mirror of
https://github.com/autc04/Retro68.git
synced 2024-11-28 21:49:33 +00:00
3027 lines
89 KiB
C
3027 lines
89 KiB
C
/* Optimization of PHI nodes by converting them into straightline code.
|
|
Copyright (C) 2004-2019 Free Software Foundation, Inc.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation; either version 3, or (at your option) any
|
|
later version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "backend.h"
|
|
#include "insn-codes.h"
|
|
#include "rtl.h"
|
|
#include "tree.h"
|
|
#include "gimple.h"
|
|
#include "cfghooks.h"
|
|
#include "tree-pass.h"
|
|
#include "ssa.h"
|
|
#include "optabs-tree.h"
|
|
#include "insn-config.h"
|
|
#include "gimple-pretty-print.h"
|
|
#include "fold-const.h"
|
|
#include "stor-layout.h"
|
|
#include "cfganal.h"
|
|
#include "gimplify.h"
|
|
#include "gimple-iterator.h"
|
|
#include "gimplify-me.h"
|
|
#include "tree-cfg.h"
|
|
#include "tree-dfa.h"
|
|
#include "domwalk.h"
|
|
#include "cfgloop.h"
|
|
#include "tree-data-ref.h"
|
|
#include "tree-scalar-evolution.h"
|
|
#include "tree-inline.h"
|
|
#include "params.h"
|
|
#include "case-cfn-macros.h"
|
|
|
|
static unsigned int tree_ssa_phiopt_worker (bool, bool, bool);
|
|
static bool two_value_replacement (basic_block, basic_block, edge, gphi *,
|
|
tree, tree);
|
|
static bool conditional_replacement (basic_block, basic_block,
|
|
edge, edge, gphi *, tree, tree);
|
|
static gphi *factor_out_conditional_conversion (edge, edge, gphi *, tree, tree,
|
|
gimple *);
|
|
static int value_replacement (basic_block, basic_block,
|
|
edge, edge, gimple *, tree, tree);
|
|
static bool minmax_replacement (basic_block, basic_block,
|
|
edge, edge, gimple *, tree, tree);
|
|
static bool abs_replacement (basic_block, basic_block,
|
|
edge, edge, gimple *, tree, tree);
|
|
static bool cond_removal_in_popcount_pattern (basic_block, basic_block,
|
|
edge, edge, gimple *, tree, tree);
|
|
static bool cond_store_replacement (basic_block, basic_block, edge, edge,
|
|
hash_set<tree> *);
|
|
static bool cond_if_else_store_replacement (basic_block, basic_block, basic_block);
|
|
static hash_set<tree> * get_non_trapping ();
|
|
static void replace_phi_edge_with_variable (basic_block, edge, gimple *, tree);
|
|
static void hoist_adjacent_loads (basic_block, basic_block,
|
|
basic_block, basic_block);
|
|
static bool gate_hoist_loads (void);
|
|
|
|
/* This pass tries to transform conditional stores into unconditional
|
|
ones, enabling further simplifications with the simpler then and else
|
|
blocks. In particular it replaces this:
|
|
|
|
bb0:
|
|
if (cond) goto bb2; else goto bb1;
|
|
bb1:
|
|
*p = RHS;
|
|
bb2:
|
|
|
|
with
|
|
|
|
bb0:
|
|
if (cond) goto bb1; else goto bb2;
|
|
bb1:
|
|
condtmp' = *p;
|
|
bb2:
|
|
condtmp = PHI <RHS, condtmp'>
|
|
*p = condtmp;
|
|
|
|
This transformation can only be done under several constraints,
|
|
documented below. It also replaces:
|
|
|
|
bb0:
|
|
if (cond) goto bb2; else goto bb1;
|
|
bb1:
|
|
*p = RHS1;
|
|
goto bb3;
|
|
bb2:
|
|
*p = RHS2;
|
|
bb3:
|
|
|
|
with
|
|
|
|
bb0:
|
|
if (cond) goto bb3; else goto bb1;
|
|
bb1:
|
|
bb3:
|
|
condtmp = PHI <RHS1, RHS2>
|
|
*p = condtmp; */
|
|
|
|
static unsigned int
|
|
tree_ssa_cs_elim (void)
|
|
{
|
|
unsigned todo;
|
|
/* ??? We are not interested in loop related info, but the following
|
|
will create it, ICEing as we didn't init loops with pre-headers.
|
|
An interfacing issue of find_data_references_in_bb. */
|
|
loop_optimizer_init (LOOPS_NORMAL);
|
|
scev_initialize ();
|
|
todo = tree_ssa_phiopt_worker (true, false, false);
|
|
scev_finalize ();
|
|
loop_optimizer_finalize ();
|
|
return todo;
|
|
}
|
|
|
|
/* Return the singleton PHI in the SEQ of PHIs for edges E0 and E1. */
|
|
|
|
static gphi *
|
|
single_non_singleton_phi_for_edges (gimple_seq seq, edge e0, edge e1)
|
|
{
|
|
gimple_stmt_iterator i;
|
|
gphi *phi = NULL;
|
|
if (gimple_seq_singleton_p (seq))
|
|
return as_a <gphi *> (gsi_stmt (gsi_start (seq)));
|
|
for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
|
|
{
|
|
gphi *p = as_a <gphi *> (gsi_stmt (i));
|
|
/* If the PHI arguments are equal then we can skip this PHI. */
|
|
if (operand_equal_for_phi_arg_p (gimple_phi_arg_def (p, e0->dest_idx),
|
|
gimple_phi_arg_def (p, e1->dest_idx)))
|
|
continue;
|
|
|
|
/* If we already have a PHI that has the two edge arguments are
|
|
different, then return it is not a singleton for these PHIs. */
|
|
if (phi)
|
|
return NULL;
|
|
|
|
phi = p;
|
|
}
|
|
return phi;
|
|
}
|
|
|
|
/* The core routine of conditional store replacement and normal
|
|
phi optimizations. Both share much of the infrastructure in how
|
|
to match applicable basic block patterns. DO_STORE_ELIM is true
|
|
when we want to do conditional store replacement, false otherwise.
|
|
DO_HOIST_LOADS is true when we want to hoist adjacent loads out
|
|
of diamond control flow patterns, false otherwise. */
|
|
static unsigned int
|
|
tree_ssa_phiopt_worker (bool do_store_elim, bool do_hoist_loads, bool early_p)
|
|
{
|
|
basic_block bb;
|
|
basic_block *bb_order;
|
|
unsigned n, i;
|
|
bool cfgchanged = false;
|
|
hash_set<tree> *nontrap = 0;
|
|
|
|
if (do_store_elim)
|
|
/* Calculate the set of non-trapping memory accesses. */
|
|
nontrap = get_non_trapping ();
|
|
|
|
/* Search every basic block for COND_EXPR we may be able to optimize.
|
|
|
|
We walk the blocks in order that guarantees that a block with
|
|
a single predecessor is processed before the predecessor.
|
|
This ensures that we collapse inner ifs before visiting the
|
|
outer ones, and also that we do not try to visit a removed
|
|
block. */
|
|
bb_order = single_pred_before_succ_order ();
|
|
n = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
|
|
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
gimple *cond_stmt;
|
|
gphi *phi;
|
|
basic_block bb1, bb2;
|
|
edge e1, e2;
|
|
tree arg0, arg1;
|
|
|
|
bb = bb_order[i];
|
|
|
|
cond_stmt = last_stmt (bb);
|
|
/* Check to see if the last statement is a GIMPLE_COND. */
|
|
if (!cond_stmt
|
|
|| gimple_code (cond_stmt) != GIMPLE_COND)
|
|
continue;
|
|
|
|
e1 = EDGE_SUCC (bb, 0);
|
|
bb1 = e1->dest;
|
|
e2 = EDGE_SUCC (bb, 1);
|
|
bb2 = e2->dest;
|
|
|
|
/* We cannot do the optimization on abnormal edges. */
|
|
if ((e1->flags & EDGE_ABNORMAL) != 0
|
|
|| (e2->flags & EDGE_ABNORMAL) != 0)
|
|
continue;
|
|
|
|
/* If either bb1's succ or bb2 or bb2's succ is non NULL. */
|
|
if (EDGE_COUNT (bb1->succs) == 0
|
|
|| bb2 == NULL
|
|
|| EDGE_COUNT (bb2->succs) == 0)
|
|
continue;
|
|
|
|
/* Find the bb which is the fall through to the other. */
|
|
if (EDGE_SUCC (bb1, 0)->dest == bb2)
|
|
;
|
|
else if (EDGE_SUCC (bb2, 0)->dest == bb1)
|
|
{
|
|
std::swap (bb1, bb2);
|
|
std::swap (e1, e2);
|
|
}
|
|
else if (do_store_elim
|
|
&& EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
|
|
{
|
|
basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
|
|
|
|
if (!single_succ_p (bb1)
|
|
|| (EDGE_SUCC (bb1, 0)->flags & EDGE_FALLTHRU) == 0
|
|
|| !single_succ_p (bb2)
|
|
|| (EDGE_SUCC (bb2, 0)->flags & EDGE_FALLTHRU) == 0
|
|
|| EDGE_COUNT (bb3->preds) != 2)
|
|
continue;
|
|
if (cond_if_else_store_replacement (bb1, bb2, bb3))
|
|
cfgchanged = true;
|
|
continue;
|
|
}
|
|
else if (do_hoist_loads
|
|
&& EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
|
|
{
|
|
basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
|
|
|
|
if (!FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (cond_stmt)))
|
|
&& single_succ_p (bb1)
|
|
&& single_succ_p (bb2)
|
|
&& single_pred_p (bb1)
|
|
&& single_pred_p (bb2)
|
|
&& EDGE_COUNT (bb->succs) == 2
|
|
&& EDGE_COUNT (bb3->preds) == 2
|
|
/* If one edge or the other is dominant, a conditional move
|
|
is likely to perform worse than the well-predicted branch. */
|
|
&& !predictable_edge_p (EDGE_SUCC (bb, 0))
|
|
&& !predictable_edge_p (EDGE_SUCC (bb, 1)))
|
|
hoist_adjacent_loads (bb, bb1, bb2, bb3);
|
|
continue;
|
|
}
|
|
else
|
|
continue;
|
|
|
|
e1 = EDGE_SUCC (bb1, 0);
|
|
|
|
/* Make sure that bb1 is just a fall through. */
|
|
if (!single_succ_p (bb1)
|
|
|| (e1->flags & EDGE_FALLTHRU) == 0)
|
|
continue;
|
|
|
|
/* Also make sure that bb1 only have one predecessor and that it
|
|
is bb. */
|
|
if (!single_pred_p (bb1)
|
|
|| single_pred (bb1) != bb)
|
|
continue;
|
|
|
|
if (do_store_elim)
|
|
{
|
|
/* bb1 is the middle block, bb2 the join block, bb the split block,
|
|
e1 the fallthrough edge from bb1 to bb2. We can't do the
|
|
optimization if the join block has more than two predecessors. */
|
|
if (EDGE_COUNT (bb2->preds) > 2)
|
|
continue;
|
|
if (cond_store_replacement (bb1, bb2, e1, e2, nontrap))
|
|
cfgchanged = true;
|
|
}
|
|
else
|
|
{
|
|
gimple_seq phis = phi_nodes (bb2);
|
|
gimple_stmt_iterator gsi;
|
|
bool candorest = true;
|
|
|
|
/* Value replacement can work with more than one PHI
|
|
so try that first. */
|
|
if (!early_p)
|
|
for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
phi = as_a <gphi *> (gsi_stmt (gsi));
|
|
arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
|
|
arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
|
|
if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1) == 2)
|
|
{
|
|
candorest = false;
|
|
cfgchanged = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!candorest)
|
|
continue;
|
|
|
|
phi = single_non_singleton_phi_for_edges (phis, e1, e2);
|
|
if (!phi)
|
|
continue;
|
|
|
|
arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
|
|
arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
|
|
|
|
/* Something is wrong if we cannot find the arguments in the PHI
|
|
node. */
|
|
gcc_assert (arg0 != NULL_TREE && arg1 != NULL_TREE);
|
|
|
|
gphi *newphi = factor_out_conditional_conversion (e1, e2, phi,
|
|
arg0, arg1,
|
|
cond_stmt);
|
|
if (newphi != NULL)
|
|
{
|
|
phi = newphi;
|
|
/* factor_out_conditional_conversion may create a new PHI in
|
|
BB2 and eliminate an existing PHI in BB2. Recompute values
|
|
that may be affected by that change. */
|
|
arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
|
|
arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
|
|
gcc_assert (arg0 != NULL_TREE && arg1 != NULL_TREE);
|
|
}
|
|
|
|
/* Do the replacement of conditional if it can be done. */
|
|
if (two_value_replacement (bb, bb1, e2, phi, arg0, arg1))
|
|
cfgchanged = true;
|
|
else if (!early_p
|
|
&& conditional_replacement (bb, bb1, e1, e2, phi,
|
|
arg0, arg1))
|
|
cfgchanged = true;
|
|
else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
|
|
cfgchanged = true;
|
|
else if (!early_p
|
|
&& cond_removal_in_popcount_pattern (bb, bb1, e1, e2,
|
|
phi, arg0, arg1))
|
|
cfgchanged = true;
|
|
else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
|
|
cfgchanged = true;
|
|
}
|
|
}
|
|
|
|
free (bb_order);
|
|
|
|
if (do_store_elim)
|
|
delete nontrap;
|
|
/* If the CFG has changed, we should cleanup the CFG. */
|
|
if (cfgchanged && do_store_elim)
|
|
{
|
|
/* In cond-store replacement we have added some loads on edges
|
|
and new VOPS (as we moved the store, and created a load). */
|
|
gsi_commit_edge_inserts ();
|
|
return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
|
|
}
|
|
else if (cfgchanged)
|
|
return TODO_cleanup_cfg;
|
|
return 0;
|
|
}
|
|
|
|
/* Replace PHI node element whose edge is E in block BB with variable NEW.
|
|
Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
|
|
is known to have two edges, one of which must reach BB). */
|
|
|
|
static void
|
|
replace_phi_edge_with_variable (basic_block cond_block,
|
|
edge e, gimple *phi, tree new_tree)
|
|
{
|
|
basic_block bb = gimple_bb (phi);
|
|
basic_block block_to_remove;
|
|
gimple_stmt_iterator gsi;
|
|
|
|
/* Change the PHI argument to new. */
|
|
SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new_tree);
|
|
|
|
/* Remove the empty basic block. */
|
|
if (EDGE_SUCC (cond_block, 0)->dest == bb)
|
|
{
|
|
EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU;
|
|
EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
|
|
EDGE_SUCC (cond_block, 0)->probability = profile_probability::always ();
|
|
|
|
block_to_remove = EDGE_SUCC (cond_block, 1)->dest;
|
|
}
|
|
else
|
|
{
|
|
EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU;
|
|
EDGE_SUCC (cond_block, 1)->flags
|
|
&= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
|
|
EDGE_SUCC (cond_block, 1)->probability = profile_probability::always ();
|
|
|
|
block_to_remove = EDGE_SUCC (cond_block, 0)->dest;
|
|
}
|
|
delete_basic_block (block_to_remove);
|
|
|
|
/* Eliminate the COND_EXPR at the end of COND_BLOCK. */
|
|
gsi = gsi_last_bb (cond_block);
|
|
gsi_remove (&gsi, true);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file,
|
|
"COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
|
|
cond_block->index,
|
|
bb->index);
|
|
}
|
|
|
|
/* PR66726: Factor conversion out of COND_EXPR. If the arguments of the PHI
|
|
stmt are CONVERT_STMT, factor out the conversion and perform the conversion
|
|
to the result of PHI stmt. COND_STMT is the controlling predicate.
