Retro68/binutils/gas/config/tc-i386-intel.c
2018-12-28 16:25:28 +01:00

1037 lines
27 KiB
C

/* tc-i386.c -- Assemble Intel syntax code for ix86/x86-64
Copyright (C) 2009-2018 Free Software Foundation, Inc.
This file is part of GAS, the GNU Assembler.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GAS; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
02110-1301, USA. */
static struct
{
operatorT op_modifier; /* Operand modifier. */
int is_mem; /* 1 if operand is memory reference. */
int is_indirect; /* 1 if operand is indirect reference. */
int has_offset; /* 1 if operand has offset. */
unsigned int in_offset; /* >=1 if processing operand of offset. */
unsigned int in_bracket; /* >=1 if processing operand in brackets. */
unsigned int in_scale; /* >=1 if processing multiplication operand
* in brackets. */
i386_operand_type reloc_types; /* Value obtained from lex_got(). */
const reg_entry *base; /* Base register (if any). */
const reg_entry *index; /* Index register (if any). */
offsetT scale_factor; /* Accumulated scale factor. */
symbolS *seg;
}
intel_state;
/* offset X_add_symbol */
#define O_offset O_md32
/* offset X_add_symbol */
#define O_short O_md31
/* near ptr X_add_symbol */
#define O_near_ptr O_md30
/* far ptr X_add_symbol */
#define O_far_ptr O_md29
/* byte ptr X_add_symbol */
#define O_byte_ptr O_md28
/* word ptr X_add_symbol */
#define O_word_ptr O_md27
/* dword ptr X_add_symbol */
#define O_dword_ptr O_md26
/* qword ptr X_add_symbol */
#define O_qword_ptr O_md25
/* oword ptr X_add_symbol */
#define O_oword_ptr O_md24
/* fword ptr X_add_symbol */
#define O_fword_ptr O_md23
/* tbyte ptr X_add_symbol */
#define O_tbyte_ptr O_md22
/* xmmword ptr X_add_symbol */
#define O_xmmword_ptr O_md21
/* ymmword ptr X_add_symbol */
#define O_ymmword_ptr O_md20
/* zmmword ptr X_add_symbol */
#define O_zmmword_ptr O_md19
static struct
{
const char *name;
operatorT op;
unsigned int operands;
}
const i386_operators[] =
{
{ "and", O_bit_and, 2 },
{ "eq", O_eq, 2 },
{ "ge", O_ge, 2 },
{ "gt", O_gt, 2 },
{ "le", O_le, 2 },
{ "lt", O_lt, 2 },
{ "mod", O_modulus, 2 },
{ "ne", O_ne, 2 },
{ "not", O_bit_not, 1 },
{ "offset", O_offset, 1 },
{ "or", O_bit_inclusive_or, 2 },
{ "shl", O_left_shift, 2 },
{ "short", O_short, 1 },
{ "shr", O_right_shift, 2 },
{ "xor", O_bit_exclusive_or, 2 },
{ NULL, O_illegal, 0 }
};
static struct
{
const char *name;
operatorT op;
unsigned short sz[3];
}
const i386_types[] =
{
#define I386_TYPE(t, n) { #t, O_##t##_ptr, { n, n, n } }
I386_TYPE(byte, 1),
I386_TYPE(word, 2),
I386_TYPE(dword, 4),
I386_TYPE(fword, 6),
I386_TYPE(qword, 8),
I386_TYPE(tbyte, 10),
I386_TYPE(oword, 16),
I386_TYPE(xmmword, 16),
I386_TYPE(ymmword, 32),
I386_TYPE(zmmword, 64),
#undef I386_TYPE
{ "near", O_near_ptr, { 0xff04, 0xff02, 0xff08 } },
{ "far", O_far_ptr, { 0xff06, 0xff05, 0xff06 } },
{ NULL, O_illegal, { 0, 0, 0 } }
};
operatorT i386_operator (const char *name, unsigned int operands, char *pc)
{
unsigned int j;
if (!intel_syntax)
return O_absent;
if (!name)
{
if (operands != 2)
return O_illegal;
switch (*input_line_pointer)
{
case ':':
++input_line_pointer;
return O_full_ptr;
case '[':
++input_line_pointer;
return O_index;
case '@':
if (this_operand >= 0 && i.reloc[this_operand] == NO_RELOC)
{
int adjust = 0;
char *gotfree_input_line = lex_got (&i.reloc[this_operand],
