Retro68/gcc/gcc/ipa-modref-tree.cc
2022-10-27 20:55:19 +02:00

1117 lines
30 KiB
C++

/* Data structure for the modref pass.
Copyright (C) 2020-2022 Free Software Foundation, Inc.
Contributed by David Cepelik and Jan Hubicka
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "ipa-modref-tree.h"
#include "selftest.h"
#include "tree-ssa-alias.h"
#include "gimple.h"
#include "cgraph.h"
#include "tree-streamer.h"
/* Return true if both accesses are the same. */
bool
modref_access_node::operator == (modref_access_node &a) const
{
if (parm_index != a.parm_index)
return false;
if (parm_index != MODREF_UNKNOWN_PARM
&& parm_index != MODREF_GLOBAL_MEMORY_PARM)
{
if (parm_offset_known != a.parm_offset_known)
return false;
if (parm_offset_known
&& !known_eq (parm_offset, a.parm_offset))
return false;
}
if (range_info_useful_p () != a.range_info_useful_p ())
return false;
if (range_info_useful_p ()
&& (!known_eq (a.offset, offset)
|| !known_eq (a.size, size)
|| !known_eq (a.max_size, max_size)))
return false;
return true;
}
/* Return true A is a subaccess. */
bool
modref_access_node::contains (const modref_access_node &a) const
{
poly_int64 aoffset_adj = 0;
if (parm_index != MODREF_UNKNOWN_PARM)
{
if (parm_index != a.parm_index)
return false;
if (parm_offset_known)
{
if (!a.parm_offset_known)
return false;
/* Accesses are never below parm_offset, so look
for smaller offset.
If access ranges are known still allow merging
when bit offsets comparison passes. */
if (!known_le (parm_offset, a.parm_offset)
&& !range_info_useful_p ())
return false;
/* We allow negative aoffset_adj here in case
there is an useful range. This is because adding
a.offset may result in non-negative offset again.
Ubsan fails on val << LOG_BITS_PER_UNIT where val
is negative. */
aoffset_adj = (a.parm_offset - parm_offset)
* BITS_PER_UNIT;
}
}
if (range_info_useful_p ())
{
if (!a.range_info_useful_p ())
return false;
/* Sizes of stores are used to check that object is big enough
to fit the store, so smaller or unknown store is more general
than large store. */
if (known_size_p (size)
&& (!known_size_p (a.size)
|| !known_le (size, a.size)))
return false;
if (known_size_p (max_size))
return known_subrange_p (a.offset + aoffset_adj,
a.max_size, offset, max_size);
else
return known_le (offset, a.offset + aoffset_adj);
}
return true;
}
/* Update access range to new parameters.
If RECORD_ADJUSTMENTS is true, record number of changes in the access
and if threshold is exceeded start dropping precision
so only constantly many updates are possible. This makes dataflow
to converge. */
void
modref_access_node::update (poly_int64 parm_offset1,
poly_int64 offset1, poly_int64 size1,
poly_int64 max_size1, bool record_adjustments)
{
if (known_eq (parm_offset, parm_offset1)
&& known_eq (offset, offset1)
&& known_eq (size, size1)
&& known_eq (max_size, max_size1))
return;
if (!record_adjustments
|| (++adjustments) < param_modref_max_adjustments)
{
parm_offset = parm_offset1;
offset = offset1;
size = size1;
max_size = max_size1;
}
else
{
if (dump_file)
fprintf (dump_file, "--param modref-max-adjustments limit reached:");
if (!known_eq (parm_offset, parm_offset1))
{
if (dump_file)
fprintf (dump_file, " parm_offset cleared");
parm_offset_known = false;
}
if (!known_eq (size, size1))
{
size = -1;
if (dump_file)
fprintf (dump_file, " size cleared");
}
if (!known_eq (max_size, max_size1))
{
max_size = -1;
if (dump_file)
fprintf (dump_file, " max_size cleared");
}
if (!known_eq (offset, offset1))
{
offset = 0;
if (dump_file)
fprintf (dump_file, " offset cleared");
}
if (dump_file)
fprintf (dump_file, "\n");
}
}
/* Merge in access A if it is possible to do without losing
precision. Return true if successful.