|
|
Return the newly-created PHI, if any. */
|
|
|
|
static gphi *
|
|
factor_out_conditional_conversion (edge e0, edge e1, gphi *phi,
|
|
tree arg0, tree arg1, gimple *cond_stmt)
|
|
{
|
|
gimple *arg0_def_stmt = NULL, *arg1_def_stmt = NULL, *new_stmt;
|
|
tree new_arg0 = NULL_TREE, new_arg1 = NULL_TREE;
|
|
tree temp, result;
|
|
gphi *newphi;
|
|
gimple_stmt_iterator gsi, gsi_for_def;
|
|
location_t locus = gimple_location (phi);
|
|
enum tree_code convert_code;
|
|
|
|
/* Handle only PHI statements with two arguments. TODO: If all
|
|
other arguments to PHI are INTEGER_CST or if their defining
|
|
statement have the same unary operation, we can handle more
|
|
than two arguments too. */
|
|
if (gimple_phi_num_args (phi) != 2)
|
|
return NULL;
|
|
|
|
/* First canonicalize to simplify tests. */
|
|
if (TREE_CODE (arg0) != SSA_NAME)
|
|
{
|
|
std::swap (arg0, arg1);
|
|
std::swap (e0, e1);
|
|
}
|
|
|
|
if (TREE_CODE (arg0) != SSA_NAME
|
|
|| (TREE_CODE (arg1) != SSA_NAME
|
|
&& TREE_CODE (arg1) != INTEGER_CST))
|
|
return NULL;
|
|
|
|
/* Check if arg0 is an SSA_NAME and the stmt which defines arg0 is
|
|
a conversion. */
|
|
arg0_def_stmt = SSA_NAME_DEF_STMT (arg0);
|
|
if (!gimple_assign_cast_p (arg0_def_stmt))
|
|
return NULL;
|
|
|
|
/* Use the RHS as new_arg0. */
|
|
convert_code = gimple_assign_rhs_code (arg0_def_stmt);
|
|
new_arg0 = gimple_assign_rhs1 (arg0_def_stmt);
|
|
if (convert_code == VIEW_CONVERT_EXPR)
|
|
{
|
|
new_arg0 = TREE_OPERAND (new_arg0, 0);
|
|
if (!is_gimple_reg_type (TREE_TYPE (new_arg0)))
|
|
return NULL;
|
|
}
|
|
|
|
if (TREE_CODE (arg1) == SSA_NAME)
|
|
{
|
|
/* Check if arg1 is an SSA_NAME and the stmt which defines arg1
|
|
is a conversion. */
|
|
arg1_def_stmt = SSA_NAME_DEF_STMT (arg1);
|
|
if (!is_gimple_assign (arg1_def_stmt)
|
|
|| gimple_assign_rhs_code (arg1_def_stmt) != convert_code)
|
|
return NULL;
|
|
|
|
/* Use the RHS as new_arg1. */
|
|
new_arg1 = gimple_assign_rhs1 (arg1_def_stmt);
|
|
if (convert_code == VIEW_CONVERT_EXPR)
|
|
new_arg1 = TREE_OPERAND (new_arg1, 0);
|
|
}
|
|
else
|
|
{
|
|
/* If arg1 is an INTEGER_CST, fold it to new type. */
|
|
if (INTEGRAL_TYPE_P (TREE_TYPE (new_arg0))
|
|
&& int_fits_type_p (arg1, TREE_TYPE (new_arg0)))
|
|
{
|
|
if (gimple_assign_cast_p (arg0_def_stmt))
|
|
{
|
|
/* For the INTEGER_CST case, we are just moving the
|
|
conversion from one place to another, which can often
|
|
hurt as the conversion moves further away from the
|
|
statement that computes the value. So, perform this
|
|
only if new_arg0 is an operand of COND_STMT, or
|
|
if arg0_def_stmt is the only non-debug stmt in
|
|
its basic block, because then it is possible this
|
|
could enable further optimizations (minmax replacement
|
|
etc.). See PR71016. */
|
|
if (new_arg0 != gimple_cond_lhs (cond_stmt)
|
|
&& new_arg0 != gimple_cond_rhs (cond_stmt)
|
|
&& gimple_bb (arg0_def_stmt) == e0->src)
|
|
{
|
|
gsi = gsi_for_stmt (arg0_def_stmt);
|
|
gsi_prev_nondebug (&gsi);
|
|
if (!gsi_end_p (gsi))
|
|
return NULL;
|
|
gsi = gsi_for_stmt (arg0_def_stmt);
|
|
gsi_next_nondebug (&gsi);
|
|
if (!gsi_end_p (gsi))
|
|
return NULL;
|
|
}
|
|
new_arg1 = fold_convert (TREE_TYPE (new_arg0), arg1);
|
|
}
|
|
else
|
|
return NULL;
|
|
}
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
/* If arg0/arg1 have > 1 use, then this transformation actually increases
|
|
the number of expressions evaluated at runtime. */
|
|
if (!has_single_use (arg0)
|
|
|| (arg1_def_stmt && !has_single_use (arg1)))
|
|
return NULL;
|
|
|
|
/* If types of new_arg0 and new_arg1 are different bailout. */
|
|
if (!types_compatible_p (TREE_TYPE (new_arg0), TREE_TYPE (new_arg1)))
|
|
return NULL;
|
|
|
|
/* Create a new PHI stmt. */
|
|
result = PHI_RESULT (phi);
|
|
temp = make_ssa_name (TREE_TYPE (new_arg0), NULL);
|
|
newphi = create_phi_node (temp, gimple_bb (phi));
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "PHI ");
|
|
print_generic_expr (dump_file, gimple_phi_result (phi));
|
|
fprintf (dump_file,
|
|
" changed to factor conversion out from COND_EXPR.\n");
|
|
fprintf (dump_file, "New stmt with CAST that defines ");
|
|
print_generic_expr (dump_file, result);
|
|
fprintf (dump_file, ".\n");
|
|
}
|
|
|
|
/* Remove the old cast(s) that has single use. */
|
|
gsi_for_def = gsi_for_stmt (arg0_def_stmt);
|
|
gsi_remove (&gsi_for_def, true);
|
|
release_defs (arg0_def_stmt);
|
|
|
|
if (arg1_def_stmt)
|
|
{
|
|
gsi_for_def = gsi_for_stmt (arg1_def_stmt);
|
|
gsi_remove (&gsi_for_def, true);
|
|
release_defs (arg1_def_stmt);
|
|
}
|
|
|
|
add_phi_arg (newphi, new_arg0, e0, locus);
|
|
add_phi_arg (newphi, new_arg1, e1, locus);
|
|
|
|
/* Create the conversion stmt and insert it. */
|
|
if (convert_code == VIEW_CONVERT_EXPR)
|
|
{
|
|
temp = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (result), temp);
|
|
new_stmt = gimple_build_assign (result, temp);
|
|
}
|
|
else
|
|
new_stmt = gimple_build_assign (result, convert_code, temp);
|
|
gsi = gsi_after_labels (gimple_bb (phi));
|
|
gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
|
|
|
|
/* Remove the original PHI stmt. */
|
|
gsi = gsi_for_stmt (phi);
|
|
gsi_remove (&gsi, true);
|
|
return newphi;
|
|
}
|
|
|
|
/* Optimize
|
|
# x_5 in range [cst1, cst2] where cst2 = cst1 + 1
|
|
if (x_5 op cstN) # where op is == or != and N is 1 or 2
|
|
goto bb3;
|
|
else
|
|
goto bb4;
|
|
bb3:
|
|
bb4:
|
|
# r_6 = PHI<cst3(2), cst4(3)> # where cst3 == cst4 + 1 or cst4 == cst3 + 1
|
|
|
|
to r_6 = x_5 + (min (cst3, cst4) - cst1) or
|
|
r_6 = (min (cst3, cst4) + cst1) - x_5 depending on op, N and which
|
|
of cst3 and cst4 is smaller. */
|
|
|
|
static bool
|
|
two_value_replacement (basic_block cond_bb, basic_block middle_bb,
|
|
edge e1, gphi *phi, tree arg0, tree arg1)
|
|
{
|
|
/* Only look for adjacent integer constants. */
|
|
if (!INTEGRAL_TYPE_P (TREE_TYPE (arg0))
|
|
|| !INTEGRAL_TYPE_P (TREE_TYPE (arg1))
|
|
|| TREE_CODE (arg0) != INTEGER_CST
|
|
|| TREE_CODE (arg1) != INTEGER_CST
|
|
|| (tree_int_cst_lt (arg0, arg1)
|
|
? wi::to_widest (arg0) + 1 != wi::to_widest (arg1)
|
|
: wi::to_widest (arg1) + 1 != wi::to_widest (arg1)))
|
|
return false;
|
|
|
|
if (!empty_block_p (middle_bb))
|
|
return false;
|
|
|
|
gimple *stmt = last_stmt (cond_bb);
|
|
tree lhs = gimple_cond_lhs (stmt);
|
|
tree rhs = gimple_cond_rhs (stmt);
|
|
|
|
if (TREE_CODE (lhs) != SSA_NAME
|
|
|| !INTEGRAL_TYPE_P (TREE_TYPE (lhs))
|
|
|| TREE_CODE (TREE_TYPE (lhs)) == BOOLEAN_TYPE
|
|
|| TREE_CODE (rhs) != INTEGER_CST)
|
|
return false;
|
|
|
|
switch (gimple_cond_code (stmt))
|
|
{
|
|
case EQ_EXPR:
|
|
case NE_EXPR:
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
wide_int min, max;
|
|
if (get_range_info (lhs, &min, &max) != VR_RANGE
|
|
|| min + 1 != max
|
|
|| (wi::to_wide (rhs) != min
|
|
&& wi::to_wide (rhs) != max))
|
|
return false;
|
|
|
|
/* We need to know which is the true edge and which is the false
|
|
edge so that we know when to invert the condition below. */
|
|
edge true_edge, false_edge;
|
|
extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
|
|
if ((gimple_cond_code (stmt) == EQ_EXPR)
|
|
^ (wi::to_wide (rhs) == max)
|
|
^ (e1 == false_edge))
|
|
std::swap (arg0, arg1);
|
|
|
|
tree type;
|
|
if (TYPE_PRECISION (TREE_TYPE (lhs)) == TYPE_PRECISION (TREE_TYPE (arg0)))
|
|
{
|
|
/* Avoid performing the arithmetics in bool type which has different
|
|
semantics, otherwise prefer unsigned types from the two with
|
|
the same precision. */
|
|
if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE
|
|
|| !TYPE_UNSIGNED (TREE_TYPE (arg0)))
|
|
type = TREE_TYPE (lhs);
|
|
else
|
|
type = TREE_TYPE (arg0);
|
|
}
|
|
else if (TYPE_PRECISION (TREE_TYPE (lhs)) > TYPE_PRECISION (TREE_TYPE (arg0)))
|
|
type = TREE_TYPE (lhs);
|
|
else
|
|
type = TREE_TYPE (arg0);
|
|
|
|
min = wide_int::from (min, TYPE_PRECISION (type),
|
|
TYPE_SIGN (TREE_TYPE (lhs)));
|
|
wide_int a = wide_int::from (wi::to_wide (arg0), TYPE_PRECISION (type),
|
|
TYPE_SIGN (TREE_TYPE (arg0)));
|
|
enum tree_code code;
|
|
wi::overflow_type ovf;
|
|
if (tree_int_cst_lt (arg0, arg1))
|
|
{
|
|
code = PLUS_EXPR;
|
|
a -= min;
|
|
if (!TYPE_UNSIGNED (type))
|
|
{
|
|
/* lhs is known to be in range [min, min+1] and we want to add a
|
|
to it. Check if that operation can overflow for those 2 values
|
|
and if yes, force unsigned type. */
|
|
wi::add (min + (wi::neg_p (a) ? 0 : 1), a, SIGNED, &ovf);
|
|
if (ovf)
|
|
type = unsigned_type_for (type);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
code = MINUS_EXPR;
|
|
a += min;
|
|
if (!TYPE_UNSIGNED (type))
|
|
{
|
|
/* lhs is known to be in range [min, min+1] and we want to subtract
|
|
it from a. Check if that operation can overflow for those 2
|
|
values and if yes, force unsigned type. */
|
|
wi::sub (a, min + (wi::neg_p (min) ? 0 : 1), SIGNED, &ovf);
|
|
if (ovf)
|
|
type = unsigned_type_for (type);
|
|
}
|
|
}
|
|
|
|
tree arg = wide_int_to_tree (type, a);
|
|
gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
|
|
if (!useless_type_conversion_p (type, TREE_TYPE (lhs)))
|
|
lhs = gimplify_build1 (&gsi, NOP_EXPR, type, lhs);
|
|
tree new_rhs;
|
|
if (code == PLUS_EXPR)
|
|
new_rhs = gimplify_build2 (&gsi, PLUS_EXPR, type, lhs, arg);
|
|
else
|
|
new_rhs = gimplify_build2 (&gsi, MINUS_EXPR, type, arg, lhs);
|
|
if (!useless_type_conversion_p (TREE_TYPE (arg0), type))
|
|
new_rhs = gimplify_build1 (&gsi, NOP_EXPR, TREE_TYPE (arg0), new_rhs);
|
|
|
|
replace_phi_edge_with_variable (cond_bb, e1, phi, new_rhs);
|
|
|
|
/* Note that we optimized this PHI. */
|
|
return true;
|
|
}
|
|
|
|
/* The function conditional_replacement does the main work of doing the
|
|
conditional replacement. Return true if the replacement is done.
|
|
Otherwise return false.
|
|
BB is the basic block where the replacement is going to be done on. ARG0
|
|
is argument 0 from PHI. Likewise for ARG1. */
|
|
|
|
static bool
|
|
conditional_replacement (basic_block cond_bb, basic_block middle_bb,
|
|
edge e0, edge e1, gphi *phi,
|
|
tree arg0, tree arg1)
|
|
{
|
|
tree result;
|
|
gimple *stmt;
|
|
gassign *new_stmt;
|
|
tree cond;
|
|
gimple_stmt_iterator gsi;
|
|
edge true_edge, false_edge;
|
|
tree new_var, new_var2;
|
|
bool neg;
|
|
|
|
/* FIXME: Gimplification of complex type is too hard for now. */
|
|
/* We aren't prepared to handle vectors either (and it is a question
|
|
if it would be worthwhile anyway). */
|
|
if (!(INTEGRAL_TYPE_P (TREE_TYPE (arg0))
|
|
|| POINTER_TYPE_P (TREE_TYPE (arg0)))
|
|
|| !(INTEGRAL_TYPE_P (TREE_TYPE (arg1))
|
|
|| POINTER_TYPE_P (TREE_TYPE (arg1))))
|
|
return false;
|
|
|
|
/* The PHI arguments have the constants 0 and 1, or 0 and -1, then
|
|
convert it to the conditional. */
|
|
if ((integer_zerop (arg0) && integer_onep (arg1))
|
|
|| (integer_zerop (arg1) && integer_onep (arg0)))
|
|
neg = false;
|
|
else if ((integer_zerop (arg0) && integer_all_onesp (arg1))
|
|
|| (integer_zerop (arg1) && integer_all_onesp (arg0)))
|
|
neg = true;
|
|
else
|
|
return false;
|
|
|
|
if (!empty_block_p (middle_bb))
|
|
return false;
|
|
|
|
/* At this point we know we have a GIMPLE_COND with two successors.