&adjust,
&intel_state.reloc_types);
if (!gotfree_input_line)
break;
free (gotfree_input_line);
*input_line_pointer++ = '+';
memset (input_line_pointer, '0', adjust - 1);
input_line_pointer[adjust - 1] = ' ';
return O_add;
}
break;
}
return O_illegal;
}
for (j = 0; i386_operators[j].name; ++j)
if (strcasecmp (i386_operators[j].name, name) == 0)
{
if (i386_operators[j].operands
&& i386_operators[j].operands != operands)
return O_illegal;
return i386_operators[j].op;
}
for (j = 0; i386_types[j].name; ++j)
if (strcasecmp (i386_types[j].name, name) == 0)
break;
if (i386_types[j].name && *pc == ' ')
{
char *pname;
char c;
++input_line_pointer;
c = get_symbol_name (&pname);
if (strcasecmp (pname, "ptr") == 0)
{
/* FIXME: What if c == '"' ? */
pname[-1] = *pc;
*pc = c;
if (intel_syntax > 0 || operands != 1)
return O_illegal;
return i386_types[j].op;
}
(void) restore_line_pointer (c);
input_line_pointer = pname - 1;
}
return O_absent;
}
static int i386_intel_parse_name (const char *name, expressionS *e)
{
unsigned int j;
if (! strcmp (name, "$"))
{
current_location (e);
return 1;
}
for (j = 0; i386_types[j].name; ++j)
if (strcasecmp(i386_types[j].name, name) == 0)
{
e->X_op = O_constant;
e->X_add_number = i386_types[j].sz[flag_code];
e->X_add_symbol = NULL;
e->X_op_symbol = NULL;
return 1;
}
return 0;
}
static INLINE int i386_intel_check (const reg_entry *rreg,
const reg_entry *base,
const reg_entry *iindex)
{
if ((this_operand >= 0
&& rreg != i.op[this_operand].regs)
|| base != intel_state.base
|| iindex != intel_state.index)
{
as_bad (_("invalid use of register"));
return 0;
}
return 1;
}
static INLINE void i386_intel_fold (expressionS *e, symbolS *sym)
{
expressionS *exp = symbol_get_value_expression (sym);
if (S_GET_SEGMENT (sym) == absolute_section)
{
offsetT val = e->X_add_number;
*e = *exp;
e->X_add_number += val;
}
else
{
if (exp->X_op == O_symbol
&& strcmp (S_GET_NAME (exp->X_add_symbol),
GLOBAL_OFFSET_TABLE_NAME) == 0)
sym = exp->X_add_symbol;
e->X_add_symbol = sym;
e->X_op_symbol = NULL;
e->X_op = O_symbol;
}
}
static int
i386_intel_simplify_register (expressionS *e)
{
int reg_num;
if (this_operand < 0 || intel_state.in_offset)
{
as_bad (_("invalid use of register"));
return 0;
}
if (e->X_op == O_register)
reg_num = e->X_add_number;
else
reg_num = e->X_md - 1;
if (!intel_state.in_bracket)
{
if (i.op[this_operand].regs)
{
as_bad (_("invalid use of register"));
return 0;
}
if (i386_regtab[reg_num].reg_type.bitfield.sreg3
&& i386_regtab[reg_num].reg_num == RegFlat)
{
as_bad (_("invalid use of pseudo-register"));
return 0;
}
i.op[this_operand].regs = i386_regtab + reg_num;
}
else if (!intel_state.index
&& (i386_regtab[reg_num].reg_type.bitfield.xmmword
|| i386_regtab[reg_num].reg_type.bitfield.ymmword
|| i386_regtab[reg_num].reg_type.bitfield.zmmword
|| i386_regtab[reg_num].reg_num == RegRiz
|| i386_regtab[reg_num].reg_num == RegEiz))
intel_state.index = i386_regtab + reg_num;
else if (!intel_state.base && !intel_state.in_scale)
intel_state.base = i386_regtab + reg_num;
else if (!intel_state.index)
{
if (intel_state.in_scale
|| current_templates->start->base_opcode == 0xf30f1b /* bndmk */
|| (current_templates->start->base_opcode & ~1) == 0x0f1a /* bnd{ld,st}x */
|| i386_regtab[reg_num].reg_type.bitfield.baseindex)
intel_state.index = i386_regtab + reg_num;
