mirror of
https://github.com/autc04/Retro68.git
synced 2025-01-22 02:31:08 +00:00
131 lines
3.5 KiB
C
131 lines
3.5 KiB
C
/* Return arc hyperbolic tangent for a complex float type.
|
|
Copyright (C) 1997-2018 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "quadmath-imp.h"
|
|
|
|
__complex128
|
|
catanhq (__complex128 x)
|
|
{
|
|
__complex128 res;
|
|
int rcls = fpclassifyq (__real__ x);
|
|
int icls = fpclassifyq (__imag__ x);
|
|
|
|
if (__glibc_unlikely (rcls <= QUADFP_INFINITE || icls <= QUADFP_INFINITE))
|
|
{
|
|
if (icls == QUADFP_INFINITE)
|
|
{
|
|
__real__ res = copysignq (0, __real__ x);
|
|
__imag__ res = copysignq (M_PI_2q, __imag__ x);
|
|
}
|
|
else if (rcls == QUADFP_INFINITE || rcls == QUADFP_ZERO)
|
|
{
|
|
__real__ res = copysignq (0, __real__ x);
|
|
if (icls >= QUADFP_ZERO)
|
|
__imag__ res = copysignq (M_PI_2q, __imag__ x);
|
|
else
|
|
__imag__ res = nanq ("");
|
|
}
|
|
else
|
|
{
|
|
__real__ res = nanq ("");
|
|
__imag__ res = nanq ("");
|
|
}
|
|
}
|
|
else if (__glibc_unlikely (rcls == QUADFP_ZERO && icls == QUADFP_ZERO))
|
|
{
|
|
res = x;
|
|
}
|
|
else
|
|
{
|
|
if (fabsq (__real__ x) >= 16 / FLT128_EPSILON
|
|
|| fabsq (__imag__ x) >= 16 / FLT128_EPSILON)
|
|
{
|
|
__imag__ res = copysignq (M_PI_2q, __imag__ x);
|
|
if (fabsq (__imag__ x) <= 1)
|
|
__real__ res = 1 / __real__ x;
|
|
else if (fabsq (__real__ x) <= 1)
|
|
__real__ res = __real__ x / __imag__ x / __imag__ x;
|
|
else
|
|
{
|
|
__float128 h = hypotq (__real__ x / 2, __imag__ x / 2);
|
|
__real__ res = __real__ x / h / h / 4;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (fabsq (__real__ x) == 1
|
|
&& fabsq (__imag__ x) < FLT128_EPSILON * FLT128_EPSILON)
|
|
__real__ res = (copysignq (0.5Q, __real__ x)
|
|
* ((__float128) M_LN2q
|
|
- logq (fabsq (__imag__ x))));
|
|
else
|
|
{
|
|
__float128 i2 = 0;
|
|
if (fabsq (__imag__ x) >= FLT128_EPSILON * FLT128_EPSILON)
|
|
i2 = __imag__ x * __imag__ x;
|
|
|
|
__float128 num = 1 + __real__ x;
|
|
num = i2 + num * num;
|
|
|
|
__float128 den = 1 - __real__ x;
|
|
den = i2 + den * den;
|
|
|
|
__float128 f = num / den;
|
|
if (f < 0.5Q)
|
|
__real__ res = 0.25Q * logq (f);
|
|
else
|
|
{
|
|
num = 4 * __real__ x;
|
|
__real__ res = 0.25Q * log1pq (num / den);
|
|
}
|
|
}
|
|
|
|
__float128 absx, absy, den;
|
|
|
|
absx = fabsq (__real__ x);
|
|
absy = fabsq (__imag__ x);
|
|
if (absx < absy)
|
|
{
|
|
__float128 t = absx;
|
|
absx = absy;
|
|
absy = t;
|
|
}
|
|
|
|
if (absy < FLT128_EPSILON / 2)
|
|
{
|
|
den = (1 - absx) * (1 + absx);
|
|
if (den == 0)
|
|
den = 0;
|
|
}
|
|
else if (absx >= 1)
|
|
den = (1 - absx) * (1 + absx) - absy * absy;
|
|
else if (absx >= 0.75Q || absy >= 0.5Q)
|
|
den = -__quadmath_x2y2m1q (absx, absy);
|
|
else
|
|
den = (1 - absx) * (1 + absx) - absy * absy;
|
|
|
|
__imag__ res = 0.5Q * atan2q (2 * __imag__ x, den);
|
|
}
|
|
|
|
math_check_force_underflow_complex (res);
|
|
}
|
|
|
|
return res;
|
|
}
|