|
|
One successor is BB, the other successor is an empty block which
|
|
falls through into BB.
|
|
|
|
There is a single PHI node at the join point (BB) and its arguments
|
|
are constants (0, 1) or (0, -1).
|
|
|
|
So, given the condition COND, and the two PHI arguments, we can
|
|
rewrite this PHI into non-branching code:
|
|
|
|
dest = (COND) or dest = COND'
|
|
|
|
We use the condition as-is if the argument associated with the
|
|
true edge has the value one or the argument associated with the
|
|
false edge as the value zero. Note that those conditions are not
|
|
the same since only one of the outgoing edges from the GIMPLE_COND
|
|
will directly reach BB and thus be associated with an argument. */
|
|
|
|
stmt = last_stmt (cond_bb);
|
|
result = PHI_RESULT (phi);
|
|
|
|
/* To handle special cases like floating point comparison, it is easier and
|
|
less error-prone to build a tree and gimplify it on the fly though it is
|
|
less efficient. */
|
|
cond = fold_build2_loc (gimple_location (stmt),
|
|
gimple_cond_code (stmt), boolean_type_node,
|
|
gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
|
|
|
|
/* We need to know which is the true edge and which is the false
|
|
edge so that we know when to invert the condition below. */
|
|
extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
|
|
if ((e0 == true_edge && integer_zerop (arg0))
|
|
|| (e0 == false_edge && !integer_zerop (arg0))
|
|
|| (e1 == true_edge && integer_zerop (arg1))
|
|
|| (e1 == false_edge && !integer_zerop (arg1)))
|
|
cond = fold_build1_loc (gimple_location (stmt),
|
|
TRUTH_NOT_EXPR, TREE_TYPE (cond), cond);
|
|
|
|
if (neg)
|
|
{
|
|
cond = fold_convert_loc (gimple_location (stmt),
|
|
TREE_TYPE (result), cond);
|
|
cond = fold_build1_loc (gimple_location (stmt),
|
|
NEGATE_EXPR, TREE_TYPE (cond), cond);
|
|
}
|
|
|
|
/* Insert our new statements at the end of conditional block before the
|
|
COND_STMT. */
|
|
gsi = gsi_for_stmt (stmt);
|
|
new_var = force_gimple_operand_gsi (&gsi, cond, true, NULL, true,
|
|
GSI_SAME_STMT);
|
|
|
|
if (!useless_type_conversion_p (TREE_TYPE (result), TREE_TYPE (new_var)))
|
|
{
|
|
location_t locus_0, locus_1;
|
|
|
|
new_var2 = make_ssa_name (TREE_TYPE (result));
|
|
new_stmt = gimple_build_assign (new_var2, CONVERT_EXPR, new_var);
|
|
gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
|
|
new_var = new_var2;
|
|
|
|
/* Set the locus to the first argument, unless is doesn't have one. */
|
|
locus_0 = gimple_phi_arg_location (phi, 0);
|
|
locus_1 = gimple_phi_arg_location (phi, 1);
|
|
if (locus_0 == UNKNOWN_LOCATION)
|
|
locus_0 = locus_1;
|
|
gimple_set_location (new_stmt, locus_0);
|
|
}
|
|
|
|
replace_phi_edge_with_variable (cond_bb, e1, phi, new_var);
|
|
|
|
/* Note that we optimized this PHI. */
|
|
return true;
|
|
}
|
|
|
|
/* Update *ARG which is defined in STMT so that it contains the
|
|
computed value if that seems profitable. Return true if the
|
|
statement is made dead by that rewriting. */
|
|
|
|
static bool
|
|
jump_function_from_stmt (tree *arg, gimple *stmt)
|
|
{
|
|
enum tree_code code = gimple_assign_rhs_code (stmt);
|
|
if (code == ADDR_EXPR)
|
|
{
|
|
/* For arg = &p->i transform it to p, if possible. */
|
|
tree rhs1 = gimple_assign_rhs1 (stmt);
|
|
poly_int64 offset;
|
|
tree tem = get_addr_base_and_unit_offset (TREE_OPERAND (rhs1, 0),
|
|
&offset);
|
|
if (tem
|
|
&& TREE_CODE (tem) == MEM_REF
|
|
&& known_eq (mem_ref_offset (tem) + offset, 0))
|
|
{
|
|
*arg = TREE_OPERAND (tem, 0);
|
|
return true;
|
|
}
|
|
}
|
|
/* TODO: Much like IPA-CP jump-functions we want to handle constant
|
|
additions symbolically here, and we'd need to update the comparison
|
|
code that compares the arg + cst tuples in our caller. For now the
|
|
code above exactly handles the VEC_BASE pattern from vec.h. */
|
|
return false;
|
|
}
|
|
|
|
/* RHS is a source argument in a BIT_AND_EXPR which feeds a conditional
|
|
of the form SSA_NAME NE 0.
|
|
|
|
If RHS is fed by a simple EQ_EXPR comparison of two values, see if
|
|
the two input values of the EQ_EXPR match arg0 and arg1.
|
|
|
|
If so update *code and return TRUE. Otherwise return FALSE. */
|
|
|
|
static bool
|
|
rhs_is_fed_for_value_replacement (const_tree arg0, const_tree arg1,
|
|
enum tree_code *code, const_tree rhs)
|
|
{
|
|
/* Obviously if RHS is not an SSA_NAME, we can't look at the defining
|
|
statement. */
|
|
if (TREE_CODE (rhs) == SSA_NAME)
|
|
{
|
|
gimple *def1 = SSA_NAME_DEF_STMT (rhs);
|
|
|
|
/* Verify the defining statement has an EQ_EXPR on the RHS. */
|
|
if (is_gimple_assign (def1) && gimple_assign_rhs_code (def1) == EQ_EXPR)
|
|
{
|
|
/* Finally verify the source operands of the EQ_EXPR are equal
|
|
to arg0 and arg1. */
|
|
tree op0 = gimple_assign_rhs1 (def1);
|
|
tree op1 = gimple_assign_rhs2 (def1);
|
|
if ((operand_equal_for_phi_arg_p (arg0, op0)
|
|
&& operand_equal_for_phi_arg_p (arg1, op1))
|
|
|| (operand_equal_for_phi_arg_p (arg0, op1)
|
|
&& operand_equal_for_phi_arg_p (arg1, op0)))
|
|
{
|
|
/* We will perform the optimization. */
|
|
*code = gimple_assign_rhs_code (def1);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Return TRUE if arg0/arg1 are equal to the rhs/lhs or lhs/rhs of COND.
|
|
|
|
Also return TRUE if arg0/arg1 are equal to the source arguments of a
|
|
an EQ comparison feeding a BIT_AND_EXPR which feeds COND.
|
|
|
|
Return FALSE otherwise. */
|
|
|
|
static bool
|
|
operand_equal_for_value_replacement (const_tree arg0, const_tree arg1,
|
|
enum tree_code *code, gimple *cond)
|
|
{
|
|
gimple *def;
|
|
tree lhs = gimple_cond_lhs (cond);
|
|
tree rhs = gimple_cond_rhs (cond);
|
|
|
|
if ((operand_equal_for_phi_arg_p (arg0, lhs)
|
|
&& operand_equal_for_phi_arg_p (arg1, rhs))
|
|
|| (operand_equal_for_phi_arg_p (arg1, lhs)
|
|
&& operand_equal_for_phi_arg_p (arg0, rhs)))
|
|
return true;
|
|
|
|
/* Now handle more complex case where we have an EQ comparison
|
|
which feeds a BIT_AND_EXPR which feeds COND.
|
|
|
|
First verify that COND is of the form SSA_NAME NE 0. */
|
|
if (*code != NE_EXPR || !integer_zerop (rhs)
|
|
|| TREE_CODE (lhs) != SSA_NAME)
|
|
return false;
|
|
|
|
/* Now ensure that SSA_NAME is set by a BIT_AND_EXPR. */
|
|
def = SSA_NAME_DEF_STMT (lhs);
|
|
if (!is_gimple_assign (def) || gimple_assign_rhs_code (def) != BIT_AND_EXPR)
|
|
return false;
|
|
|
|
/* Now verify arg0/arg1 correspond to the source arguments of an
|
|
EQ comparison feeding the BIT_AND_EXPR. */
|
|
|
|
tree tmp = gimple_assign_rhs1 (def);
|
|
if (rhs_is_fed_for_value_replacement (arg0, arg1, code, tmp))
|
|
return true;
|
|
|
|
tmp = gimple_assign_rhs2 (def);
|
|
if (rhs_is_fed_for_value_replacement (arg0, arg1, code, tmp))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Returns true if ARG is a neutral element for operation CODE
|
|
on the RIGHT side. */
|
|
|
|
static bool
|
|
neutral_element_p (tree_code code, tree arg, bool right)
|
|
{
|
|
switch (code)
|
|
{
|
|
case PLUS_EXPR:
|
|
case BIT_IOR_EXPR:
|
|
case BIT_XOR_EXPR:
|
|
return integer_zerop (arg);
|
|
|
|
case LROTATE_EXPR:
|
|
case RROTATE_EXPR:
|
|
case LSHIFT_EXPR:
|
|
case RSHIFT_EXPR:
|
|
case MINUS_EXPR:
|
|
case POINTER_PLUS_EXPR:
|
|
return right && integer_zerop (arg);
|
|
|
|
case MULT_EXPR:
|
|
return integer_onep (arg);
|
|
|
|
case TRUNC_DIV_EXPR:
|
|
case CEIL_DIV_EXPR:
|
|
case FLOOR_DIV_EXPR:
|
|
case ROUND_DIV_EXPR:
|
|
case EXACT_DIV_EXPR:
|
|
return right && integer_onep (arg);
|
|
|
|
case BIT_AND_EXPR:
|
|
return integer_all_onesp (arg);
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Returns true if ARG is an absorbing element for operation CODE. */
|
|
|
|
static bool
|
|
absorbing_element_p (tree_code code, tree arg, bool right, tree rval)
|
|
{
|
|
switch (code)
|
|
{
|
|
case BIT_IOR_EXPR:
|
|
return integer_all_onesp (arg);
|
|
|
|
case MULT_EXPR:
|
|
case BIT_AND_EXPR:
|
|
return integer_zerop (arg);
|
|
|
|
case LSHIFT_EXPR:
|
|
case RSHIFT_EXPR:
|
|
case LROTATE_EXPR:
|
|
case RROTATE_EXPR:
|
|
return !right && integer_zerop (arg);
|
|
|
|
case TRUNC_DIV_EXPR:
|
|
case CEIL_DIV_EXPR:
|
|
case FLOOR_DIV_EXPR:
|
|
case ROUND_DIV_EXPR:
|
|
case EXACT_DIV_EXPR:
|
|
case TRUNC_MOD_EXPR:
|
|
case CEIL_MOD_EXPR:
|
|
case FLOOR_MOD_EXPR:
|
|
case ROUND_MOD_EXPR:
|
|
return (!right
|
|
&& integer_zerop (arg)
|
|
&& tree_single_nonzero_warnv_p (rval, NULL));
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* The function value_replacement does the main work of doing the value
|
|
replacement. Return non-zero if the replacement is done. Otherwise return
|
|
0. If we remove the middle basic block, return 2.
|
|
BB is the basic block where the replacement is going to be done on. ARG0
|
|
is argument 0 from the PHI. Likewise for ARG1. */
|
|
|
|
static int
|
|
value_replacement (basic_block cond_bb, basic_block middle_bb,
|
|
edge e0, edge e1, gimple *phi,
|
|
tree arg0, tree arg1)
|
|
{
|
|
gimple_stmt_iterator gsi;
|
|
gimple *cond;
|
|
edge true_edge, false_edge;
|
|
enum tree_code code;
|
|
bool emtpy_or_with_defined_p = true;
|
|
|
|
/* If the type says honor signed zeros we cannot do this
|
|
optimization. */
|
|
if (HONOR_SIGNED_ZEROS (arg1))
|
|
return 0;
|
|
|
|
/* If there is a statement in MIDDLE_BB that defines one of the PHI
|
|
arguments, then adjust arg0 or arg1. */
|
|
gsi = gsi_start_nondebug_after_labels_bb (middle_bb);
|
|
while (!gsi_end_p (gsi))
|
|
{
|
|
gimple *stmt = gsi_stmt (gsi);
|
|
tree lhs;
|
|
gsi_next_nondebug (&gsi);
|
|
if (!is_gimple_assign (stmt))
|
|
{
|
|
if (gimple_code (stmt) != GIMPLE_PREDICT
|
|
&& gimple_code (stmt) != GIMPLE_NOP)
|
|
emtpy_or_with_defined_p = false;
|
|
continue;
|
|
}
|
|
/* Now try to adjust arg0 or arg1 according to the computation
|
|
in the statement. */
|
|
lhs = gimple_assign_lhs (stmt);
|
|
if (!(lhs == arg0
|
|
&& jump_function_from_stmt (&arg0, stmt))
|
|
|| (lhs == arg1
|
|
&& jump_function_from_stmt (&arg1, stmt)))
|
|
emtpy_or_with_defined_p = false;
|
|
}
|
|
|
|
cond = last_stmt (cond_bb);
|
|
code = gimple_cond_code (cond);
|
|
|
|
/* This transformation is only valid for equality comparisons. */
|
|
if (code != NE_EXPR && code != EQ_EXPR)
|
|
return 0;
|
|
|
|
/* We need to know which is the true edge and which is the false
|
|
edge so that we know if have abs or negative abs. */
|
|
extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
|
|
|
|
/* At this point we know we have a COND_EXPR with two successors.
|
|
One successor is BB, the other successor is an empty block which
|
|
falls through into BB.
|
|
|
|
The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
|
|
|
|
There is a single PHI node at the join point (BB) with two arguments.
