, 0, dump_flags);
|
|
fprintf (dump_file, " in bb %i\n", (gsi_bb (t->call_gsi))->index);
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Creates a tail-call accumulator of the same type as the return type of the
|
|
current function. LABEL is the name used to creating the temporary
|
|
variable for the accumulator. The accumulator will be inserted in the
|
|
phis of a basic block BB with single predecessor with an initial value
|
|
INIT converted to the current function return type. */
|
|
|
|
static tree
|
|
create_tailcall_accumulator (const char *label, basic_block bb, tree init)
|
|
{
|
|
tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl));
|
|
if (POINTER_TYPE_P (ret_type))
|
|
ret_type = sizetype;
|
|
|
|
tree tmp = make_temp_ssa_name (ret_type, NULL, label);
|
|
gphi *phi;
|
|
|
|
phi = create_phi_node (tmp, bb);
|
|
/* RET_TYPE can be a float when -ffast-maths is enabled. */
|
|
add_phi_arg (phi, fold_convert (ret_type, init), single_pred_edge (bb),
|
|
UNKNOWN_LOCATION);
|
|
return PHI_RESULT (phi);
|
|
}
|
|
|
|
/* Optimizes tail calls in the function, turning the tail recursion
|
|
into iteration. */
|
|
|
|
static unsigned int
|
|
tree_optimize_tail_calls_1 (bool opt_tailcalls)
|
|
{
|
|
edge e;
|
|
bool phis_constructed = false;
|
|
struct tailcall *tailcalls = NULL, *act, *next;
|
|
bool changed = false;
|
|
basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
|
|
tree param;
|
|
gimple stmt;
|
|
edge_iterator ei;
|
|
|
|
if (!suitable_for_tail_opt_p ())
|
|
return 0;
|
|
if (opt_tailcalls)
|
|
opt_tailcalls = suitable_for_tail_call_opt_p ();
|
|
|
|
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
|
|
{
|
|
/* Only traverse the normal exits, i.e. those that end with return
|
|
statement. */
|
|
stmt = last_stmt (e->src);
|
|
|
|
if (stmt
|
|
&& gimple_code (stmt) == GIMPLE_RETURN)
|
|
find_tail_calls (e->src, &tailcalls);
|
|
}
|
|
|
|
/* Construct the phi nodes and accumulators if necessary. */
|
|
a_acc = m_acc = NULL_TREE;
|
|
for (act = tailcalls; act; act = act->next)
|
|
{
|
|
if (!act->tail_recursion)
|
|
continue;
|
|
|
|
if (!phis_constructed)
|
|
{
|
|
/* Ensure that there is only one predecessor of the block
|
|
or if there are existing degenerate PHI nodes. */
|
|
if (!single_pred_p (first)
|
|
|| !gimple_seq_empty_p (phi_nodes (first)))
|
|
first =
|
|
split_edge (single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
|
|
|
|
/* Copy the args if needed. */
|
|
for (param = DECL_ARGUMENTS (current_function_decl);
|
|
param;
|
|
param = DECL_CHAIN (param))
|
|
if (arg_needs_copy_p (param))
|
|
{
|
|
tree name = ssa_default_def (cfun, param);
|
|
tree new_name = make_ssa_name (param, SSA_NAME_DEF_STMT (name));
|
|
gphi *phi;
|
|
|
|
set_ssa_default_def (cfun, param, new_name);
|
|
phi = create_phi_node (name, first);
|
|
add_phi_arg (phi, new_name, single_pred_edge (first),
|
|
EXPR_LOCATION (param));
|
|
}
|
|
phis_constructed = true;
|
|
}
|
|
|
|
if (act->add && !a_acc)
|
|
a_acc = create_tailcall_accumulator ("add_acc", first,
|
|
integer_zero_node);
|
|
|
|
if (act->mult && !m_acc)
|
|
m_acc = create_tailcall_accumulator ("mult_acc", first,
|
|
integer_one_node);
|
|
}
|
|
|
|
if (a_acc || m_acc)
|
|
{
|
|
/* When the tail call elimination using accumulators is performed,
|
|
statements adding the accumulated value are inserted at all exits.