else
{
/* Convert base to index and make ESP/RSP the base. */
intel_state.index = intel_state.base;
intel_state.base = i386_regtab + reg_num;
}
}
else
{
/* esp is invalid as index */
intel_state.index = i386_regtab + REGNAM_EAX + ESP_REG_NUM;
}
return 2;
}
static int i386_intel_simplify (expressionS *);
static INLINE int i386_intel_simplify_symbol(symbolS *sym)
{
int ret = i386_intel_simplify (symbol_get_value_expression (sym));
if (ret == 2)
{
S_SET_SEGMENT(sym, absolute_section);
ret = 1;
}
return ret;
}
static int i386_intel_simplify (expressionS *e)
{
const reg_entry *the_reg = (this_operand >= 0
? i.op[this_operand].regs : NULL);
const reg_entry *base = intel_state.base;
const reg_entry *state_index = intel_state.index;
int ret;
if (!intel_syntax)
return 1;
switch (e->X_op)
{
case O_index:
if (e->X_add_symbol)
{
if (!i386_intel_simplify_symbol (e->X_add_symbol)
|| !i386_intel_check(the_reg, intel_state.base,
intel_state.index))
return 0;
}
if (!intel_state.in_offset)
++intel_state.in_bracket;
ret = i386_intel_simplify_symbol (e->X_op_symbol);
if (!intel_state.in_offset)
--intel_state.in_bracket;
if (!ret)
return 0;
if (e->X_add_symbol)
e->X_op = O_add;
else
i386_intel_fold (e, e->X_op_symbol);
break;
case O_offset:
intel_state.has_offset = 1;
++intel_state.in_offset;
ret = i386_intel_simplify_symbol (e->X_add_symbol);
--intel_state.in_offset;
if (!ret || !i386_intel_check(the_reg, base, state_index))
return 0;
i386_intel_fold (e, e->X_add_symbol);
return ret;
case O_byte_ptr:
case O_word_ptr:
case O_dword_ptr:
case O_fword_ptr:
case O_qword_ptr:
case O_tbyte_ptr:
case O_oword_ptr:
case O_xmmword_ptr:
case O_ymmword_ptr:
case O_zmmword_ptr:
case O_near_ptr:
case O_far_ptr:
if (intel_state.op_modifier == O_absent)
intel_state.op_modifier = e->X_op;
/* FALLTHROUGH */
case O_short:
if (symbol_get_value_expression (e->X_add_symbol)->X_op
== O_register)
{
as_bad (_("invalid use of register"));
return 0;
}
if (!i386_intel_simplify_symbol (e->X_add_symbol))
return 0;
i386_intel_fold (e, e->X_add_symbol);
break;
case O_full_ptr:
if (symbol_get_value_expression (e->X_op_symbol)->X_op
== O_register)
{
as_bad (_("invalid use of register"));
return 0;
}
if (!i386_intel_simplify_symbol (e->X_op_symbol)
|| !i386_intel_check(the_reg, intel_state.base,
intel_state.index))
return 0;
if (!intel_state.in_offset)
{
if (!intel_state.seg)
intel_state.seg = e->X_add_symbol;
else
{
expressionS exp;
exp.X_op = O_full_ptr;
exp.X_add_symbol = e->X_add_symbol;
exp.X_op_symbol = intel_state.seg;
intel_state.seg = make_expr_symbol (&exp);
}
}
i386_intel_fold (e, e->X_op_symbol);
break;
case O_multiply:
if (this_operand >= 0 && intel_state.in_bracket)
{
expressionS *scale = NULL;
int has_index = (intel_state.index != NULL);
if (!intel_state.in_scale++)
intel_state.scale_factor = 1;
ret = i386_intel_simplify_symbol (e->X_add_symbol);
if (ret && !has_index && intel_state.index)
scale = symbol_get_value_expression (e->X_op_symbol);
if (ret)
ret = i386_intel_simplify_symbol (e->X_op_symbol);
if (ret && !scale && !has_index && intel_state.index)
scale = symbol_get_value_expression (e->X_add_symbol);
if (ret && scale)
{
resolve_expression (scale);
if (scale->X_op != O_constant
|| intel_state.index->reg_type.bitfield.word)
scale->X_add_number = 0;
intel_state.scale_factor *= scale->X_add_number;