If RECORD_ADJUSTMENTs is true, remember how many interval
was prolonged and punt when there are too many. */
bool
modref_access_node::merge (const modref_access_node &a,
bool record_adjustments)
{
poly_int64 offset1 = 0;
poly_int64 aoffset1 = 0;
poly_int64 new_parm_offset = 0;
/* We assume that containment was tested earlier. */
gcc_checking_assert (!contains (a) && !a.contains (*this));
if (parm_index != MODREF_UNKNOWN_PARM)
{
if (parm_index != a.parm_index)
return false;
if (parm_offset_known)
{
if (!a.parm_offset_known)
return false;
if (!combined_offsets (a, &new_parm_offset, &offset1, &aoffset1))
return false;
}
}
/* See if we can merge ranges. */
if (range_info_useful_p ())
{
/* In this case we have containment that should be
handled earlier. */
gcc_checking_assert (a.range_info_useful_p ());
/* If a.size is less specified than size, merge only
if intervals are otherwise equivalent. */
if (known_size_p (size)
&& (!known_size_p (a.size) || known_lt (a.size, size)))
{
if (((known_size_p (max_size) || known_size_p (a.max_size))
&& !known_eq (max_size, a.max_size))
|| !known_eq (offset1, aoffset1))
return false;
update (new_parm_offset, offset1, a.size, max_size,
record_adjustments);
return true;
}
/* If sizes are same, we can extend the interval. */
if ((known_size_p (size) || known_size_p (a.size))
&& !known_eq (size, a.size))
return false;
if (known_le (offset1, aoffset1))
{
if (!known_size_p (max_size)
|| known_ge (offset1 + max_size, aoffset1))
{
update2 (new_parm_offset, offset1, size, max_size,
aoffset1, a.size, a.max_size,
record_adjustments);
return true;
}
}
else if (known_le (aoffset1, offset1))
{
if (!known_size_p (a.max_size)
|| known_ge (aoffset1 + a.max_size, offset1))
{
update2 (new_parm_offset, offset1, size, max_size,
aoffset1, a.size, a.max_size,
record_adjustments);
return true;
}
}
return false;
}
update (new_parm_offset, offset1,
size, max_size, record_adjustments);
return true;
}
/* Return true if A1 and B1 can be merged with lower information
less than A2 and B2.
Assume that no containment or lossless merging is possible. */
bool
modref_access_node::closer_pair_p (const modref_access_node &a1,
const modref_access_node &b1,
const modref_access_node &a2,
const modref_access_node &b2)
{
/* Merging different parm indexes comes to complete loss
of range info. */
if (a1.parm_index != b1.parm_index)
return false;
if (a2.parm_index != b2.parm_index)
return true;
/* If parm is known and parm indexes are the same we should
already have containment. */
gcc_checking_assert (a1.parm_offset_known && b1.parm_offset_known);
gcc_checking_assert (a2.parm_offset_known && b2.parm_offset_known);
/* First normalize offsets for parm offsets. */
poly_int64 new_parm_offset, offseta1, offsetb1, offseta2, offsetb2;
if (!a1.combined_offsets (b1, &new_parm_offset, &offseta1, &offsetb1)
|| !a2.combined_offsets (b2, &new_parm_offset, &offseta2, &offsetb2))
gcc_unreachable ();
/* Now compute distance of the intervals. */
poly_offset_int dist1, dist2;
if (known_le (offseta1, offsetb1))
{
if (!known_size_p (a1.max_size))
dist1 = 0;
else
dist1 = (poly_offset_int)offsetb1
- (poly_offset_int)offseta1
- (poly_offset_int)a1.max_size;
}
else
{
if (!known_size_p (b1.max_size))
dist1 = 0;
else
dist1 = (poly_offset_int)offseta1
- (poly_offset_int)offsetb1
- (poly_offset_int)b1.max_size;