|
|
This turns all other tail calls to non-tail ones. */
|
|
opt_tailcalls = false;
|
|
}
|
|
|
|
for (; tailcalls; tailcalls = next)
|
|
{
|
|
next = tailcalls->next;
|
|
changed |= optimize_tail_call (tailcalls, opt_tailcalls);
|
|
free (tailcalls);
|
|
}
|
|
|
|
if (a_acc || m_acc)
|
|
{
|
|
/* Modify the remaining return statements. */
|
|
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
|
|
{
|
|
stmt = last_stmt (e->src);
|
|
|
|
if (stmt
|
|
&& gimple_code (stmt) == GIMPLE_RETURN)
|
|
adjust_return_value (e->src, m_acc, a_acc);
|
|
}
|
|
}
|
|
|
|
if (changed)
|
|
{
|
|
/* We may have created new loops. Make them magically appear. */
|
|
loops_state_set (LOOPS_NEED_FIXUP);
|
|
free_dominance_info (CDI_DOMINATORS);
|
|
}
|
|
|
|
/* Add phi nodes for the virtual operands defined in the function to the
|
|
header of the loop created by tail recursion elimination. Do so
|
|
by triggering the SSA renamer. */
|
|
if (phis_constructed)
|
|
mark_virtual_operands_for_renaming (cfun);
|
|
|
|
if (changed)
|
|
return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
|
|
return 0;
|
|
}
|
|
|
|
static bool
|
|
gate_tail_calls (void)
|
|
{
|
|
return flag_optimize_sibling_calls != 0 && dbg_cnt (tail_call);
|
|
}
|
|
|
|
static unsigned int
|
|
execute_tail_calls (void)
|
|
{
|
|
return tree_optimize_tail_calls_1 (true);
|
|
}
|
|
|
|
namespace {
|
|
|
|
const pass_data pass_data_tail_recursion =
|
|
{
|
|
GIMPLE_PASS, /* type */
|
|
"tailr", /* name */
|
|
OPTGROUP_NONE, /* optinfo_flags */
|
|
TV_NONE, /* tv_id */
|
|
( PROP_cfg | PROP_ssa ), /* properties_required */
|
|
0, /* properties_provided */
|
|
0, /* properties_destroyed */
|
|
0, /* todo_flags_start */
|
|
0, /* todo_flags_finish */
|
|
};
|
|
|
|
class pass_tail_recursion : public gimple_opt_pass
|
|
{
|
|
public:
|
|
pass_tail_recursion (gcc::context *ctxt)
|
|
: gimple_opt_pass (pass_data_tail_recursion, ctxt)
|
|
{}
|
|
|
|
/* opt_pass methods: */
|
|
opt_pass * clone () { return new pass_tail_recursion (m_ctxt); }
|
|
virtual bool gate (function *) { return gate_tail_calls (); }
|
|
virtual unsigned int execute (function *)
|
|
{
|
|
return tree_optimize_tail_calls_1 (false);
|
|
}
|
|
|
|
}; // class pass_tail_recursion
|
|
|
|
} // anon namespace
|
|
|
|
gimple_opt_pass *
|
|
make_pass_tail_recursion (gcc::context *ctxt)
|
|
{
|
|
return new pass_tail_recursion (ctxt);
|
|
}
|
|
|
|
namespace {
|
|
|
|
const pass_data pass_data_tail_calls =
|
|
{
|
|
GIMPLE_PASS, /* type */
|
|
"tailc", /* name */
|
|
OPTGROUP_NONE, /* optinfo_flags */
|
|
TV_NONE, /* tv_id */
|
|
( PROP_cfg | PROP_ssa ), /* properties_required */
|
|
0, /* properties_provided */
|
|
0, /* properties_destroyed */
|
|
0, /* todo_flags_start */
|
|
0, /* todo_flags_finish */
|
|
};
|
|
|
|
class pass_tail_calls : public gimple_opt_pass
|
|
{
|
|
public:
|
|
pass_tail_calls (gcc::context *ctxt)
|
|
: gimple_opt_pass (pass_data_tail_calls, ctxt)
|
|
{}
|
|
|
|
/* opt_pass methods: */
|
|
virtual bool gate (function *) { return gate_tail_calls (); }
|
|
virtual unsigned int execute (function *) { return execute_tail_calls (); }
|
|
|
|
}; // class pass_tail_calls
|
|
|
|
} // anon namespace
|
|
|
|
gimple_opt_pass *
|
|
make_pass_tail_calls (gcc::context *ctxt)
|
|
{
|
|
return new pass_tail_calls (ctxt);
|
|
}
|