|
|
|
|
We now need to verify that the two arguments in the PHI node match
|
|
the two arguments to the equality comparison. */
|
|
|
|
if (operand_equal_for_value_replacement (arg0, arg1, &code, cond))
|
|
{
|
|
edge e;
|
|
tree arg;
|
|
|
|
/* For NE_EXPR, we want to build an assignment result = arg where
|
|
arg is the PHI argument associated with the true edge. For
|
|
EQ_EXPR we want the PHI argument associated with the false edge. */
|
|
e = (code == NE_EXPR ? true_edge : false_edge);
|
|
|
|
/* Unfortunately, E may not reach BB (it may instead have gone to
|
|
OTHER_BLOCK). If that is the case, then we want the single outgoing
|
|
edge from OTHER_BLOCK which reaches BB and represents the desired
|
|
path from COND_BLOCK. */
|
|
if (e->dest == middle_bb)
|
|
e = single_succ_edge (e->dest);
|
|
|
|
/* Now we know the incoming edge to BB that has the argument for the
|
|
RHS of our new assignment statement. */
|
|
if (e0 == e)
|
|
arg = arg0;
|
|
else
|
|
arg = arg1;
|
|
|
|
/* If the middle basic block was empty or is defining the
|
|
PHI arguments and this is a single phi where the args are different
|
|
for the edges e0 and e1 then we can remove the middle basic block. */
|
|
if (emtpy_or_with_defined_p
|
|
&& single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)),
|
|
e0, e1) == phi)
|
|
{
|
|
replace_phi_edge_with_variable (cond_bb, e1, phi, arg);
|
|
/* Note that we optimized this PHI. */
|
|
return 2;
|
|
}
|
|
else
|
|
{
|
|
/* Replace the PHI arguments with arg. */
|
|
SET_PHI_ARG_DEF (phi, e0->dest_idx, arg);
|
|
SET_PHI_ARG_DEF (phi, e1->dest_idx, arg);
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "PHI ");
|
|
print_generic_expr (dump_file, gimple_phi_result (phi));
|
|
fprintf (dump_file, " reduced for COND_EXPR in block %d to ",
|
|
cond_bb->index);
|
|
print_generic_expr (dump_file, arg);
|
|
fprintf (dump_file, ".\n");
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
}
|
|
|
|
/* Now optimize (x != 0) ? x + y : y to just x + y. */
|
|
gsi = gsi_last_nondebug_bb (middle_bb);
|
|
if (gsi_end_p (gsi))
|
|
return 0;
|
|
|
|
gimple *assign = gsi_stmt (gsi);
|
|
if (!is_gimple_assign (assign)
|
|
|| gimple_assign_rhs_class (assign) != GIMPLE_BINARY_RHS
|
|
|| (!INTEGRAL_TYPE_P (TREE_TYPE (arg0))
|
|
&& !POINTER_TYPE_P (TREE_TYPE (arg0))))
|
|
return 0;
|
|
|
|
/* Punt if there are (degenerate) PHIs in middle_bb, there should not be. */
|
|
if (!gimple_seq_empty_p (phi_nodes (middle_bb)))
|
|
return 0;
|
|
|
|
/* Allow up to 2 cheap preparation statements that prepare argument
|
|
for assign, e.g.:
|
|
if (y_4 != 0)
|
|
goto <bb 3>;
|
|
else
|
|
goto <bb 4>;
|
|
<bb 3>:
|
|
_1 = (int) y_4;
|
|
iftmp.0_6 = x_5(D) r<< _1;
|
|
<bb 4>:
|
|
# iftmp.0_2 = PHI <iftmp.0_6(3), x_5(D)(2)>
|
|
or:
|
|
if (y_3(D) == 0)
|
|
goto <bb 4>;
|
|
else
|
|
goto <bb 3>;
|
|
<bb 3>:
|
|
y_4 = y_3(D) & 31;
|
|
_1 = (int) y_4;
|
|
_6 = x_5(D) r<< _1;
|
|
<bb 4>:
|
|
# _2 = PHI <x_5(D)(2), _6(3)> */
|
|
gimple *prep_stmt[2] = { NULL, NULL };
|
|
int prep_cnt;
|
|
for (prep_cnt = 0; ; prep_cnt++)
|
|
{
|
|
gsi_prev_nondebug (&gsi);
|
|
if (gsi_end_p (gsi))
|
|
break;
|
|
|
|
gimple *g = gsi_stmt (gsi);
|
|
if (gimple_code (g) == GIMPLE_LABEL)
|
|
break;
|
|
|
|
if (prep_cnt == 2 || !is_gimple_assign (g))
|
|
return 0;
|
|
|
|
tree lhs = gimple_assign_lhs (g);
|
|
tree rhs1 = gimple_assign_rhs1 (g);
|
|
use_operand_p use_p;
|
|
gimple *use_stmt;
|
|
if (TREE_CODE (lhs) != SSA_NAME
|
|
|| TREE_CODE (rhs1) != SSA_NAME
|
|
|| !INTEGRAL_TYPE_P (TREE_TYPE (lhs))
|
|
|| !INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
|
|
|| !single_imm_use (lhs, &use_p, &use_stmt)
|
|
|| use_stmt != (prep_cnt ? prep_stmt[prep_cnt - 1] : assign))
|
|
return 0;
|
|
switch (gimple_assign_rhs_code (g))
|
|
{
|
|
CASE_CONVERT:
|
|
break;
|
|
case PLUS_EXPR:
|
|
case BIT_AND_EXPR:
|
|
case BIT_IOR_EXPR:
|
|
case BIT_XOR_EXPR:
|
|
if (TREE_CODE (gimple_assign_rhs2 (g)) != INTEGER_CST)
|
|
return 0;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
prep_stmt[prep_cnt] = g;
|
|
}
|
|
|
|
/* Only transform if it removes the condition. */
|
|
if (!single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)), e0, e1))
|
|
return 0;
|
|
|
|
/* Size-wise, this is always profitable. */
|
|
if (optimize_bb_for_speed_p (cond_bb)
|
|
/* The special case is useless if it has a low probability. */
|
|
&& profile_status_for_fn (cfun) != PROFILE_ABSENT
|
|
&& EDGE_PRED (middle_bb, 0)->probability < profile_probability::even ()
|
|
/* If assign is cheap, there is no point avoiding it. */
|
|
&& estimate_num_insns (bb_seq (middle_bb), &eni_time_weights)
|
|
>= 3 * estimate_num_insns (cond, &eni_time_weights))
|
|
return 0;
|
|
|
|
tree lhs = gimple_assign_lhs (assign);
|
|
tree rhs1 = gimple_assign_rhs1 (assign);
|
|
tree rhs2 = gimple_assign_rhs2 (assign);
|
|
enum tree_code code_def = gimple_assign_rhs_code (assign);
|
|
tree cond_lhs = gimple_cond_lhs (cond);
|
|
tree cond_rhs = gimple_cond_rhs (cond);
|
|
|
|
/* Propagate the cond_rhs constant through preparation stmts,
|
|
make sure UB isn't invoked while doing that. */
|
|
for (int i = prep_cnt - 1; i >= 0; --i)
|
|
{
|
|
gimple *g = prep_stmt[i];
|
|
tree grhs1 = gimple_assign_rhs1 (g);
|
|
if (!operand_equal_for_phi_arg_p (cond_lhs, grhs1))
|
|
return 0;
|
|
cond_lhs = gimple_assign_lhs (g);
|
|
cond_rhs = fold_convert (TREE_TYPE (grhs1), cond_rhs);
|
|
if (TREE_CODE (cond_rhs) != INTEGER_CST
|
|
|| TREE_OVERFLOW (cond_rhs))
|
|
return 0;
|
|
if (gimple_assign_rhs_class (g) == GIMPLE_BINARY_RHS)
|
|
{
|
|
cond_rhs = int_const_binop (gimple_assign_rhs_code (g), cond_rhs,
|
|
gimple_assign_rhs2 (g));
|
|
if (TREE_OVERFLOW (cond_rhs))
|
|
return 0;
|
|
}
|
|
cond_rhs = fold_convert (TREE_TYPE (cond_lhs), cond_rhs);
|
|
if (TREE_CODE (cond_rhs) != INTEGER_CST
|
|
|| TREE_OVERFLOW (cond_rhs))
|
|
return 0;
|
|
}
|
|
|
|
if (((code == NE_EXPR && e1 == false_edge)
|
|
|| (code == EQ_EXPR && e1 == true_edge))
|
|
&& arg0 == lhs
|
|
&& ((arg1 == rhs1
|
|
&& operand_equal_for_phi_arg_p (rhs2, cond_lhs)
|
|
&& neutral_element_p (code_def, cond_rhs, true))
|
|
|| (arg1 == rhs2
|
|
&& operand_equal_for_phi_arg_p (rhs1, cond_lhs)
|
|
&& neutral_element_p (code_def, cond_rhs, false))
|
|
|| (operand_equal_for_phi_arg_p (arg1, cond_rhs)
|
|
&& ((operand_equal_for_phi_arg_p (rhs2, cond_lhs)
|
|
&& absorbing_element_p (code_def, cond_rhs, true, rhs2))
|
|
|| (operand_equal_for_phi_arg_p (rhs1, cond_lhs)
|
|
&& absorbing_element_p (code_def,
|
|
cond_rhs, false, rhs2))))))
|
|
{
|
|
gsi = gsi_for_stmt (cond);
|
|
/* Moving ASSIGN might change VR of lhs, e.g. when moving u_6
|
|
def-stmt in:
|
|
if (n_5 != 0)
|
|
goto <bb 3>;
|
|
else
|
|
goto <bb 4>;
|
|
|
|
<bb 3>:
|
|
# RANGE [0, 4294967294]
|
|
u_6 = n_5 + 4294967295;
|
|
|
|
<bb 4>:
|
|
# u_3 = PHI <u_6(3), 4294967295(2)> */
|
|
reset_flow_sensitive_info (lhs);
|
|
if (INTEGRAL_TYPE_P (TREE_TYPE (lhs)))
|
|
{
|
|
/* If available, we can use VR of phi result at least. */
|
|
tree phires = gimple_phi_result (phi);
|
|
struct range_info_def *phires_range_info
|
|
= SSA_NAME_RANGE_INFO (phires);
|
|
if (phires_range_info)
|
|
duplicate_ssa_name_range_info (lhs, SSA_NAME_RANGE_TYPE (phires),
|
|
phires_range_info);
|
|
}
|
|
gimple_stmt_iterator gsi_from;
|
|
for (int i = prep_cnt - 1; i >= 0; --i)
|
|
{
|
|
tree plhs = gimple_assign_lhs (prep_stmt[i]);
|
|
reset_flow_sensitive_info (plhs);
|
|
gsi_from = gsi_for_stmt (prep_stmt[i]);
|
|
gsi_move_before (&gsi_from, &gsi);
|
|
}
|
|
gsi_from = gsi_for_stmt (assign);
|
|
gsi_move_before (&gsi_from, &gsi);
|
|
replace_phi_edge_with_variable (cond_bb, e1, phi, lhs);
|
|
return 2;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* The function minmax_replacement does the main work of doing the minmax
|
|
replacement. Return true if the replacement is done. Otherwise return
|
|
false.
|
|
BB is the basic block where the replacement is going to be done on. ARG0
|
|
is argument 0 from the PHI. Likewise for ARG1. */
|
|
|
|
static bool
|
|
minmax_replacement (basic_block cond_bb, basic_block middle_bb,
|
|
edge e0, edge e1, gimple *phi,
|
|
tree arg0, tree arg1)
|
|
{
|
|
tree result, type, rhs;
|
|
gcond *cond;
|
|
gassign *new_stmt;
|
|
edge true_edge, false_edge;
|
|
enum tree_code cmp, minmax, ass_code;
|
|
tree smaller, alt_smaller, larger, alt_larger, arg_true, arg_false;
|
|
gimple_stmt_iterator gsi, gsi_from;
|
|
|
|
type = TREE_TYPE (PHI_RESULT (phi));
|
|
|
|
/* The optimization may be unsafe due to NaNs. */
|
|
if (HONOR_NANS (type) || HONOR_SIGNED_ZEROS (type))
|
|
return false;
|
|
|
|
cond = as_a <gcond *> (last_stmt (cond_bb));
|
|
cmp = gimple_cond_code (cond);
|
|
rhs = gimple_cond_rhs (cond);
|
|
|
|
/* Turn EQ/NE of extreme values to order comparisons. */
|
|
if ((cmp == NE_EXPR || cmp == EQ_EXPR)
|
|
&& TREE_CODE (rhs) == INTEGER_CST)
|
|
{
|
|
if (wi::eq_p (wi::to_wide (rhs), wi::min_value (TREE_TYPE (rhs))))
|
|
{
|
|
cmp = (cmp == EQ_EXPR) ? LT_EXPR : GE_EXPR;
|
|
rhs = wide_int_to_tree (TREE_TYPE (rhs),
|
|
wi::min_value (TREE_TYPE (rhs)) + 1);
|
|
}
|
|
else if (wi::eq_p (wi::to_wide (rhs), wi::max_value (TREE_TYPE (rhs))))
|
|
{
|
|
cmp = (cmp == EQ_EXPR) ? GT_EXPR : LE_EXPR;
|
|
rhs = wide_int_to_tree (TREE_TYPE (rhs),
|
|
wi::max_value (TREE_TYPE (rhs)) - 1);
|
|
}
|
|
}
|
|
|
|
/* This transformation is only valid for order comparisons. Record which
|
|
operand is smaller/larger if the result of the comparison is true. */
|
|
alt_smaller = NULL_TREE;
|
|
alt_larger = NULL_TREE;
|
|
if (cmp == LT_EXPR || cmp == LE_EXPR)
|
|
{
|
|
smaller = gimple_cond_lhs (cond);
|
|
larger = rhs;
|
|
/* If we have smaller < CST it is equivalent to smaller <= CST-1.
|
|
Likewise smaller <= CST is equivalent to smaller < CST+1. */
|
|
if (TREE_CODE (larger) == INTEGER_CST)
|
|
{
|
|
if (cmp == LT_EXPR)
|
|
{
|
|
wi::overflow_type overflow;
|
|
wide_int alt = wi::sub (wi::to_wide (larger), 1,
|
|
TYPE_SIGN (TREE_TYPE (larger)),
|
|
&overflow);
|
|
if (! overflow)
|
|
alt_larger = wide_int_to_tree (TREE_TYPE (larger), alt);
|
|
}
|
|
else
|
|
{
|
|
wi::overflow_type overflow;
|
|
wide_int alt = wi::add (wi::to_wide (larger), 1,
|
|
TYPE_SIGN (TREE_TYPE (larger)),
|
|
&overflow);
|
|
if (! overflow)
|
|
alt_larger = wide_int_to_tree (TREE_TYPE (larger), alt);
|
|
}
|
|
}
|
|
}
|
|
else if (cmp == GT_EXPR || cmp == GE_EXPR)
|
|
{
|
|
smaller = rhs;
|
|
larger = gimple_cond_lhs (cond);
|
|
/* If we have larger > CST it is equivalent to larger >= CST+1.