}
if (known_le (offseta2, offsetb2))
{
if (!known_size_p (a2.max_size))
dist2 = 0;
else
dist2 = (poly_offset_int)offsetb2
- (poly_offset_int)offseta2
- (poly_offset_int)a2.max_size;
}
else
{
if (!known_size_p (b2.max_size))
dist2 = 0;
else
dist2 = offseta2
- (poly_offset_int)offsetb2
- (poly_offset_int)b2.max_size;
}
/* It may happen that intervals overlap in case size
is different. Prefer the overlap to non-overlap. */
if (known_lt (dist1, 0) && known_ge (dist2, 0))
return true;
if (known_lt (dist2, 0) && known_ge (dist1, 0))
return false;
if (known_lt (dist1, 0))
/* If both overlaps minimize overlap. */
return known_le (dist2, dist1);
else
/* If both are disjoint look for smaller distance. */
return known_le (dist1, dist2);
}
/* Merge in access A while losing precision. */
void
modref_access_node::forced_merge (const modref_access_node &a,
bool record_adjustments)
{
if (parm_index != a.parm_index)
{
gcc_checking_assert (parm_index != MODREF_UNKNOWN_PARM);
parm_index = MODREF_UNKNOWN_PARM;
return;
}
/* We assume that containment and lossless merging
was tested earlier. */
gcc_checking_assert (!contains (a) && !a.contains (*this)
&& !merge (a, record_adjustments));
gcc_checking_assert (parm_offset_known && a.parm_offset_known);
poly_int64 new_parm_offset, offset1, aoffset1;
if (!combined_offsets (a, &new_parm_offset, &offset1, &aoffset1))
{
parm_offset_known = false;
return;
}
gcc_checking_assert (range_info_useful_p ()
&& a.range_info_useful_p ());
if (record_adjustments)
adjustments += a.adjustments;
update2 (new_parm_offset,
offset1, size, max_size,
aoffset1, a.size, a.max_size,
record_adjustments);
}
/* Merge two ranges both starting at parm_offset1 and update THIS
with result. */
void
modref_access_node::update2 (poly_int64 parm_offset1,
poly_int64 offset1, poly_int64 size1,
poly_int64 max_size1,
poly_int64 offset2, poly_int64 size2,
poly_int64 max_size2,
bool record_adjustments)
{
poly_int64 new_size = size1;
if (!known_size_p (size2)
|| known_le (size2, size1))
new_size = size2;
else
gcc_checking_assert (known_le (size1, size2));
if (known_le (offset1, offset2))
;
else if (known_le (offset2, offset1))
{
std::swap (offset1, offset2);
std::swap (max_size1, max_size2);
}
else
gcc_unreachable ();
poly_int64 new_max_size;
if (!known_size_p (max_size1))
new_max_size = max_size1;
else if (!known_size_p (max_size2))
new_max_size = max_size2;
else
{
poly_offset_int s = (poly_offset_int)max_size2
+ (poly_offset_int)offset2
- (poly_offset_int)offset1;
if (s.to_shwi (&new_max_size))
{
if (known_le (new_max_size, max_size1))
new_max_size = max_size1;
}
else
new_max_size = -1;
}
update (parm_offset1, offset1,
new_size, new_max_size, record_adjustments);
}
/* Given access nodes THIS and A, return true if they
can be done with common parm_offsets. In this case
return parm offset in new_parm_offset, new_offset
which is start of range in THIS and new_aoffset that
is start of range in A. */
bool
modref_access_node::combined_offsets (const modref_access_node &a,
poly_int64 *new_parm_offset,
poly_int64 *new_offset,
poly_int64 *new_aoffset) const
{
gcc_checking_assert (parm_offset_known && a.parm_offset_known);
if (known_le (a.parm_offset, parm_offset))
{
*new_offset = offset
+ ((parm_offset - a.parm_offset)
<< LOG2_BITS_PER_UNIT);
*new_aoffset = a.offset;