}
--intel_state.in_scale;
if (!ret)
return 0;
if (!intel_state.in_scale)
switch (intel_state.scale_factor)
{
case 1:
i.log2_scale_factor = 0;
break;
case 2:
i.log2_scale_factor = 1;
break;
case 4:
i.log2_scale_factor = 2;
break;
case 8:
i.log2_scale_factor = 3;
break;
default:
/* esp is invalid as index */
intel_state.index = i386_regtab + REGNAM_EAX + ESP_REG_NUM;
break;
}
break;
}
goto fallthrough;
case O_register:
ret = i386_intel_simplify_register (e);
if (ret == 2)
{
gas_assert (e->X_add_number < (unsigned short) -1);
e->X_md = (unsigned short) e->X_add_number + 1;
e->X_op = O_constant;
e->X_add_number = 0;
}
return ret;
case O_constant:
if (e->X_md)
return i386_intel_simplify_register (e);
/* FALLTHROUGH */
default:
fallthrough:
if (e->X_add_symbol
&& !i386_intel_simplify_symbol (e->X_add_symbol))
return 0;
if (e->X_op == O_add || e->X_op == O_subtract)
{
base = intel_state.base;
state_index = intel_state.index;
}
if (!i386_intel_check (the_reg, base, state_index)
|| (e->X_op_symbol
&& !i386_intel_simplify_symbol (e->X_op_symbol))
|| !i386_intel_check (the_reg,
(e->X_op != O_add
? base : intel_state.base),
(e->X_op != O_add
? state_index : intel_state.index)))
return 0;
break;
}
if (this_operand >= 0
&& e->X_op == O_symbol
&& !intel_state.in_offset)
{
segT seg = S_GET_SEGMENT (e->X_add_symbol);
if (seg != absolute_section
&& seg != reg_section
&& seg != expr_section)
intel_state.is_mem |= 2 - !intel_state.in_bracket;
}
return 1;
}
int i386_need_index_operator (void)
{
return intel_syntax < 0;
}
static int
i386_intel_operand (char *operand_string, int got_a_float)
{
char *saved_input_line_pointer, *buf;
segT exp_seg;
expressionS exp, *expP;
char suffix = 0;
int ret;
/* Handle vector immediates. */
if (RC_SAE_immediate (operand_string))
return 1;
/* Initialize state structure. */
intel_state.op_modifier = O_absent;
intel_state.is_mem = 0;
intel_state.is_indirect = 0;
intel_state.has_offset = 0;
intel_state.base = NULL;
intel_state.index = NULL;
intel_state.seg = NULL;
operand_type_set (&intel_state.reloc_types, ~0);
gas_assert (!intel_state.in_offset);
gas_assert (!intel_state.in_bracket);
gas_assert (!intel_state.in_scale);
saved_input_line_pointer = input_line_pointer;
input_line_pointer = buf = xstrdup (operand_string);
intel_syntax = -1;
memset (&exp, 0, sizeof(exp));
exp_seg = expression (&exp);
ret = i386_intel_simplify (&exp);
intel_syntax = 1;
SKIP_WHITESPACE ();
/* Handle vector operations. */
if (*input_line_pointer == '{')
{
char *end = check_VecOperations (input_line_pointer, NULL);
if (end)
input_line_pointer = end;
else
ret = 0;
}
if (!is_end_of_line[(unsigned char) *input_line_pointer])
{
if (ret)
as_bad (_("junk `%s' after expression"), input_line_pointer);
ret = 0;
}
else if (exp.X_op == O_illegal || exp.X_op == O_absent)
{
if (ret)
as_bad (_("invalid expression"));
ret = 0;
}
else if (!intel_state.has_offset
&& input_line_pointer > buf
&& *(input_line_pointer - 1) == ']')
{
intel_state.is_mem |= 1;
intel_state.is_indirect = 1;
}
input_line_pointer = saved_input_line_pointer;
free (buf);
gas_assert (!intel_state.in_offset);
gas_assert (!intel_state.in_bracket);
gas_assert (!intel_state.in_scale);
if (!ret)
return 0;
if (intel_state.op_modifier != O_absent
&& current_templates->start->base_opcode != 0x8d /* lea */)
{