|
|
Likewise larger >= CST is equivalent to larger > CST-1. */
|
|
if (TREE_CODE (smaller) == INTEGER_CST)
|
|
{
|
|
wi::overflow_type overflow;
|
|
if (cmp == GT_EXPR)
|
|
{
|
|
wide_int alt = wi::add (wi::to_wide (smaller), 1,
|
|
TYPE_SIGN (TREE_TYPE (smaller)),
|
|
&overflow);
|
|
if (! overflow)
|
|
alt_smaller = wide_int_to_tree (TREE_TYPE (smaller), alt);
|
|
}
|
|
else
|
|
{
|
|
wide_int alt = wi::sub (wi::to_wide (smaller), 1,
|
|
TYPE_SIGN (TREE_TYPE (smaller)),
|
|
&overflow);
|
|
if (! overflow)
|
|
alt_smaller = wide_int_to_tree (TREE_TYPE (smaller), alt);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
return false;
|
|
|
|
/* We need to know which is the true edge and which is the false
|
|
edge so that we know if have abs or negative abs. */
|
|
extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
|
|
|
|
/* Forward the edges over the middle basic block. */
|
|
if (true_edge->dest == middle_bb)
|
|
true_edge = EDGE_SUCC (true_edge->dest, 0);
|
|
if (false_edge->dest == middle_bb)
|
|
false_edge = EDGE_SUCC (false_edge->dest, 0);
|
|
|
|
if (true_edge == e0)
|
|
{
|
|
gcc_assert (false_edge == e1);
|
|
arg_true = arg0;
|
|
arg_false = arg1;
|
|
}
|
|
else
|
|
{
|
|
gcc_assert (false_edge == e0);
|
|
gcc_assert (true_edge == e1);
|
|
arg_true = arg1;
|
|
arg_false = arg0;
|
|
}
|
|
|
|
if (empty_block_p (middle_bb))
|
|
{
|
|
if ((operand_equal_for_phi_arg_p (arg_true, smaller)
|
|
|| (alt_smaller
|
|
&& operand_equal_for_phi_arg_p (arg_true, alt_smaller)))
|
|
&& (operand_equal_for_phi_arg_p (arg_false, larger)
|
|
|| (alt_larger
|
|
&& operand_equal_for_phi_arg_p (arg_true, alt_larger))))
|
|
{
|
|
/* Case
|
|
|
|
if (smaller < larger)
|
|
rslt = smaller;
|
|
else
|
|
rslt = larger; */
|
|
minmax = MIN_EXPR;
|
|
}
|
|
else if ((operand_equal_for_phi_arg_p (arg_false, smaller)
|
|
|| (alt_smaller
|
|
&& operand_equal_for_phi_arg_p (arg_false, alt_smaller)))
|
|
&& (operand_equal_for_phi_arg_p (arg_true, larger)
|
|
|| (alt_larger
|
|
&& operand_equal_for_phi_arg_p (arg_true, alt_larger))))
|
|
minmax = MAX_EXPR;
|
|
else
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
/* Recognize the following case, assuming d <= u:
|
|
|
|
if (a <= u)
|
|
b = MAX (a, d);
|
|
x = PHI <b, u>
|
|
|
|
This is equivalent to
|
|
|
|
b = MAX (a, d);
|
|
x = MIN (b, u); */
|
|
|
|
gimple *assign = last_and_only_stmt (middle_bb);
|
|
tree lhs, op0, op1, bound;
|
|
|
|
if (!assign
|
|
|| gimple_code (assign) != GIMPLE_ASSIGN)
|
|
return false;
|
|
|
|
lhs = gimple_assign_lhs (assign);
|
|
ass_code = gimple_assign_rhs_code (assign);
|
|
if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
|
|
return false;
|
|
op0 = gimple_assign_rhs1 (assign);
|
|
op1 = gimple_assign_rhs2 (assign);
|
|
|
|
if (true_edge->src == middle_bb)
|
|
{
|
|
/* We got here if the condition is true, i.e., SMALLER < LARGER. */
|
|
if (!operand_equal_for_phi_arg_p (lhs, arg_true))
|
|
return false;
|
|
|
|
if (operand_equal_for_phi_arg_p (arg_false, larger)
|
|
|| (alt_larger
|
|
&& operand_equal_for_phi_arg_p (arg_false, alt_larger)))
|
|
{
|
|
/* Case
|
|
|
|
if (smaller < larger)
|
|
{
|
|
r' = MAX_EXPR (smaller, bound)
|
|
}
|
|
r = PHI <r', larger> --> to be turned to MIN_EXPR. */
|
|
if (ass_code != MAX_EXPR)
|
|
return false;
|
|
|
|
minmax = MIN_EXPR;
|
|
if (operand_equal_for_phi_arg_p (op0, smaller)
|
|
|| (alt_smaller
|
|
&& operand_equal_for_phi_arg_p (op0, alt_smaller)))
|
|
bound = op1;
|
|
else if (operand_equal_for_phi_arg_p (op1, smaller)
|
|
|| (alt_smaller
|
|
&& operand_equal_for_phi_arg_p (op1, alt_smaller)))
|
|
bound = op0;
|
|
else
|
|
return false;
|
|
|
|
/* We need BOUND <= LARGER. */
|
|
if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
|
|
bound, larger)))
|
|
return false;
|
|
}
|
|
else if (operand_equal_for_phi_arg_p (arg_false, smaller)
|
|
|| (alt_smaller
|
|
&& operand_equal_for_phi_arg_p (arg_false, alt_smaller)))
|
|
{
|
|
/* Case
|
|
|
|
if (smaller < larger)
|
|
{
|
|
r' = MIN_EXPR (larger, bound)
|
|
}
|
|
r = PHI <r', smaller> --> to be turned to MAX_EXPR. */
|
|
if (ass_code != MIN_EXPR)
|
|
return false;
|
|
|
|
minmax = MAX_EXPR;
|
|
if (operand_equal_for_phi_arg_p (op0, larger)
|
|
|| (alt_larger
|
|
&& operand_equal_for_phi_arg_p (op0, alt_larger)))
|
|
bound = op1;
|
|
else if (operand_equal_for_phi_arg_p (op1, larger)
|
|
|| (alt_larger
|
|
&& operand_equal_for_phi_arg_p (op1, alt_larger)))
|
|
bound = op0;
|
|
else
|
|
return false;
|
|
|
|
/* We need BOUND >= SMALLER. */
|
|
if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
|
|
bound, smaller)))
|
|
return false;
|
|
}
|
|
else
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
/* We got here if the condition is false, i.e., SMALLER > LARGER. */
|
|
if (!operand_equal_for_phi_arg_p (lhs, arg_false))
|
|
return false;
|
|
|
|
if (operand_equal_for_phi_arg_p (arg_true, larger)
|
|
|| (alt_larger
|
|
&& operand_equal_for_phi_arg_p (arg_true, alt_larger)))
|
|
{
|
|
/* Case
|
|
|
|
if (smaller > larger)
|
|
{
|
|
r' = MIN_EXPR (smaller, bound)
|
|
}
|
|
r = PHI <r', larger> --> to be turned to MAX_EXPR. */
|
|
if (ass_code != MIN_EXPR)
|
|
return false;
|
|
|
|
minmax = MAX_EXPR;
|
|
if (operand_equal_for_phi_arg_p (op0, smaller)
|
|
|| (alt_smaller
|
|
&& operand_equal_for_phi_arg_p (op0, alt_smaller)))
|
|
bound = op1;
|
|
else if (operand_equal_for_phi_arg_p (op1, smaller)
|
|
|| (alt_smaller
|
|
&& operand_equal_for_phi_arg_p (op1, alt_smaller)))
|
|
bound = op0;
|
|
else
|
|
return false;
|
|
|
|
/* We need BOUND >= LARGER. */
|
|
if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
|
|
bound, larger)))
|
|
return false;
|
|
}
|
|
else if (operand_equal_for_phi_arg_p (arg_true, smaller)
|
|
|| (alt_smaller
|
|
&& operand_equal_for_phi_arg_p (arg_true, alt_smaller)))
|
|
{
|
|
/* Case
|
|
|
|
if (smaller > larger)
|
|
{
|
|
r' = MAX_EXPR (larger, bound)
|
|
}
|
|
r = PHI <r', smaller> --> to be turned to MIN_EXPR. */
|
|
if (ass_code != MAX_EXPR)
|
|
return false;
|
|
|
|
minmax = MIN_EXPR;
|
|
if (operand_equal_for_phi_arg_p (op0, larger))
|
|
bound = op1;
|
|
else if (operand_equal_for_phi_arg_p (op1, larger))
|
|
bound = op0;
|
|
else
|
|
return false;
|
|
|
|
/* We need BOUND <= SMALLER. */
|
|
if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
|
|
bound, smaller)))
|
|
return false;
|
|
}
|
|
else
|
|
return false;
|
|
}
|
|
|
|
/* Move the statement from the middle block. */
|
|
gsi = gsi_last_bb (cond_bb);
|
|
gsi_from = gsi_last_nondebug_bb (middle_bb);
|
|
reset_flow_sensitive_info (SINGLE_SSA_TREE_OPERAND (gsi_stmt (gsi_from),
|
|
SSA_OP_DEF));
|
|
gsi_move_before (&gsi_from, &gsi);
|
|
}
|
|
|
|
/* Create an SSA var to hold the min/max result. If we're the only
|
|
things setting the target PHI, then we can clone the PHI
|
|
variable. Otherwise we must create a new one. */
|
|
result = PHI_RESULT (phi);
|
|
if (EDGE_COUNT (gimple_bb (phi)->preds) == 2)
|
|
result = duplicate_ssa_name (result, NULL);
|
|
else
|
|
result = make_ssa_name (TREE_TYPE (result));
|
|
|
|
/* Emit the statement to compute min/max. */
|
|
new_stmt = gimple_build_assign (result, minmax, arg0, arg1);
|
|
gsi = gsi_last_bb (cond_bb);
|
|
gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
|
|
|
|
replace_phi_edge_with_variable (cond_bb, e1, phi, result);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Convert
|
|
|
|
<bb 2>
|
|
if (b_4(D) != 0)
|
|
goto <bb 3>
|
|
else
|
|
goto <bb 4>
|
|
|
|
<bb 3>
|
|
_2 = (unsigned long) b_4(D);
|
|
_9 = __builtin_popcountl (_2);
|
|
OR
|
|
_9 = __builtin_popcountl (b_4(D));
|
|
|
|
<bb 4>
|
|
c_12 = PHI <0(2), _9(3)>
|
|
|
|
Into
|
|
<bb 2>
|
|
_2 = (unsigned long) b_4(D);
|
|
_9 = __builtin_popcountl (_2);
|
|
OR
|
|
_9 = __builtin_popcountl (b_4(D));
|
|
|
|
<bb 4>
|
|
c_12 = PHI <_9(2)>
|
|
*/
|
|
|
|
static bool
|
|
cond_removal_in_popcount_pattern (basic_block cond_bb, basic_block middle_bb,
|
|
edge e1, edge e2,
|
|
gimple *phi, tree arg0, tree arg1)
|
|
{
|
|
gimple *cond;
|
|
gimple_stmt_iterator gsi, gsi_from;
|
|
gimple *popcount;
|
|
gimple *cast = NULL;
|
|
tree lhs, arg;
|
|
|
|
/* Check that
|
|
_2 = (unsigned long) b_4(D);
|
|
_9 = __builtin_popcountl (_2);
|
|
OR
|
|
_9 = __builtin_popcountl (b_4(D));
|
|
are the only stmts in the middle_bb. */
|
|
|
|
gsi = gsi_start_nondebug_after_labels_bb (middle_bb);
|
|
if (gsi_end_p (gsi))
|
|
return false;
|
|
cast = gsi_stmt (gsi);
|
|
gsi_next_nondebug (&gsi);
|
|
if (!gsi_end_p (gsi))
|
|
{
|
|
popcount = gsi_stmt (gsi);
|
|
gsi_next_nondebug (&gsi);
|
|
if (!gsi_end_p (gsi))
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
popcount = cast;
|
|
cast = NULL;
|
|
}
|
|
|
|
/* Check that we have a popcount builtin. */
|
|
if (!is_gimple_call (popcount))
|
|
return false;
|
|
combined_fn cfn = gimple_call_combined_fn (popcount);
|
|
switch (cfn)
|
|
{
|
|
CASE_CFN_POPCOUNT:
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
arg = gimple_call_arg (popcount, 0);
|
|
lhs = gimple_get_lhs (popcount);
|
|
|
|
if (cast)
|
|
{
|
|
/* We have a cast stmt feeding popcount builtin. */
|
|
/* Check that we have a cast prior to that. */
|
|
if (gimple_code (cast) != GIMPLE_ASSIGN
|
|
|| !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (cast)))
|
|
return false;
|
|
/* Result of the cast stmt is the argument to the builtin. */
|
|
if (arg != gimple_assign_lhs (cast))
|
|
return false;
|
|
arg = gimple_assign_rhs1 (cast);
|
|
}
|
|
|
|
cond = last_stmt (cond_bb);
|
|
|
|
/* Cond_bb has a check for b_4 [!=|==] 0 before calling the popcount
|
|
builtin. */
|
|
if (gimple_code (cond) != GIMPLE_COND
|
|
|| (gimple_cond_code (cond) != NE_EXPR
|
|
&& gimple_cond_code (cond) != EQ_EXPR)
|
|
|| !integer_zerop (gimple_cond_rhs (cond))
|
|
|| arg != gimple_cond_lhs (cond))
|
|
return false;
|
|
|
|
/* Canonicalize. */
|
|
if ((e2->flags & EDGE_TRUE_VALUE
|
|
&& gimple_cond_code (cond) == NE_EXPR)
|
|
|| (e1->flags & EDGE_TRUE_VALUE
|
|
&& gimple_cond_code (cond) == EQ_EXPR))
|
|
{
|
|
std::swap (arg0, arg1);
|
|
std::swap (e1, e2);
|
|
}
|
|
|
|
/* Check PHI arguments. */
|
|
if (lhs != arg0 || !integer_zerop (arg1))
|
|
return false;
|
|
|
|
/* And insert the popcount builtin and cast stmt before the cond_bb. */
|
|
gsi = gsi_last_bb (cond_bb);
|
|
if (cast)
|
|
{
|
|
gsi_from = gsi_for_stmt (cast);
|
|
gsi_move_before (&gsi_from, &gsi);
|
|
reset_flow_sensitive_info (gimple_get_lhs (cast));
|
|
}
|
|
gsi_from = gsi_for_stmt (popcount);
|
|
gsi_move_before (&gsi_from, &gsi);
|
|
reset_flow_sensitive_info (gimple_get_lhs (popcount));
|
|
|
|
/* Now update the PHI and remove unneeded bbs. */
|
|
replace_phi_edge_with_variable (cond_bb, e2, phi, lhs);
|
|
return true;
|
|
}
|
|
|
|
/* The function absolute_replacement does the main work of doing the absolute
|
|
replacement. Return true if the replacement is done. Otherwise return
|
|
false.