*new_parm_offset = a.parm_offset;
return true;
}
else if (known_le (parm_offset, a.parm_offset))
{
*new_aoffset = a.offset
+ ((a.parm_offset - parm_offset)
<< LOG2_BITS_PER_UNIT);
*new_offset = offset;
*new_parm_offset = parm_offset;
return true;
}
else
return false;
}
/* Try to optimize the access ACCESSES list after entry INDEX was modified. */
void
modref_access_node::try_merge_with (vec <modref_access_node, va_gc> *&accesses,
size_t index)
{
size_t i;
for (i = 0; i < accesses->length ();)
if (i != index)
{
bool found = false, restart = false;
modref_access_node *a = &(*accesses)[i];
modref_access_node *n = &(*accesses)[index];
if (n->contains (*a))
found = true;
if (!found && n->merge (*a, false))
found = restart = true;
gcc_checking_assert (found || !a->merge (*n, false));
if (found)
{
accesses->unordered_remove (i);
if (index == accesses->length ())
{
index = i;
i++;
}
if (restart)
i = 0;
}
else
i++;
}
else
i++;
}
/* Stream out to OB. */
void
modref_access_node::stream_out (struct output_block *ob) const
{
streamer_write_hwi (ob, parm_index);
if (parm_index != MODREF_UNKNOWN_PARM)
{
streamer_write_uhwi (ob, parm_offset_known);
if (parm_offset_known)
{
streamer_write_poly_int64 (ob, parm_offset);
streamer_write_poly_int64 (ob, offset);
streamer_write_poly_int64 (ob, size);
streamer_write_poly_int64 (ob, max_size);
}
}
}
modref_access_node
modref_access_node::stream_in (struct lto_input_block *ib)
{
int parm_index = streamer_read_hwi (ib);
bool parm_offset_known = false;
poly_int64 parm_offset = 0;
poly_int64 offset = 0;
poly_int64 size = -1;
poly_int64 max_size = -1;
if (parm_index != MODREF_UNKNOWN_PARM)
{
parm_offset_known = streamer_read_uhwi (ib);
if (parm_offset_known)
{
parm_offset = streamer_read_poly_int64 (ib);
offset = streamer_read_poly_int64 (ib);
size = streamer_read_poly_int64 (ib);
max_size = streamer_read_poly_int64 (ib);
}
}
return {offset, size, max_size, parm_offset, parm_index,
parm_offset_known, false};
}
/* Insert access with OFFSET and SIZE.
Collapse tree if it has more than MAX_ACCESSES entries.
If RECORD_ADJUSTMENTs is true avoid too many interval extensions.
Return true if record was changed.
Return 0 if nothing changed, 1 if insert was successful and -1
if entries should be collapsed. */
int
modref_access_node::insert (vec <modref_access_node, va_gc> *&accesses,
modref_access_node a, size_t max_accesses,
bool record_adjustments)
{
size_t i, j;
modref_access_node *a2;
/* Verify that list does not contain redundant accesses. */
if (flag_checking)
{
size_t i, i2;
modref_access_node *a, *a2;
FOR_EACH_VEC_SAFE_ELT (accesses, i, a)
{
FOR_EACH_VEC_SAFE_ELT (accesses, i2, a2)
if (i != i2)
gcc_assert (!a->contains (*a2));
}
}
FOR_EACH_VEC_SAFE_ELT (accesses, i, a2)
{
if (a2->contains (a))
return 0;
if (a.contains (*a2))
{
a.adjustments = 0;
a2->parm_index = a.parm_index;
a2->parm_offset_known = a.parm_offset_known;
a2->update (a.parm_offset, a.offset, a.size, a.max_size,
record_adjustments);
modref_access_node::try_merge_with (accesses, i);
return 1;
}
if (a2->merge (a, record_adjustments))
{
modref_access_node::try_merge_with (accesses, i);
return 1;
}
gcc_checking_assert (!(a == *a2));
}
/* If this base->ref pair has too many accesses stored, we will clear
all accesses and bail out. */
if (accesses && accesses->length () >= max_accesses)
{