i.types[this_operand].bitfield.unspecified = 0;
switch (intel_state.op_modifier)
{
case O_byte_ptr:
i.types[this_operand].bitfield.byte = 1;
suffix = BYTE_MNEM_SUFFIX;
break;
case O_word_ptr:
i.types[this_operand].bitfield.word = 1;
if ((current_templates->start->name[0] == 'l'
&& current_templates->start->name[2] == 's'
&& current_templates->start->name[3] == 0)
|| current_templates->start->base_opcode == 0x62 /* bound */)
suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
else if (got_a_float == 2) /* "fi..." */
suffix = SHORT_MNEM_SUFFIX;
else
suffix = WORD_MNEM_SUFFIX;
break;
case O_dword_ptr:
i.types[this_operand].bitfield.dword = 1;
if ((current_templates->start->name[0] == 'l'
&& current_templates->start->name[2] == 's'
&& current_templates->start->name[3] == 0)
|| current_templates->start->base_opcode == 0x62 /* bound */)
suffix = WORD_MNEM_SUFFIX;
else if (flag_code == CODE_16BIT
&& (current_templates->start->opcode_modifier.jump
|| current_templates->start->opcode_modifier.jumpdword))
suffix = LONG_DOUBLE_MNEM_SUFFIX;
else if (got_a_float == 1) /* "f..." */
suffix = SHORT_MNEM_SUFFIX;
else
suffix = LONG_MNEM_SUFFIX;
break;
case O_fword_ptr:
i.types[this_operand].bitfield.fword = 1;
if (current_templates->start->name[0] == 'l'
&& current_templates->start->name[2] == 's'
&& current_templates->start->name[3] == 0)
suffix = LONG_MNEM_SUFFIX;
else if (!got_a_float)
{
if (flag_code == CODE_16BIT)
add_prefix (DATA_PREFIX_OPCODE);
suffix = LONG_DOUBLE_MNEM_SUFFIX;
}
else
suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
break;
case O_qword_ptr:
i.types[this_operand].bitfield.qword = 1;
if (current_templates->start->base_opcode == 0x62 /* bound */
|| got_a_float == 1) /* "f..." */
suffix = LONG_MNEM_SUFFIX;
else
suffix = QWORD_MNEM_SUFFIX;
break;
case O_tbyte_ptr:
i.types[this_operand].bitfield.tbyte = 1;
if (got_a_float == 1)
suffix = LONG_DOUBLE_MNEM_SUFFIX;
else
suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
break;
case O_oword_ptr:
case O_xmmword_ptr:
i.types[this_operand].bitfield.xmmword = 1;
break;
case O_ymmword_ptr:
i.types[this_operand].bitfield.ymmword = 1;
break;
case O_zmmword_ptr:
i.types[this_operand].bitfield.zmmword = 1;
break;
case O_far_ptr:
suffix = LONG_DOUBLE_MNEM_SUFFIX;
/* FALLTHROUGH */
case O_near_ptr:
if (!current_templates->start->opcode_modifier.jump
&& !current_templates->start->opcode_modifier.jumpdword)
suffix = got_a_float /* so it will cause an error */
? BYTE_MNEM_SUFFIX
: LONG_DOUBLE_MNEM_SUFFIX;
break;
default:
BAD_CASE (intel_state.op_modifier);
break;
}
if (!i.suffix)
i.suffix = suffix;
else if (i.suffix != suffix)
{
as_bad (_("conflicting operand size modifiers"));
return 0;
}
}
/* Operands for jump/call need special consideration. */
if (current_templates->start->opcode_modifier.jump
|| current_templates->start->opcode_modifier.jumpdword
|| current_templates->start->opcode_modifier.jumpintersegment)
{
if (i.op[this_operand].regs
|| intel_state.base
|| intel_state.index
|| intel_state.is_mem > 1)
i.types[this_operand].bitfield.jumpabsolute = 1;
else
switch (intel_state.op_modifier)
{
case O_near_ptr:
if (intel_state.seg)
i.types[this_operand].bitfield.jumpabsolute = 1;
else
intel_state.is_mem = 1;
break;
case O_far_ptr:
case O_absent:
if (!intel_state.seg)
{
intel_state.is_mem = 1;