|
|
bb is the basic block where the replacement is going to be done on. arg0
|
|
is argument 0 from the phi. Likewise for arg1. */
|
|
|
|
static bool
|
|
abs_replacement (basic_block cond_bb, basic_block middle_bb,
|
|
edge e0 ATTRIBUTE_UNUSED, edge e1,
|
|
gimple *phi, tree arg0, tree arg1)
|
|
{
|
|
tree result;
|
|
gassign *new_stmt;
|
|
gimple *cond;
|
|
gimple_stmt_iterator gsi;
|
|
edge true_edge, false_edge;
|
|
gimple *assign;
|
|
edge e;
|
|
tree rhs, lhs;
|
|
bool negate;
|
|
enum tree_code cond_code;
|
|
|
|
/* If the type says honor signed zeros we cannot do this
|
|
optimization. */
|
|
if (HONOR_SIGNED_ZEROS (arg1))
|
|
return false;
|
|
|
|
/* OTHER_BLOCK must have only one executable statement which must have the
|
|
form arg0 = -arg1 or arg1 = -arg0. */
|
|
|
|
assign = last_and_only_stmt (middle_bb);
|
|
/* If we did not find the proper negation assignment, then we cannot
|
|
optimize. */
|
|
if (assign == NULL)
|
|
return false;
|
|
|
|
/* If we got here, then we have found the only executable statement
|
|
in OTHER_BLOCK. If it is anything other than arg = -arg1 or
|
|
arg1 = -arg0, then we cannot optimize. */
|
|
if (gimple_code (assign) != GIMPLE_ASSIGN)
|
|
return false;
|
|
|
|
lhs = gimple_assign_lhs (assign);
|
|
|
|
if (gimple_assign_rhs_code (assign) != NEGATE_EXPR)
|
|
return false;
|
|
|
|
rhs = gimple_assign_rhs1 (assign);
|
|
|
|
/* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
|
|
if (!(lhs == arg0 && rhs == arg1)
|
|
&& !(lhs == arg1 && rhs == arg0))
|
|
return false;
|
|
|
|
cond = last_stmt (cond_bb);
|
|
result = PHI_RESULT (phi);
|
|
|
|
/* Only relationals comparing arg[01] against zero are interesting. */
|
|
cond_code = gimple_cond_code (cond);
|
|
if (cond_code != GT_EXPR && cond_code != GE_EXPR
|
|
&& cond_code != LT_EXPR && cond_code != LE_EXPR)
|
|
return false;
|
|
|
|
/* Make sure the conditional is arg[01] OP y. */
|
|
if (gimple_cond_lhs (cond) != rhs)
|
|
return false;
|
|
|
|
if (FLOAT_TYPE_P (TREE_TYPE (gimple_cond_rhs (cond)))
|
|
? real_zerop (gimple_cond_rhs (cond))
|
|
: integer_zerop (gimple_cond_rhs (cond)))
|
|
;
|
|
else
|
|
return false;
|
|
|
|
/* We need to know which is the true edge and which is the false
|
|
edge so that we know if have abs or negative abs. */
|
|
extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
|
|
|
|
/* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
|
|
will need to negate the result. Similarly for LT_EXPR/LE_EXPR if
|
|
the false edge goes to OTHER_BLOCK. */
|
|
if (cond_code == GT_EXPR || cond_code == GE_EXPR)
|
|
e = true_edge;
|
|
else
|
|
e = false_edge;
|
|
|
|
if (e->dest == middle_bb)
|
|
negate = true;
|
|
else
|
|
negate = false;
|
|
|
|
/* If the code negates only iff positive then make sure to not
|
|
introduce undefined behavior when negating or computing the absolute.
|
|
??? We could use range info if present to check for arg1 == INT_MIN. */
|
|
if (negate
|
|
&& (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg1))
|
|
&& ! TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1))))
|
|
return false;
|
|
|
|
result = duplicate_ssa_name (result, NULL);
|
|
|
|
if (negate)
|
|
lhs = make_ssa_name (TREE_TYPE (result));
|
|
else
|
|
lhs = result;
|
|
|
|
/* Build the modify expression with abs expression. */
|
|
new_stmt = gimple_build_assign (lhs, ABS_EXPR, rhs);
|
|
|
|
gsi = gsi_last_bb (cond_bb);
|
|
gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
|
|
|
|
if (negate)
|
|
{
|
|
/* Get the right GSI. We want to insert after the recently
|
|
added ABS_EXPR statement (which we know is the first statement
|
|
in the block. */
|
|
new_stmt = gimple_build_assign (result, NEGATE_EXPR, lhs);
|
|
|
|
gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
|
|
}
|
|
|
|
replace_phi_edge_with_variable (cond_bb, e1, phi, result);
|
|
|
|
/* Note that we optimized this PHI. */
|
|
return true;
|
|
}
|
|
|
|
/* Auxiliary functions to determine the set of memory accesses which
|
|
can't trap because they are preceded by accesses to the same memory
|
|
portion. We do that for MEM_REFs, so we only need to track
|
|
the SSA_NAME of the pointer indirectly referenced. The algorithm
|
|
simply is a walk over all instructions in dominator order. When
|
|
we see an MEM_REF we determine if we've already seen a same
|
|
ref anywhere up to the root of the dominator tree. If we do the
|
|
current access can't trap. If we don't see any dominating access
|
|
the current access might trap, but might also make later accesses
|
|
non-trapping, so we remember it. We need to be careful with loads
|
|
or stores, for instance a load might not trap, while a store would,
|
|
so if we see a dominating read access this doesn't mean that a later
|
|
write access would not trap. Hence we also need to differentiate the
|
|
type of access(es) seen.
|
|
|
|
??? We currently are very conservative and assume that a load might
|
|
trap even if a store doesn't (write-only memory). This probably is
|
|
overly conservative. */
|
|
|
|
/* A hash-table of SSA_NAMEs, and in which basic block an MEM_REF
|
|
through it was seen, which would constitute a no-trap region for
|
|
same accesses. */
|
|
struct name_to_bb
|
|
{
|
|
unsigned int ssa_name_ver;
|
|
unsigned int phase;
|
|
bool store;
|
|
HOST_WIDE_INT offset, size;
|
|
basic_block bb;
|
|
};
|
|
|
|
/* Hashtable helpers. */
|
|
|
|
struct ssa_names_hasher : free_ptr_hash <name_to_bb>
|
|
{
|
|
static inline hashval_t hash (const name_to_bb *);
|
|
static inline bool equal (const name_to_bb *, const name_to_bb *);
|
|
};
|
|
|
|
/* Used for quick clearing of the hash-table when we see calls.
|
|
Hash entries with phase < nt_call_phase are invalid. */
|
|
static unsigned int nt_call_phase;
|
|
|
|
/* The hash function. */
|
|
|
|
inline hashval_t
|
|
ssa_names_hasher::hash (const name_to_bb *n)
|
|
{
|
|
return n->ssa_name_ver ^ (((hashval_t) n->store) << 31)
|
|
^ (n->offset << 6) ^ (n->size << 3);
|
|
}
|
|
|
|
/* The equality function of *P1 and *P2. */
|
|
|
|
inline bool
|
|
ssa_names_hasher::equal (const name_to_bb *n1, const name_to_bb *n2)
|
|
{
|
|
return n1->ssa_name_ver == n2->ssa_name_ver
|
|
&& n1->store == n2->store
|
|
&& n1->offset == n2->offset
|
|
&& n1->size == n2->size;
|
|
}
|
|
|
|
class nontrapping_dom_walker : public dom_walker
|
|
{
|
|
public:
|
|
nontrapping_dom_walker (cdi_direction direction, hash_set<tree> *ps)
|
|
: dom_walker (direction), m_nontrapping (ps), m_seen_ssa_names (128) {}
|
|
|
|
virtual edge before_dom_children (basic_block);
|
|
virtual void after_dom_children (basic_block);
|
|
|
|
private:
|
|
|
|
/* We see the expression EXP in basic block BB. If it's an interesting
|
|
expression (an MEM_REF through an SSA_NAME) possibly insert the
|
|
expression into the set NONTRAP or the hash table of seen expressions.
|
|
STORE is true if this expression is on the LHS, otherwise it's on
|
|
the RHS. */
|
|
void add_or_mark_expr (basic_block, tree, bool);
|
|
|
|
hash_set<tree> *m_nontrapping;
|
|
|
|
/* The hash table for remembering what we've seen. */
|
|
hash_table<ssa_names_hasher> m_seen_ssa_names;
|
|
};
|
|
|
|
/* Called by walk_dominator_tree, when entering the block BB. */
|
|
edge
|
|
nontrapping_dom_walker::before_dom_children (basic_block bb)
|
|
{
|
|
edge e;
|
|
edge_iterator ei;
|
|
gimple_stmt_iterator gsi;
|
|
|
|
/* If we haven't seen all our predecessors, clear the hash-table. */
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
|
if ((((size_t)e->src->aux) & 2) == 0)
|
|
{
|
|
nt_call_phase++;
|
|
break;
|
|
}
|
|
|
|
/* Mark this BB as being on the path to dominator root and as visited. */
|
|
bb->aux = (void*)(1 | 2);
|
|
|
|
/* And walk the statements in order. */
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
gimple *stmt = gsi_stmt (gsi);
|
|
|
|
if ((gimple_code (stmt) == GIMPLE_ASM && gimple_vdef (stmt))
|
|
|| (is_gimple_call (stmt)
|
|
&& (!nonfreeing_call_p (stmt) || !nonbarrier_call_p (stmt))))
|
|
nt_call_phase++;
|
|
else if (gimple_assign_single_p (stmt) && !gimple_has_volatile_ops (stmt))
|
|
{
|
|
add_or_mark_expr (bb, gimple_assign_lhs (stmt), true);
|
|
add_or_mark_expr (bb, gimple_assign_rhs1 (stmt), false);
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* Called by walk_dominator_tree, when basic block BB is exited. */
|
|
void
|
|
nontrapping_dom_walker::after_dom_children (basic_block bb)
|
|
{
|
|
/* This BB isn't on the path to dominator root anymore. */
|
|
bb->aux = (void*)2;
|
|
}
|
|
|
|
/* We see the expression EXP in basic block BB. If it's an interesting
|
|
expression (an MEM_REF through an SSA_NAME) possibly insert the
|
|
expression into the set NONTRAP or the hash table of seen expressions.
|
|
STORE is true if this expression is on the LHS, otherwise it's on
|
|
the RHS. */
|
|
void
|
|
nontrapping_dom_walker::add_or_mark_expr (basic_block bb, tree exp, bool store)
|
|
{
|
|
HOST_WIDE_INT size;
|
|
|
|
if (TREE_CODE (exp) == MEM_REF
|
|
&& TREE_CODE (TREE_OPERAND (exp, 0)) == SSA_NAME
|
|
&& tree_fits_shwi_p (TREE_OPERAND (exp, 1))
|
|
&& (size = int_size_in_bytes (TREE_TYPE (exp))) > 0)
|
|
{
|
|
tree name = TREE_OPERAND (exp, 0);
|
|
struct name_to_bb map;
|
|
name_to_bb **slot;
|
|
struct name_to_bb *n2bb;
|
|
basic_block found_bb = 0;
|
|
|
|
/* Try to find the last seen MEM_REF through the same
|
|
SSA_NAME, which can trap. */
|
|
map.ssa_name_ver = SSA_NAME_VERSION (name);
|
|
map.phase = 0;
|
|
map.bb = 0;
|
|
map.store = store;
|
|
map.offset = tree_to_shwi (TREE_OPERAND (exp, 1));
|
|
map.size = size;
|
|
|
|
slot = m_seen_ssa_names.find_slot (&map, INSERT);
|
|
n2bb = *slot;
|
|
if (n2bb && n2bb->phase >= nt_call_phase)
|
|
found_bb = n2bb->bb;
|
|
|
|
/* If we've found a trapping MEM_REF, _and_ it dominates EXP
|
|
(it's in a basic block on the path from us to the dominator root)
|
|
then we can't trap. */
|
|
if (found_bb && (((size_t)found_bb->aux) & 1) == 1)
|
|
{
|
|
m_nontrapping->add (exp);
|
|
}
|
|
else
|
|
{
|
|
/* EXP might trap, so insert it into the hash table. */
|
|
if (n2bb)
|
|
{
|
|
n2bb->phase = nt_call_phase;
|
|
n2bb->bb = bb;
|
|
}
|
|
else
|
|
{
|
|
n2bb = XNEW (struct name_to_bb);
|
|
n2bb->ssa_name_ver = SSA_NAME_VERSION (name);
|
|
n2bb->phase = nt_call_phase;
|
|
n2bb->bb = bb;
|
|
n2bb->store = store;
|
|
n2bb->offset = map.offset;
|
|
n2bb->size = size;
|
|
*slot = n2bb;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* This is the entry point of gathering non trapping memory accesses.