if (max_accesses < 2)
return -1;
/* Find least harmful merge and perform it. */
int best1 = -1, best2 = -1;
FOR_EACH_VEC_SAFE_ELT (accesses, i, a2)
{
for (j = i + 1; j < accesses->length (); j++)
if (best1 < 0
|| modref_access_node::closer_pair_p
(*a2, (*accesses)[j],
(*accesses)[best1],
best2 < 0 ? a : (*accesses)[best2]))
{
best1 = i;
best2 = j;
}
if (modref_access_node::closer_pair_p
(*a2, a,
(*accesses)[best1],
best2 < 0 ? a : (*accesses)[best2]))
{
best1 = i;
best2 = -1;
}
}
(*accesses)[best1].forced_merge (best2 < 0 ? a : (*accesses)[best2],
record_adjustments);
/* Check that merging indeed merged ranges. */
gcc_checking_assert ((*accesses)[best1].contains
(best2 < 0 ? a : (*accesses)[best2]));
if (!(*accesses)[best1].useful_p ())
return -1;
if (dump_file && best2 >= 0)
fprintf (dump_file,
"--param modref-max-accesses limit reached;"
" merging %i and %i\n", best1, best2);
else if (dump_file)
fprintf (dump_file,
"--param modref-max-accesses limit reached;"
" merging with %i\n", best1);
modref_access_node::try_merge_with (accesses, best1);
if (best2 >= 0)
insert (accesses, a, max_accesses, record_adjustments);
return 1;
}
a.adjustments = 0;
vec_safe_push (accesses, a);
return 1;
}
/* Return true if range info is useful. */
bool
modref_access_node::range_info_useful_p () const
{
return parm_index != MODREF_UNKNOWN_PARM
&& parm_index != MODREF_GLOBAL_MEMORY_PARM
&& parm_offset_known
&& (known_size_p (size)
|| known_size_p (max_size)
|| known_ge (offset, 0));
}
/* Dump range to debug OUT. */
void
modref_access_node::dump (FILE *out)
{
if (parm_index != MODREF_UNKNOWN_PARM)
{
if (parm_index == MODREF_GLOBAL_MEMORY_PARM)
fprintf (out, " Base in global memory");
else if (parm_index >= 0)
fprintf (out, " Parm %i", parm_index);
else if (parm_index == MODREF_STATIC_CHAIN_PARM)
fprintf (out, " Static chain");
else
gcc_unreachable ();
if (parm_offset_known)
{
fprintf (out, " param offset:");
print_dec ((poly_int64_pod)parm_offset, out, SIGNED);
}
}
if (range_info_useful_p ())
{
fprintf (out, " offset:");
print_dec ((poly_int64_pod)offset, out, SIGNED);
fprintf (out, " size:");
print_dec ((poly_int64_pod)size, out, SIGNED);
fprintf (out, " max_size:");
print_dec ((poly_int64_pod)max_size, out, SIGNED);
if (adjustments)
fprintf (out, " adjusted %i times", adjustments);
}
fprintf (out, "\n");
}
/* Return tree corresponding to parameter of the range in STMT. */
tree
modref_access_node::get_call_arg (const gcall *stmt) const
{
if (parm_index == MODREF_UNKNOWN_PARM
|| parm_index == MODREF_GLOBAL_MEMORY_PARM)
return NULL;
if (parm_index == MODREF_STATIC_CHAIN_PARM)
return gimple_call_chain (stmt);
/* MODREF_RETSLOT_PARM should not happen in access trees since the store
is seen explicitly in the caller. */
gcc_checking_assert (parm_index >= 0);
if (parm_index >= (int)gimple_call_num_args (stmt))
return NULL;
return gimple_call_arg (stmt, parm_index);
}
/* Return tree corresponding to parameter of the range in STMT. */
bool
modref_access_node::get_ao_ref (const gcall *stmt, ao_ref *ref) const
{
tree arg;
if (!parm_offset_known
|| !(arg = get_call_arg (stmt))
|| !POINTER_TYPE_P (TREE_TYPE (arg)))
return false;
poly_offset_int off = (poly_offset_int)offset
+ ((poly_offset_int)parm_offset << LOG2_BITS_PER_UNIT);
poly_int64 off2;
if (!off.to_shwi (&off2))
return false;