if (intel_state.op_modifier == O_absent)
{
if (intel_state.is_indirect == 1)
i.types[this_operand].bitfield.jumpabsolute = 1;
break;
}
as_bad (_("cannot infer the segment part of the operand"));
return 0;
}
else if (S_GET_SEGMENT (intel_state.seg) == reg_section)
i.types[this_operand].bitfield.jumpabsolute = 1;
else
{
i386_operand_type types;
if (i.imm_operands >= MAX_IMMEDIATE_OPERANDS)
{
as_bad (_("at most %d immediate operands are allowed"),
MAX_IMMEDIATE_OPERANDS);
return 0;
}
expP = &im_expressions[i.imm_operands++];
memset (expP, 0, sizeof(*expP));
expP->X_op = O_symbol;
expP->X_add_symbol = intel_state.seg;
i.op[this_operand].imms = expP;
resolve_expression (expP);
operand_type_set (&types, ~0);
if (!i386_finalize_immediate (S_GET_SEGMENT (intel_state.seg),
expP, types, operand_string))
return 0;
if (i.operands < MAX_OPERANDS)
{
this_operand = i.operands++;
i.types[this_operand].bitfield.unspecified = 1;
}
if (suffix == LONG_DOUBLE_MNEM_SUFFIX)
i.suffix = 0;
intel_state.seg = NULL;
intel_state.is_mem = 0;
}
break;
default:
i.types[this_operand].bitfield.jumpabsolute = 1;
break;
}
if (i.types[this_operand].bitfield.jumpabsolute)
intel_state.is_mem |= 1;
}
else if (intel_state.seg)
intel_state.is_mem |= 1;
if (i.op[this_operand].regs)
{
i386_operand_type temp;
/* Register operand. */
if (intel_state.base || intel_state.index || intel_state.seg)
{
as_bad (_("invalid operand"));
return 0;
}
temp = i.op[this_operand].regs->reg_type;
temp.bitfield.baseindex = 0;
i.types[this_operand] = operand_type_or (i.types[this_operand],
temp);
i.types[this_operand].bitfield.unspecified = 0;
++i.reg_operands;
}
else if (intel_state.base
|| intel_state.index
|| intel_state.seg
|| intel_state.is_mem)
{
/* Memory operand. */
if (i.mem_operands == 1 && !maybe_adjust_templates ())
return 0;
if ((int) i.mem_operands
>= 2 - !current_templates->start->opcode_modifier.isstring)
{
/* Handle
call 0x9090,0x90909090
lcall 0x9090,0x90909090
jmp 0x9090,0x90909090
ljmp 0x9090,0x90909090
*/
if ((current_templates->start->opcode_modifier.jumpintersegment
|| current_templates->start->opcode_modifier.jumpdword
|| current_templates->start->opcode_modifier.jump)
&& this_operand == 1
&& intel_state.seg == NULL
&& i.mem_operands == 1
&& i.disp_operands == 1
&& intel_state.op_modifier == O_absent)
{
/* Try to process the first operand as immediate, */
this_operand = 0;
if (i386_finalize_immediate (exp_seg, i.op[0].imms,
intel_state.reloc_types,
NULL))
{
this_operand = 1;
expP = &im_expressions[0];
i.op[this_operand].imms = expP;
*expP = exp;
/* Try to process the second operand as immediate, */
if (i386_finalize_immediate (exp_seg, expP,
intel_state.reloc_types,
NULL))
{
i.mem_operands = 0;
i.disp_operands = 0;
i.imm_operands = 2;
i.types[0].bitfield.mem = 0;
i.types[0].bitfield.disp16 = 0;
i.types[0].bitfield.disp32 = 0;
i.types[0].bitfield.disp32s = 0;
return 1;
}
}
}
as_bad (_("too many memory references for `%s'"),
current_templates->start->name);
return 0;
}
/* Swap base and index in 16-bit memory operands like
[si+bx]. Since i386_index_check is also used in AT&T
mode we have to do this here. */
if (intel_state.base
&& intel_state.index
&& intel_state.base->reg_type.bitfield.word
&& intel_state.index->reg_type.bitfield.word
&& intel_state.base->reg_num >= 6
&& intel_state.index->reg_num < 6)
{