|
|
It will do a dominator walk over the whole function, and it will
|
|
make use of the bb->aux pointers. It returns a set of trees
|
|
(the MEM_REFs itself) which can't trap. */
|
|
static hash_set<tree> *
|
|
get_non_trapping (void)
|
|
{
|
|
nt_call_phase = 0;
|
|
hash_set<tree> *nontrap = new hash_set<tree>;
|
|
/* We're going to do a dominator walk, so ensure that we have
|
|
dominance information. */
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
|
|
|
nontrapping_dom_walker (CDI_DOMINATORS, nontrap)
|
|
.walk (cfun->cfg->x_entry_block_ptr);
|
|
|
|
clear_aux_for_blocks ();
|
|
return nontrap;
|
|
}
|
|
|
|
/* Do the main work of conditional store replacement. We already know
|
|
that the recognized pattern looks like so:
|
|
|
|
split:
|
|
if (cond) goto MIDDLE_BB; else goto JOIN_BB (edge E1)
|
|
MIDDLE_BB:
|
|
something
|
|
fallthrough (edge E0)
|
|
JOIN_BB:
|
|
some more
|
|
|
|
We check that MIDDLE_BB contains only one store, that that store
|
|
doesn't trap (not via NOTRAP, but via checking if an access to the same
|
|
memory location dominates us) and that the store has a "simple" RHS. */
|
|
|
|
static bool
|
|
cond_store_replacement (basic_block middle_bb, basic_block join_bb,
|
|
edge e0, edge e1, hash_set<tree> *nontrap)
|
|
{
|
|
gimple *assign = last_and_only_stmt (middle_bb);
|
|
tree lhs, rhs, name, name2;
|
|
gphi *newphi;
|
|
gassign *new_stmt;
|
|
gimple_stmt_iterator gsi;
|
|
location_t locus;
|
|
|
|
/* Check if middle_bb contains of only one store. */
|
|
if (!assign
|
|
|| !gimple_assign_single_p (assign)
|
|
|| gimple_has_volatile_ops (assign))
|
|
return false;
|
|
|
|
locus = gimple_location (assign);
|
|
lhs = gimple_assign_lhs (assign);
|
|
rhs = gimple_assign_rhs1 (assign);
|
|
if (TREE_CODE (lhs) != MEM_REF
|
|
|| TREE_CODE (TREE_OPERAND (lhs, 0)) != SSA_NAME
|
|
|| !is_gimple_reg_type (TREE_TYPE (lhs)))
|
|
return false;
|
|
|
|
/* Prove that we can move the store down. We could also check
|
|
TREE_THIS_NOTRAP here, but in that case we also could move stores,
|
|
whose value is not available readily, which we want to avoid. */
|
|
if (!nontrap->contains (lhs))
|
|
return false;
|
|
|
|
/* Now we've checked the constraints, so do the transformation:
|
|
1) Remove the single store. */
|
|
gsi = gsi_for_stmt (assign);
|
|
unlink_stmt_vdef (assign);
|
|
gsi_remove (&gsi, true);
|
|
release_defs (assign);
|
|
|
|
/* Make both store and load use alias-set zero as we have to
|
|
deal with the case of the store being a conditional change
|
|
of the dynamic type. */
|
|
lhs = unshare_expr (lhs);
|
|
tree *basep = &lhs;
|
|
while (handled_component_p (*basep))
|
|
basep = &TREE_OPERAND (*basep, 0);
|
|
if (TREE_CODE (*basep) == MEM_REF
|
|
|| TREE_CODE (*basep) == TARGET_MEM_REF)
|
|
TREE_OPERAND (*basep, 1)
|
|
= fold_convert (ptr_type_node, TREE_OPERAND (*basep, 1));
|
|
else
|
|
*basep = build2 (MEM_REF, TREE_TYPE (*basep),
|
|
build_fold_addr_expr (*basep),
|
|
build_zero_cst (ptr_type_node));
|
|
|
|
/* 2) Insert a load from the memory of the store to the temporary
|
|
on the edge which did not contain the store. */
|
|
name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
|
|
new_stmt = gimple_build_assign (name, lhs);
|
|
gimple_set_location (new_stmt, locus);
|
|
gsi_insert_on_edge (e1, new_stmt);
|
|
|
|
/* 3) Create a PHI node at the join block, with one argument
|
|
holding the old RHS, and the other holding the temporary
|
|
where we stored the old memory contents. */
|
|
name2 = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
|
|
newphi = create_phi_node (name2, join_bb);
|
|
add_phi_arg (newphi, rhs, e0, locus);
|
|
add_phi_arg (newphi, name, e1, locus);
|
|
|
|
lhs = unshare_expr (lhs);
|
|
new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
|
|
|
|
/* 4) Insert that PHI node. */
|
|
gsi = gsi_after_labels (join_bb);
|
|
if (gsi_end_p (gsi))
|
|
{
|
|
gsi = gsi_last_bb (join_bb);
|
|
gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
|
|
}
|
|
else
|
|
gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Do the main work of conditional store replacement. */
|
|
|
|
static bool
|
|
cond_if_else_store_replacement_1 (basic_block then_bb, basic_block else_bb,
|
|
basic_block join_bb, gimple *then_assign,
|
|
gimple *else_assign)
|
|
{
|
|
tree lhs_base, lhs, then_rhs, else_rhs, name;
|
|
location_t then_locus, else_locus;
|
|
gimple_stmt_iterator gsi;
|
|
gphi *newphi;
|
|
gassign *new_stmt;
|
|
|
|
if (then_assign == NULL
|
|
|| !gimple_assign_single_p (then_assign)
|
|
|| gimple_clobber_p (then_assign)
|
|
|| gimple_has_volatile_ops (then_assign)
|
|
|| else_assign == NULL
|
|
|| !gimple_assign_single_p (else_assign)
|
|
|| gimple_clobber_p (else_assign)
|
|
|| gimple_has_volatile_ops (else_assign))
|
|
return false;
|
|
|
|
lhs = gimple_assign_lhs (then_assign);
|
|
if (!is_gimple_reg_type (TREE_TYPE (lhs))
|
|
|| !operand_equal_p (lhs, gimple_assign_lhs (else_assign), 0))
|
|
return false;
|
|
|
|
lhs_base = get_base_address (lhs);
|
|
if (lhs_base == NULL_TREE
|
|
|| (!DECL_P (lhs_base) && TREE_CODE (lhs_base) != MEM_REF))
|
|
return false;
|
|
|
|
then_rhs = gimple_assign_rhs1 (then_assign);
|
|
else_rhs = gimple_assign_rhs1 (else_assign);
|
|
then_locus = gimple_location (then_assign);
|
|
else_locus = gimple_location (else_assign);
|
|
|
|
/* Now we've checked the constraints, so do the transformation:
|
|
1) Remove the stores. */
|
|
gsi = gsi_for_stmt (then_assign);
|
|
unlink_stmt_vdef (then_assign);
|
|
gsi_remove (&gsi, true);
|
|
release_defs (then_assign);
|
|
|
|
gsi = gsi_for_stmt (else_assign);
|
|
unlink_stmt_vdef (else_assign);
|
|
gsi_remove (&gsi, true);
|
|
release_defs (else_assign);
|
|
|
|
/* 2) Create a PHI node at the join block, with one argument
|
|
holding the old RHS, and the other holding the temporary
|
|
where we stored the old memory contents. */
|
|
name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
|
|
newphi = create_phi_node (name, join_bb);
|
|
add_phi_arg (newphi, then_rhs, EDGE_SUCC (then_bb, 0), then_locus);
|
|
add_phi_arg (newphi, else_rhs, EDGE_SUCC (else_bb, 0), else_locus);
|
|
|
|
new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
|
|
|
|
/* 3) Insert that PHI node. */
|
|
gsi = gsi_after_labels (join_bb);
|
|
if (gsi_end_p (gsi))
|
|
{
|
|
gsi = gsi_last_bb (join_bb);
|
|
gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
|
|
}
|
|
else
|
|
gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Return the single store in BB with VDEF or NULL if there are
|
|
other stores in the BB or loads following the store. */
|
|
|
|
static gimple *
|
|
single_trailing_store_in_bb (basic_block bb, tree vdef)
|
|
{
|
|
if (SSA_NAME_IS_DEFAULT_DEF (vdef))
|
|
return NULL;
|
|
gimple *store = SSA_NAME_DEF_STMT (vdef);
|
|
if (gimple_bb (store) != bb
|
|
|| gimple_code (store) == GIMPLE_PHI)
|
|
return NULL;
|
|
|
|
/* Verify there is no other store in this BB. */
|
|
if (!SSA_NAME_IS_DEFAULT_DEF (gimple_vuse (store))
|
|
&& gimple_bb (SSA_NAME_DEF_STMT (gimple_vuse (store))) == bb
|
|
&& gimple_code (SSA_NAME_DEF_STMT (gimple_vuse (store))) != GIMPLE_PHI)
|
|
return NULL;
|
|
|
|
/* Verify there is no load or store after the store. */
|
|
use_operand_p use_p;
|
|
imm_use_iterator imm_iter;
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_vdef (store))
|
|
if (USE_STMT (use_p) != store
|
|
&& gimple_bb (USE_STMT (use_p)) == bb)
|
|
return NULL;
|
|
|
|
return store;
|
|
}
|
|
|
|
/* Conditional store replacement. We already know
|
|
that the recognized pattern looks like so:
|
|
|
|
split:
|
|
if (cond) goto THEN_BB; else goto ELSE_BB (edge E1)
|
|
THEN_BB:
|
|
...
|
|
X = Y;
|
|
...
|
|
goto JOIN_BB;
|
|
ELSE_BB:
|
|
...
|
|
X = Z;
|
|
...
|
|
fallthrough (edge E0)
|
|
JOIN_BB:
|
|
some more
|
|
|
|
We check that it is safe to sink the store to JOIN_BB by verifying that
|
|
there are no read-after-write or write-after-write dependencies in
|
|
THEN_BB and ELSE_BB. */
|
|
|
|
static bool
|
|
cond_if_else_store_replacement (basic_block then_bb, basic_block else_bb,
|
|
basic_block join_bb)
|
|
{
|
|
vec<data_reference_p> then_datarefs, else_datarefs;
|
|
vec<ddr_p> then_ddrs, else_ddrs;
|
|
gimple *then_store, *else_store;
|
|
bool found, ok = false, res;
|
|
struct data_dependence_relation *ddr;
|
|
data_reference_p then_dr, else_dr;
|
|
int i, j;
|
|
tree then_lhs, else_lhs;
|
|
basic_block blocks[3];
|
|
|
|
/* Handle the case with single store in THEN_BB and ELSE_BB. That is
|
|
cheap enough to always handle as it allows us to elide dependence
|
|
checking. */
|
|
gphi *vphi = NULL;
|
|
for (gphi_iterator si = gsi_start_phis (join_bb); !gsi_end_p (si);
|
|
gsi_next (&si))
|
|
if (virtual_operand_p (gimple_phi_result (si.phi ())))
|
|
{
|
|
vphi = si.phi ();
|
|
break;
|
|
}
|
|
if (!vphi)
|
|
return false;
|
|
tree then_vdef = PHI_ARG_DEF_FROM_EDGE (vphi, single_succ_edge (then_bb));
|
|
tree else_vdef = PHI_ARG_DEF_FROM_EDGE (vphi, single_succ_edge (else_bb));
|
|
gimple *then_assign = single_trailing_store_in_bb (then_bb, then_vdef);
|
|
if (then_assign)
|
|
{
|
|
gimple *else_assign = single_trailing_store_in_bb (else_bb, else_vdef);
|
|
if (else_assign)
|
|
return cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
|
|
then_assign, else_assign);
|
|
}
|
|
|
|
if (MAX_STORES_TO_SINK == 0)
|
|
return false;
|
|
|
|
/* Find data references. */
|
|
then_datarefs.create (1);
|
|
else_datarefs.create (1);
|
|
if ((find_data_references_in_bb (NULL, then_bb, &then_datarefs)
|
|
== chrec_dont_know)
|
|
|| !then_datarefs.length ()
|
|
|| (find_data_references_in_bb (NULL, else_bb, &else_datarefs)
|
|
== chrec_dont_know)
|
|
|| !else_datarefs.length ())
|
|
{
|
|
free_data_refs (then_datarefs);
|
|
free_data_refs (else_datarefs);
|
|
return false;
|
|
}
|
|
|
|
/* Find pairs of stores with equal LHS. */
|
|
auto_vec<gimple *, 1> then_stores, else_stores;
|
|
FOR_EACH_VEC_ELT (then_datarefs, i, then_dr)
|
|
{
|
|
if (DR_IS_READ (then_dr))
|
|
continue;
|
|
|
|
then_store = DR_STMT (then_dr);
|
|
then_lhs = gimple_get_lhs (then_store);
|
|
if (then_lhs == NULL_TREE)
|
|
continue;
|
|
found = false;
|
|
|
|
FOR_EACH_VEC_ELT (else_datarefs, j, else_dr)
|
|
{
|
|
if (DR_IS_READ (else_dr))
|
|
continue;
|
|
|
|
else_store = DR_STMT (else_dr);
|
|
else_lhs = gimple_get_lhs (else_store);
|
|
if (else_lhs == NULL_TREE)
|
|
continue;
|
|
|
|
if (operand_equal_p (then_lhs, else_lhs, 0))
|
|
{
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!found)
|
|
continue;
|
|
|
|
then_stores.safe_push (then_store);
|
|
else_stores.safe_push (else_store);
|
|
}
|
|
|
|
/* No pairs of stores found. */
|
|
if (!then_stores.length ()
|
|
|| then_stores.length () > (unsigned) MAX_STORES_TO_SINK)
|
|
{
|
|
free_data_refs (then_datarefs);
|
|
free_data_refs (else_datarefs);
|
|
return false;
|
|
}
|
|
|
|
/* Compute and check data dependencies in both basic blocks. */
|
|
then_ddrs.create (1);
|
|
else_ddrs.create (1);
|
|
if (!compute_all_dependences (then_datarefs, &then_ddrs,
|
|
vNULL, false)
|
|
|| !compute_all_dependences (else_datarefs, &else_ddrs,
|
|
vNULL, false))
|
|
{
|
|
free_dependence_relations (then_ddrs);
|
|
free_dependence_relations (else_ddrs);
|
|
free_data_refs (then_datarefs);
|
|
free_data_refs (else_datarefs);
|
|
return false;
|
|
}
|
|
blocks[0] = then_bb;
|
|
blocks[1] = else_bb;
|
|
blocks[2] = join_bb;
|
|
renumber_gimple_stmt_uids_in_blocks (blocks, 3);
|
|
|
|
/* Check that there are no read-after-write or write-after-write dependencies
|
|
in THEN_BB. */
|
|
FOR_EACH_VEC_ELT (then_ddrs, i, ddr)
|
|
{
|
|
struct data_reference *dra = DDR_A (ddr);
|
|
struct data_reference *drb = DDR_B (ddr);
|
|
|
|
if (DDR_ARE_DEPENDENT (ddr) != chrec_known
|
|
&& ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
|
|
&& gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
|
|
|| (DR_IS_READ (drb) && DR_IS_WRITE (dra)
|
|
&& gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
|
|
|| (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
|
|
{
|
|
free_dependence_relations (then_ddrs);
|
|
free_dependence_relations (else_ddrs);
|
|
free_data_refs (then_datarefs);
|
|
free_data_refs (else_datarefs);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Check that there are no read-after-write or write-after-write dependencies
|
|
in ELSE_BB. */
|
|
FOR_EACH_VEC_ELT (else_ddrs, i, ddr)
|
|
{
|
|
struct data_reference *dra = DDR_A (ddr);
|
|
struct data_reference *drb = DDR_B (ddr);
|
|
|
|
if (DDR_ARE_DEPENDENT (ddr) != chrec_known
|
|
&& ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
|
|
&& gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
|
|
|| (DR_IS_READ (drb) && DR_IS_WRITE (dra)
|
|
&& gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
|
|
|| (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
|
|
{
|
|
free_dependence_relations (then_ddrs);
|
|
free_dependence_relations (else_ddrs);
|
|
free_data_refs (then_datarefs);
|
|
free_data_refs (else_datarefs);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Sink stores with same LHS. */
|
|
FOR_EACH_VEC_ELT (then_stores, i, then_store)
|
|
{
|
|
else_store = else_stores[i];
|
|
res = cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
|
|
then_store, else_store);
|
|
ok = ok || res;
|
|
}
|
|
|
|
free_dependence_relations (then_ddrs);
|
|
free_dependence_relations (else_ddrs);
|
|
free_data_refs (then_datarefs);
|
|
free_data_refs (else_datarefs);
|
|
|
|
return ok;
|
|
}
|
|
|
|
/* Return TRUE if STMT has a VUSE whose corresponding VDEF is in BB. */
|
|
|
|
static bool
|
|
local_mem_dependence (gimple *stmt, basic_block bb)
|
|
{
|
|
tree vuse = gimple_vuse (stmt);
|
|
gimple *def;
|
|
|
|
if (!vuse)
|
|
return false;
|
|
|
|
def = SSA_NAME_DEF_STMT (vuse);
|
|
return (def && gimple_bb (def) == bb);
|
|
}
|
|
|
|
/* Given a "diamond" control-flow pattern where BB0 tests a condition,
|
|
BB1 and BB2 are "then" and "else" blocks dependent on this test,
|
|
and BB3 rejoins control flow following BB1 and BB2, look for
|
|
opportunities to hoist loads as follows. If BB3 contains a PHI of
|
|
two loads, one each occurring in BB1 and BB2, and the loads are
|
|
provably of adjacent fields in the same structure, then move both
|
|
loads into BB0. Of course this can only be done if there are no
|
|
dependencies preventing such motion.
|
|
|
|
One of the hoisted loads will always be speculative, so the
|
|
transformation is currently conservative:
|
|
|
|
- The fields must be strictly adjacent.
|
|
- The two fields must occupy a single memory block that is
|
|
guaranteed to not cross a page boundary.
|
|
|
|
The last is difficult to prove, as such memory blocks should be
|
|
aligned on the minimum of the stack alignment boundary and the
|
|
alignment guaranteed by heap allocation interfaces. Thus we rely
|
|
on a parameter for the alignment value.