ao_ref_init_from_ptr_and_range (ref, arg, true, off2, size, max_size);
return true;
}
/* Return true A is a subkill. */
bool
modref_access_node::contains_for_kills (const modref_access_node &a) const
{
poly_int64 aoffset_adj = 0;
gcc_checking_assert (parm_index != MODREF_UNKNOWN_PARM
&& a.parm_index != MODREF_UNKNOWN_PARM);
if (parm_index != a.parm_index)
return false;
gcc_checking_assert (parm_offset_known && a.parm_offset_known);
aoffset_adj = (a.parm_offset - parm_offset)
* BITS_PER_UNIT;
gcc_checking_assert (range_info_useful_p () && a.range_info_useful_p ());
return known_subrange_p (a.offset + aoffset_adj,
a.max_size, offset, max_size);
}
/* Merge two ranges both starting at parm_offset1 and update THIS
with result. */
bool
modref_access_node::update_for_kills (poly_int64 parm_offset1,
poly_int64 offset1,
poly_int64 max_size1,
poly_int64 offset2,
poly_int64 max_size2,
bool record_adjustments)
{
if (known_le (offset1, offset2))
;
else if (known_le (offset2, offset1))
{
std::swap (offset1, offset2);
std::swap (max_size1, max_size2);
}
else
gcc_unreachable ();
poly_int64 new_max_size = max_size2 + offset2 - offset1;
if (known_le (new_max_size, max_size1))
new_max_size = max_size1;
if (known_eq (parm_offset, parm_offset1)
&& known_eq (offset, offset1)
&& known_eq (size, new_max_size)
&& known_eq (max_size, new_max_size))
return false;
if (!record_adjustments
|| (++adjustments) < param_modref_max_adjustments)
{
parm_offset = parm_offset1;
offset = offset1;
max_size = new_max_size;
size = new_max_size;
gcc_checking_assert (useful_for_kill_p ());
return true;
}
return false;
}
/* Merge in access A if it is possible to do without losing
precision. Return true if successful.
Unlike merge assume that both accesses are always executed
and merge size the same was as max_size. */
bool
modref_access_node::merge_for_kills (const modref_access_node &a,
bool record_adjustments)
{
poly_int64 offset1 = 0;
poly_int64 aoffset1 = 0;
poly_int64 new_parm_offset = 0;
/* We assume that containment was tested earlier. */
gcc_checking_assert (!contains_for_kills (a) && !a.contains_for_kills (*this)
&& useful_for_kill_p () && a.useful_for_kill_p ());
if (parm_index != a.parm_index
|| !combined_offsets (a, &new_parm_offset, &offset1, &aoffset1))
return false;
if (known_le (offset1, aoffset1))
{
if (!known_size_p (max_size)
|| known_ge (offset1 + max_size, aoffset1))
return update_for_kills (new_parm_offset, offset1, max_size,
aoffset1, a.max_size, record_adjustments);
}
else if (known_le (aoffset1, offset1))
{
if (!known_size_p (a.max_size)
|| known_ge (aoffset1 + a.max_size, offset1))
return update_for_kills (new_parm_offset, offset1, max_size,
aoffset1, a.max_size, record_adjustments);
}
return false;
}
/* Insert new kill A into KILLS. If RECORD_ADJUSTMENTS is true limit number
of changes to each entry. Return true if something changed. */
bool
modref_access_node::insert_kill (vec<modref_access_node> &kills,
modref_access_node &a, bool record_adjustments)
{
size_t index;
modref_access_node *a2;
bool merge = false;
gcc_checking_assert (a.useful_for_kill_p ());
/* See if we have corresponding entry already or we can merge with
neighboring entry. */
FOR_EACH_VEC_ELT (kills, index, a2)
{
if (a2->contains_for_kills (a))
return false;
if (a.contains_for_kills (*a2))
{
a.adjustments = 0;
*a2 = a;
