mirror of
https://github.com/autc04/Retro68.git
synced 2024-11-29 12:50:35 +00:00
106 lines
2.9 KiB
Go
106 lines
2.9 KiB
Go
// Copyright 2010 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package cmplx
|
|
|
|
import "math"
|
|
|
|
// The original C code, the long comment, and the constants
|
|
// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c.
|
|
// The go code is a simplified version of the original C.
|
|
//
|
|
// Cephes Math Library Release 2.8: June, 2000
|
|
// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
|
|
//
|
|
// The readme file at http://netlib.sandia.gov/cephes/ says:
|
|
// Some software in this archive may be from the book _Methods and
|
|
// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
|
|
// International, 1989) or from the Cephes Mathematical Library, a
|
|
// commercial product. In either event, it is copyrighted by the author.
|
|
// What you see here may be used freely but it comes with no support or
|
|
// guarantee.
|
|
//
|
|
// The two known misprints in the book are repaired here in the
|
|
// source listings for the gamma function and the incomplete beta
|
|
// integral.
|
|
//
|
|
// Stephen L. Moshier
|
|
// moshier@na-net.ornl.gov
|
|
|
|
// Complex square root
|
|
//
|
|
// DESCRIPTION:
|
|
//
|
|
// If z = x + iy, r = |z|, then
|
|
//
|
|
// 1/2
|
|
// Re w = [ (r + x)/2 ] ,
|
|
//
|
|
// 1/2
|
|
// Im w = [ (r - x)/2 ] .
|
|
//
|
|
// Cancelation error in r-x or r+x is avoided by using the
|
|
// identity 2 Re w Im w = y.
|
|
//
|
|
// Note that -w is also a square root of z. The root chosen
|
|
// is always in the right half plane and Im w has the same sign as y.
|
|
//
|
|
// ACCURACY:
|
|
//
|
|
// Relative error:
|
|
// arithmetic domain # trials peak rms
|
|
// DEC -10,+10 25000 3.2e-17 9.6e-18
|
|
// IEEE -10,+10 1,000,000 2.9e-16 6.1e-17
|
|
|
|
// Sqrt returns the square root of x.
|
|
// The result r is chosen so that real(r) ≥ 0 and imag(r) has the same sign as imag(x).
|
|
func Sqrt(x complex128) complex128 {
|
|
if imag(x) == 0 {
|
|
// Ensure that imag(r) has the same sign as imag(x) for imag(x) == signed zero.
|
|
if real(x) == 0 {
|
|
return complex(0, imag(x))
|
|
}
|
|
if real(x) < 0 {
|
|
return complex(0, math.Copysign(math.Sqrt(-real(x)), imag(x)))
|
|
}
|
|
return complex(math.Sqrt(real(x)), imag(x))
|
|
}
|
|
if real(x) == 0 {
|
|
if imag(x) < 0 {
|
|
r := math.Sqrt(-0.5 * imag(x))
|
|
return complex(r, -r)
|
|
}
|
|
r := math.Sqrt(0.5 * imag(x))
|
|
return complex(r, r)
|
|
}
|
|
a := real(x)
|
|
b := imag(x)
|
|
var scale float64
|
|
// Rescale to avoid internal overflow or underflow.
|
|
if math.Abs(a) > 4 || math.Abs(b) > 4 {
|
|
a *= 0.25
|
|
b *= 0.25
|
|
scale = 2
|
|
} else {
|
|
a *= 1.8014398509481984e16 // 2**54
|
|
b *= 1.8014398509481984e16
|
|
scale = 7.450580596923828125e-9 // 2**-27
|
|
}
|
|
r := math.Hypot(a, b)
|
|
var t float64
|
|
if a > 0 {
|
|
t = math.Sqrt(0.5*r + 0.5*a)
|
|
r = scale * math.Abs((0.5*b)/t)
|
|
t *= scale
|
|
} else {
|
|
r = math.Sqrt(0.5*r - 0.5*a)
|
|
t = scale * math.Abs((0.5*b)/r)
|
|
r *= scale
|
|
}
|
|
if b < 0 {
|
|
return complex(t, -r)
|
|
}
|
|
return complex(t, r)
|
|
}
|