|
|
|
|
Provided a good value is used for the last case, the first
|
|
restriction could possibly be relaxed. */
|
|
|
|
static void
|
|
hoist_adjacent_loads (basic_block bb0, basic_block bb1,
|
|
basic_block bb2, basic_block bb3)
|
|
{
|
|
int param_align = PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE);
|
|
unsigned param_align_bits = (unsigned) (param_align * BITS_PER_UNIT);
|
|
gphi_iterator gsi;
|
|
|
|
/* Walk the phis in bb3 looking for an opportunity. We are looking
|
|
for phis of two SSA names, one each of which is defined in bb1 and
|
|
bb2. */
|
|
for (gsi = gsi_start_phis (bb3); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
gphi *phi_stmt = gsi.phi ();
|
|
gimple *def1, *def2;
|
|
tree arg1, arg2, ref1, ref2, field1, field2;
|
|
tree tree_offset1, tree_offset2, tree_size2, next;
|
|
int offset1, offset2, size2;
|
|
unsigned align1;
|
|
gimple_stmt_iterator gsi2;
|
|
basic_block bb_for_def1, bb_for_def2;
|
|
|
|
if (gimple_phi_num_args (phi_stmt) != 2
|
|
|| virtual_operand_p (gimple_phi_result (phi_stmt)))
|
|
continue;
|
|
|
|
arg1 = gimple_phi_arg_def (phi_stmt, 0);
|
|
arg2 = gimple_phi_arg_def (phi_stmt, 1);
|
|
|
|
if (TREE_CODE (arg1) != SSA_NAME
|
|
|| TREE_CODE (arg2) != SSA_NAME
|
|
|| SSA_NAME_IS_DEFAULT_DEF (arg1)
|
|
|| SSA_NAME_IS_DEFAULT_DEF (arg2))
|
|
continue;
|
|
|
|
def1 = SSA_NAME_DEF_STMT (arg1);
|
|
def2 = SSA_NAME_DEF_STMT (arg2);
|
|
|
|
if ((gimple_bb (def1) != bb1 || gimple_bb (def2) != bb2)
|
|
&& (gimple_bb (def2) != bb1 || gimple_bb (def1) != bb2))
|
|
continue;
|
|
|
|
/* Check the mode of the arguments to be sure a conditional move
|
|
can be generated for it. */
|
|
if (optab_handler (movcc_optab, TYPE_MODE (TREE_TYPE (arg1)))
|
|
== CODE_FOR_nothing)
|
|
continue;
|
|
|
|
/* Both statements must be assignments whose RHS is a COMPONENT_REF. */
|
|
if (!gimple_assign_single_p (def1)
|
|
|| !gimple_assign_single_p (def2)
|
|
|| gimple_has_volatile_ops (def1)
|
|
|| gimple_has_volatile_ops (def2))
|
|
continue;
|
|
|
|
ref1 = gimple_assign_rhs1 (def1);
|
|
ref2 = gimple_assign_rhs1 (def2);
|
|
|
|
if (TREE_CODE (ref1) != COMPONENT_REF
|
|
|| TREE_CODE (ref2) != COMPONENT_REF)
|
|
continue;
|
|
|
|
/* The zeroth operand of the two component references must be
|
|
identical. It is not sufficient to compare get_base_address of
|
|
the two references, because this could allow for different
|
|
elements of the same array in the two trees. It is not safe to
|
|
assume that the existence of one array element implies the
|
|
existence of a different one. */
|
|
if (!operand_equal_p (TREE_OPERAND (ref1, 0), TREE_OPERAND (ref2, 0), 0))
|
|
continue;
|
|
|
|
field1 = TREE_OPERAND (ref1, 1);
|
|
field2 = TREE_OPERAND (ref2, 1);
|
|
|
|
/* Check for field adjacency, and ensure field1 comes first. */
|
|
for (next = DECL_CHAIN (field1);
|
|
next && TREE_CODE (next) != FIELD_DECL;
|
|
next = DECL_CHAIN (next))
|
|
;
|
|
|
|
if (next != field2)
|
|
{
|
|
for (next = DECL_CHAIN (field2);
|
|
next && TREE_CODE (next) != FIELD_DECL;
|
|
next = DECL_CHAIN (next))
|
|
;
|
|
|
|
if (next != field1)
|
|
continue;
|
|
|
|
std::swap (field1, field2);
|
|
std::swap (def1, def2);
|
|
}
|
|
|
|
bb_for_def1 = gimple_bb (def1);
|
|
bb_for_def2 = gimple_bb (def2);
|
|
|
|
/* Check for proper alignment of the first field. */
|
|
tree_offset1 = bit_position (field1);
|
|
tree_offset2 = bit_position (field2);
|
|
tree_size2 = DECL_SIZE (field2);
|
|
|
|
if (!tree_fits_uhwi_p (tree_offset1)
|
|
|| !tree_fits_uhwi_p (tree_offset2)
|
|
|| !tree_fits_uhwi_p (tree_size2))
|
|
continue;
|
|
|
|
offset1 = tree_to_uhwi (tree_offset1);
|
|
offset2 = tree_to_uhwi (tree_offset2);
|
|
size2 = tree_to_uhwi (tree_size2);
|
|
align1 = DECL_ALIGN (field1) % param_align_bits;
|
|
|
|
if (offset1 % BITS_PER_UNIT != 0)
|
|
continue;
|
|
|
|
/* For profitability, the two field references should fit within
|
|
a single cache line. */
|
|
if (align1 + offset2 - offset1 + size2 > param_align_bits)
|
|
continue;
|
|
|
|
/* The two expressions cannot be dependent upon vdefs defined
|
|
in bb1/bb2. */
|
|
if (local_mem_dependence (def1, bb_for_def1)
|
|
|| local_mem_dependence (def2, bb_for_def2))
|
|
continue;
|
|
|
|
/* The conditions are satisfied; hoist the loads from bb1 and bb2 into
|
|
bb0. We hoist the first one first so that a cache miss is handled
|
|
efficiently regardless of hardware cache-fill policy. */
|
|
gsi2 = gsi_for_stmt (def1);
|
|
gsi_move_to_bb_end (&gsi2, bb0);
|
|
gsi2 = gsi_for_stmt (def2);
|
|
gsi_move_to_bb_end (&gsi2, bb0);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file,
|
|
"\nHoisting adjacent loads from %d and %d into %d: \n",
|
|
bb_for_def1->index, bb_for_def2->index, bb0->index);
|
|
print_gimple_stmt (dump_file, def1, 0, TDF_VOPS|TDF_MEMSYMS);
|
|
print_gimple_stmt (dump_file, def2, 0, TDF_VOPS|TDF_MEMSYMS);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Determine whether we should attempt to hoist adjacent loads out of
|
|
diamond patterns in pass_phiopt. Always hoist loads if
|
|
-fhoist-adjacent-loads is specified and the target machine has
|
|
both a conditional move instruction and a defined cache line size. */
|
|
|
|
static bool
|
|
gate_hoist_loads (void)
|
|
{
|
|
return (flag_hoist_adjacent_loads == 1
|
|
&& PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE)
|
|
&& HAVE_conditional_move);
|
|
}
|
|
|
|
/* This pass tries to replaces an if-then-else block with an
|
|
assignment. We have four kinds of transformations. Some of these
|
|
transformations are also performed by the ifcvt RTL optimizer.
|
|
|
|
Conditional Replacement
|
|
-----------------------
|
|
|
|
This transformation, implemented in conditional_replacement,
|
|
replaces
|
|
|
|
bb0:
|
|
if (cond) goto bb2; else goto bb1;
|
|
bb1:
|
|
bb2:
|
|
x = PHI <0 (bb1), 1 (bb0), ...>;
|
|
|
|
with
|
|
|
|
bb0:
|
|
x' = cond;
|
|
goto bb2;
|
|
bb2:
|
|
x = PHI <x' (bb0), ...>;
|
|
|
|
We remove bb1 as it becomes unreachable. This occurs often due to
|
|
gimplification of conditionals.
|
|
|
|
Value Replacement
|
|
-----------------
|
|
|
|
This transformation, implemented in value_replacement, replaces
|
|
|
|
bb0:
|
|
if (a != b) goto bb2; else goto bb1;
|
|
bb1:
|
|
bb2:
|
|
x = PHI <a (bb1), b (bb0), ...>;
|
|
|
|
with
|
|
|
|
bb0:
|
|
bb2:
|
|
x = PHI <b (bb0), ...>;
|
|
|
|
This opportunity can sometimes occur as a result of other
|
|
optimizations.
|
|
|
|
|
|
Another case caught by value replacement looks like this:
|
|
|
|
bb0:
|
|
t1 = a == CONST;
|
|
t2 = b > c;
|
|
t3 = t1 & t2;
|
|
if (t3 != 0) goto bb1; else goto bb2;
|
|
bb1:
|
|
bb2:
|
|
x = PHI (CONST, a)
|
|
|
|
Gets replaced with:
|
|
bb0:
|
|
bb2:
|
|
t1 = a == CONST;
|
|
t2 = b > c;
|
|
t3 = t1 & t2;
|
|
x = a;
|
|
|
|
ABS Replacement
|
|
---------------
|
|
|
|
This transformation, implemented in abs_replacement, replaces
|
|
|
|
bb0:
|
|
if (a >= 0) goto bb2; else goto bb1;
|
|
bb1:
|
|
x = -a;
|
|
bb2:
|
|
x = PHI <x (bb1), a (bb0), ...>;
|
|
|
|
with
|
|
|
|
bb0:
|
|
x' = ABS_EXPR< a >;
|
|
bb2:
|
|
x = PHI <x' (bb0), ...>;
|
|
|
|
MIN/MAX Replacement
|
|
-------------------
|
|
|
|
This transformation, minmax_replacement replaces
|
|
|
|
bb0:
|
|
if (a <= b) goto bb2; else goto bb1;
|
|
bb1:
|
|
bb2:
|
|
x = PHI <b (bb1), a (bb0), ...>;
|
|
|
|
with
|
|
|
|
bb0:
|
|
x' = MIN_EXPR (a, b)
|
|
bb2:
|
|
x = PHI <x' (bb0), ...>;
|
|
|
|
A similar transformation is done for MAX_EXPR.
|
|
|
|
|
|
This pass also performs a fifth transformation of a slightly different
|
|
flavor.
|
|
|
|
Factor conversion in COND_EXPR
|
|
------------------------------
|
|
|
|
This transformation factors the conversion out of COND_EXPR with
|
|
factor_out_conditional_conversion.
|
|
|
|
For example:
|
|
if (a <= CST) goto <bb 3>; else goto <bb 4>;
|
|
<bb 3>:
|
|
tmp = (int) a;
|
|
<bb 4>:
|
|
tmp = PHI <tmp, CST>
|
|
|
|
Into:
|
|
if (a <= CST) goto <bb 3>; else goto <bb 4>;
|
|
<bb 3>:
|
|
<bb 4>:
|
|
a = PHI <a, CST>
|
|
tmp = (int) a;
|
|
|
|
Adjacent Load Hoisting
|
|
----------------------
|
|
|
|
This transformation replaces
|
|
|
|
bb0:
|
|
if (...) goto bb2; else goto bb1;
|
|
bb1:
|
|
x1 = (<expr>).field1;
|
|
goto bb3;
|
|
bb2:
|
|
x2 = (<expr>).field2;
|
|
bb3:
|
|
# x = PHI <x1, x2>;
|
|
|
|
with
|
|
|
|
bb0:
|
|
x1 = (<expr>).field1;
|
|
x2 = (<expr>).field2;
|
|
if (...) goto bb2; else goto bb1;
|
|
bb1:
|
|
goto bb3;
|
|
bb2:
|
|
bb3:
|
|
# x = PHI <x1, x2>;
|
|
|
|
The purpose of this transformation is to enable generation of conditional
|
|
move instructions such as Intel CMOVE or PowerPC ISEL. Because one of
|
|
the loads is speculative, the transformation is restricted to very
|
|
specific cases to avoid introducing a page fault. We are looking for
|
|
the common idiom:
|
|
|
|
if (...)
|
|
x = y->left;
|
|
else
|
|
x = y->right;
|
|
|
|
where left and right are typically adjacent pointers in a tree structure. */
|
|
|
|
namespace {
|
|
|
|
const pass_data pass_data_phiopt =
|
|
{
|
|
GIMPLE_PASS, /* type */
|
|
"phiopt", /* name */
|
|
OPTGROUP_NONE, /* optinfo_flags */
|
|
TV_TREE_PHIOPT, /* tv_id */
|
|
( PROP_cfg | PROP_ssa ), /* properties_required */
|
|
0, /* properties_provided */
|
|
0, /* properties_destroyed */
|
|
0, /* todo_flags_start */
|
|
0, /* todo_flags_finish */
|
|
};
|
|
|
|
class pass_phiopt : public gimple_opt_pass
|
|
{
|
|
public:
|
|
pass_phiopt (gcc::context *ctxt)
|
|
: gimple_opt_pass (pass_data_phiopt, ctxt), early_p (false)
|
|
{}
|
|
|
|
/* opt_pass methods: */
|
|
opt_pass * clone () { return new pass_phiopt (m_ctxt); }
|
|
void set_pass_param (unsigned n, bool param)
|
|
{
|
|
gcc_assert (n == 0);
|
|
early_p = param;
|
|
}
|
|
virtual bool gate (function *) { return flag_ssa_phiopt; }
|
|
virtual unsigned int execute (function *)
|
|
{
|
|
return tree_ssa_phiopt_worker (false,
|
|
!early_p ? gate_hoist_loads () : false,
|
|
early_p);
|
|
}
|
|
|
|
private:
|
|
bool early_p;
|
|
}; // class pass_phiopt
|
|
|
|
} // anon namespace
|
|
|
|
gimple_opt_pass *
|
|
make_pass_phiopt (gcc::context *ctxt)
|
|
{
|
|
return new pass_phiopt (ctxt);
|
|
}
|
|
|
|
namespace {
|
|
|
|
const pass_data pass_data_cselim =
|
|
{
|
|
GIMPLE_PASS, /* type */
|
|
"cselim", /* name */
|
|
OPTGROUP_NONE, /* optinfo_flags */
|
|
TV_TREE_PHIOPT, /* tv_id */
|
|
( PROP_cfg | PROP_ssa ), /* properties_required */
|
|
0, /* properties_provided */
|
|
0, /* properties_destroyed */
|
|
0, /* todo_flags_start */
|
|
0, /* todo_flags_finish */
|
|
};
|
|
|
|
class pass_cselim : public gimple_opt_pass
|
|
{
|
|
public:
|
|
pass_cselim (gcc::context *ctxt)
|
|
: gimple_opt_pass (pass_data_cselim, ctxt)
|
|
{}
|
|
|
|
/* opt_pass methods: */
|
|
virtual bool gate (function *) { return flag_tree_cselim; }
|
|
virtual unsigned int execute (function *) { return tree_ssa_cs_elim (); }
|
|
|
|
}; // class pass_cselim
|
|
|
|
} // anon namespace
|
|
|
|
gimple_opt_pass *
|
|
make_pass_cselim (gcc::context *ctxt)
|
|
{
|
|
return new pass_cselim (ctxt);
|
|
}
|