merge = true;
break;
}
if (a2->merge_for_kills (a, record_adjustments))
{
merge = true;
break;
}
}
/* If entry was not found, insert it. */
if (!merge)
{
if ((int)kills.length () >= param_modref_max_accesses)
{
if (dump_file)
fprintf (dump_file, "--param modref-max-accesses limit reached:");
return false;
}
a.adjustments = 0;
kills.safe_push (a);
return true;
}
/* Extending range in an entry may make it possible to merge it with
other entries. */
size_t i;
for (i = 0; i < kills.length ();)
if (i != index)
{
bool found = false, restart = false;
modref_access_node *a = &kills[i];
modref_access_node *n = &kills[index];
if (n->contains_for_kills (*a))
found = true;
if (!found && n->merge_for_kills (*a, false))
found = restart = true;
gcc_checking_assert (found || !a->merge_for_kills (*n, false));
if (found)
{
kills.unordered_remove (i);
if (index == kills.length ())
{
index = i;
i++;
}
if (restart)
i = 0;
}
else
i++;
}
else
i++;
return true;
}
#if CHECKING_P
namespace selftest {
static void
test_insert_search_collapse ()
{
modref_base_node<alias_set_type> *base_node;
modref_ref_node<alias_set_type> *ref_node;
modref_access_node a = unspecified_modref_access_node;
modref_tree<alias_set_type> *t = new modref_tree<alias_set_type>();
ASSERT_FALSE (t->every_base);
/* Insert into an empty tree. */
t->insert (1, 2, 2, 1, 2, a, false);
ASSERT_NE (t->bases, NULL);
ASSERT_EQ (t->bases->length (), 1);
ASSERT_FALSE (t->every_base);
ASSERT_EQ (t->search (2), NULL);
base_node = t->search (1);
ASSERT_NE (base_node, NULL);
ASSERT_EQ (base_node->base, 1);
ASSERT_NE (base_node->refs, NULL);
ASSERT_EQ (base_node->refs->length (), 1);
ASSERT_EQ (base_node->search (1), NULL);
ref_node = base_node->search (2);
ASSERT_NE (ref_node, NULL);
ASSERT_EQ (ref_node->ref, 2);
/* Insert when base exists but ref does not. */
t->insert (1, 2, 2, 1, 3, a, false);
ASSERT_NE (t->bases, NULL);
ASSERT_EQ (t->bases->length (), 1);
ASSERT_EQ (t->search (1), base_node);
ASSERT_EQ (t->search (2), NULL);
ASSERT_NE (base_node->refs, NULL);
ASSERT_EQ (base_node->refs->length (), 2);
ref_node = base_node->search (3);
ASSERT_NE (ref_node, NULL);
/* Insert when base and ref exist, but access is not dominated by nor
dominates other accesses. */
t->insert (1, 2, 2, 1, 2, a, false);
ASSERT_EQ (t->bases->length (), 1);
ASSERT_EQ (t->search (1), base_node);
ref_node = base_node->search (2);
ASSERT_NE (ref_node, NULL);
/* Insert when base and ref exist and access is dominated. */
t->insert (1, 2, 2, 1, 2, a, false);
ASSERT_EQ (t->search (1), base_node);
ASSERT_EQ (base_node->search (2), ref_node);
/* Insert ref to trigger ref list collapse for base 1. */
t->insert (1, 2, 2, 1, 4, a, false);
ASSERT_EQ (t->search (1), base_node);
ASSERT_EQ (base_node->refs, NULL);
ASSERT_EQ (base_node->search (2), NULL);
ASSERT_EQ (base_node->search (3), NULL);
ASSERT_TRUE (base_node->every_ref);
/* Further inserts to collapsed ref list are ignored. */
t->insert (1, 2, 2, 1, 5, a, false);
ASSERT_EQ (t->search (1), base_node);
ASSERT_EQ (base_node->refs, NULL);
ASSERT_EQ (base_node->search (2), NULL);
ASSERT_EQ (base_node->search (3), NULL);
ASSERT_TRUE (base_node->every_ref);
/* Insert base to trigger base list collapse. */
t->insert (1, 2, 2, 5, 0, a, false);
ASSERT_TRUE (t->every_base);
ASSERT_EQ (t->bases, NULL);
ASSERT_EQ (t->search (1), NULL);