i.base_reg = intel_state.index;
i.index_reg = intel_state.base;
}
else
{
i.base_reg = intel_state.base;
i.index_reg = intel_state.index;
}
if (i.base_reg || i.index_reg)
i.types[this_operand].bitfield.baseindex = 1;
expP = &disp_expressions[i.disp_operands];
memcpy (expP, &exp, sizeof(exp));
resolve_expression (expP);
if (expP->X_op != O_constant
|| expP->X_add_number
|| !i.types[this_operand].bitfield.baseindex)
{
i.op[this_operand].disps = expP;
i.disp_operands++;
i386_addressing_mode ();
if (flag_code == CODE_64BIT)
{
i.types[this_operand].bitfield.disp32 = 1;
if (!i.prefix[ADDR_PREFIX])
{
i.types[this_operand].bitfield.disp64 = 1;
i.types[this_operand].bitfield.disp32s = 1;
}
}
else if (!i.prefix[ADDR_PREFIX] ^ (flag_code == CODE_16BIT))
i.types[this_operand].bitfield.disp32 = 1;
else
i.types[this_operand].bitfield.disp16 = 1;
#if defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT)
/*
* exp_seg is used only for verification in
* i386_finalize_displacement, and we can end up seeing reg_section
* here - but we know we removed all registers from the expression
* (or error-ed on any remaining ones) in i386_intel_simplify. I
* consider the check in i386_finalize_displacement bogus anyway, in
* particular because it doesn't allow for expr_section, so I'd
* rather see that check (and the similar one in
* i386_finalize_immediate) use SEG_NORMAL(), but not being an a.out
* expert I can't really say whether that would have other bad side
* effects.
*/
if (OUTPUT_FLAVOR == bfd_target_aout_flavour
&& exp_seg == reg_section)
exp_seg = expP->X_op != O_constant ? undefined_section
: absolute_section;
#endif
if (!i386_finalize_displacement (exp_seg, expP,
intel_state.reloc_types,
operand_string))
return 0;
}
if (intel_state.seg)
{
for (ret = check_none; ; ret = operand_check)
{
expP = symbol_get_value_expression (intel_state.seg);
if (expP->X_op != O_full_ptr
|| symbol_get_value_expression (expP->X_op_symbol)->X_op
!= O_register)
break;
intel_state.seg = expP->X_add_symbol;
}
if (expP->X_op != O_register)
{
as_bad (_("segment register name expected"));
return 0;
}
if (!i386_regtab[expP->X_add_number].reg_type.bitfield.sreg2
&& !i386_regtab[expP->X_add_number].reg_type.bitfield.sreg3)
{
as_bad (_("invalid use of register"));
return 0;
}
switch (ret)
{
case check_error:
as_bad (_("redundant segment overrides"));
return 0;
case check_warning:
as_warn (_("redundant segment overrides"));
break;
}
switch (i386_regtab[expP->X_add_number].reg_num)
{
case 0: i.seg[i.mem_operands] = &es; break;
case 1: i.seg[i.mem_operands] = &cs; break;
case 2: i.seg[i.mem_operands] = &ss; break;
case 3: i.seg[i.mem_operands] = &ds; break;
case 4: i.seg[i.mem_operands] = &fs; break;
case 5: i.seg[i.mem_operands] = &gs; break;
case RegFlat: i.seg[i.mem_operands] = NULL; break;
}
}
if (!i386_index_check (operand_string))
return 0;
i.types[this_operand].bitfield.mem = 1;
if (i.mem_operands == 0)
i.memop1_string = xstrdup (operand_string);
++i.mem_operands;
}
else
{
/* Immediate. */
if (i.imm_operands >= MAX_IMMEDIATE_OPERANDS)
{
as_bad (_("at most %d immediate operands are allowed"),
MAX_IMMEDIATE_OPERANDS);
return 0;
}
expP = &im_expressions[i.imm_operands++];
i.op[this_operand].imms = expP;
*expP = exp;
return i386_finalize_immediate (exp_seg, expP, intel_state.reloc_types,
operand_string);
}
return 1;
}