/* Further inserts to collapsed base list are ignored. */
t->insert (1, 2, 2, 7, 8, a, false);
ASSERT_TRUE (t->every_base);
ASSERT_EQ (t->bases, NULL);
ASSERT_EQ (t->search (1), NULL);
delete t;
}
static void
test_merge ()
{
modref_tree<alias_set_type> *t1, *t2;
modref_base_node<alias_set_type> *base_node;
modref_access_node a = unspecified_modref_access_node;
t1 = new modref_tree<alias_set_type>();
t1->insert (3, 4, 1, 1, 1, a, false);
t1->insert (3, 4, 1, 1, 2, a, false);
t1->insert (3, 4, 1, 1, 3, a, false);
t1->insert (3, 4, 1, 2, 1, a, false);
t1->insert (3, 4, 1, 3, 1, a, false);
t2 = new modref_tree<alias_set_type>();
t2->insert (10, 10, 10, 1, 2, a, false);
t2->insert (10, 10, 10, 1, 3, a, false);
t2->insert (10, 10, 10, 1, 4, a, false);
t2->insert (10, 10, 10, 3, 2, a, false);
t2->insert (10, 10, 10, 3, 3, a, false);
t2->insert (10, 10, 10, 3, 4, a, false);
t2->insert (10, 10, 10, 3, 5, a, false);
t1->merge (3, 4, 1, t2, NULL, NULL, false);
ASSERT_FALSE (t1->every_base);
ASSERT_NE (t1->bases, NULL);
ASSERT_EQ (t1->bases->length (), 3);
base_node = t1->search (1);
ASSERT_NE (base_node->refs, NULL);
ASSERT_FALSE (base_node->every_ref);
ASSERT_EQ (base_node->refs->length (), 4);
base_node = t1->search (2);
ASSERT_NE (base_node->refs, NULL);
ASSERT_FALSE (base_node->every_ref);
ASSERT_EQ (base_node->refs->length (), 1);
base_node = t1->search (3);
ASSERT_EQ (base_node->refs, NULL);
ASSERT_TRUE (base_node->every_ref);
delete t1;
delete t2;
}
void
ipa_modref_tree_cc_tests ()
{
test_insert_search_collapse ();
test_merge ();
}
} // namespace selftest
#endif
void
gt_ggc_mx (modref_tree < int >*const &tt)
{
if (tt->bases)
{
ggc_test_and_set_mark (tt->bases);
gt_ggc_mx (tt->bases);
}
}
void
gt_ggc_mx (modref_tree < tree_node * >*const &tt)
{
if (tt->bases)
{
ggc_test_and_set_mark (tt->bases);
gt_ggc_mx (tt->bases);
}
}
void gt_pch_nx (modref_tree<int>* const&) {}
void gt_pch_nx (modref_tree<tree_node*>* const&) {}
void gt_pch_nx (modref_tree<int>* const&, gt_pointer_operator, void *) {}
void gt_pch_nx (modref_tree<tree_node*>* const&, gt_pointer_operator, void *) {}
void gt_ggc_mx (modref_base_node<int>* &b)
{
ggc_test_and_set_mark (b);
if (b->refs)
{
ggc_test_and_set_mark (b->refs);
gt_ggc_mx (b->refs);
}
}
void gt_ggc_mx (modref_base_node<tree_node*>* &b)
{
ggc_test_and_set_mark (b);
if (b->refs)
{
ggc_test_and_set_mark (b->refs);
gt_ggc_mx (b->refs);
}
if (b->base)
gt_ggc_mx (b->base);
}
void gt_pch_nx (modref_base_node<int>*) {}
void gt_pch_nx (modref_base_node<tree_node*>*) {}
void gt_pch_nx (modref_base_node<int>*, gt_pointer_operator, void *) {}
void gt_pch_nx (modref_base_node<tree_node*>*, gt_pointer_operator, void *) {}
void gt_ggc_mx (modref_ref_node<int>* &r)
{
ggc_test_and_set_mark (r);
if (r->accesses)
{
ggc_test_and_set_mark (r->accesses);
gt_ggc_mx (r->accesses);
}
}
void gt_ggc_mx (modref_ref_node<tree_node*>* &r)
{
ggc_test_and_set_mark (r);
if (r->accesses)
{
ggc_test_and_set_mark (r->accesses);
gt_ggc_mx (r->accesses);
}
if (r->ref)
gt_ggc_mx (r->ref);
}
void gt_pch_nx (modref_ref_node<int>* ) {}
void gt_pch_nx (modref_ref_node<tree_node*>*) {}
void gt_pch_nx (modref_ref_node<int>*, gt_pointer_operator, void *) {}
void gt_pch_nx (modref_ref_node<tree_node*>*, gt_pointer_operator, void *) {}
void gt_ggc_mx (modref_access_node &)
{
}