mirror of
https://github.com/autc04/Retro68.git
synced 2024-11-23 15:32:26 +00:00
4694 lines
133 KiB
C
4694 lines
133 KiB
C
/* BFD back-end for HP PA-RISC ELF files.
|
|
Copyright (C) 1990-2014 Free Software Foundation, Inc.
|
|
|
|
Original code by
|
|
Center for Software Science
|
|
Department of Computer Science
|
|
University of Utah
|
|
Largely rewritten by Alan Modra <alan@linuxcare.com.au>
|
|
Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
|
|
TLS support written by Randolph Chung <tausq@debian.org>
|
|
|
|
This file is part of BFD, the Binary File Descriptor library.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
|
|
MA 02110-1301, USA. */
|
|
|
|
#include "sysdep.h"
|
|
#include "bfd.h"
|
|
#include "libbfd.h"
|
|
#include "elf-bfd.h"
|
|
#include "elf/hppa.h"
|
|
#include "libhppa.h"
|
|
#include "elf32-hppa.h"
|
|
#define ARCH_SIZE 32
|
|
#include "elf32-hppa.h"
|
|
#include "elf-hppa.h"
|
|
|
|
/* In order to gain some understanding of code in this file without
|
|
knowing all the intricate details of the linker, note the
|
|
following:
|
|
|
|
Functions named elf32_hppa_* are called by external routines, other
|
|
functions are only called locally. elf32_hppa_* functions appear
|
|
in this file more or less in the order in which they are called
|
|
from external routines. eg. elf32_hppa_check_relocs is called
|
|
early in the link process, elf32_hppa_finish_dynamic_sections is
|
|
one of the last functions. */
|
|
|
|
/* We use two hash tables to hold information for linking PA ELF objects.
|
|
|
|
The first is the elf32_hppa_link_hash_table which is derived
|
|
from the standard ELF linker hash table. We use this as a place to
|
|
attach other hash tables and static information.
|
|
|
|
The second is the stub hash table which is derived from the
|
|
base BFD hash table. The stub hash table holds the information
|
|
necessary to build the linker stubs during a link.
|
|
|
|
There are a number of different stubs generated by the linker.
|
|
|
|
Long branch stub:
|
|
: ldil LR'X,%r1
|
|
: be,n RR'X(%sr4,%r1)
|
|
|
|
PIC long branch stub:
|
|
: b,l .+8,%r1
|
|
: addil LR'X - ($PIC_pcrel$0 - 4),%r1
|
|
: be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
|
|
|
|
Import stub to call shared library routine from normal object file
|
|
(single sub-space version)
|
|
: addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
|
|
: ldw RR'lt_ptr+ltoff(%r1),%r21
|
|
: bv %r0(%r21)
|
|
: ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
|
|
|
|
Import stub to call shared library routine from shared library
|
|
(single sub-space version)
|
|
: addil LR'ltoff,%r19 ; get procedure entry point
|
|
: ldw RR'ltoff(%r1),%r21
|
|
: bv %r0(%r21)
|
|
: ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
|
|
|
|
Import stub to call shared library routine from normal object file
|
|
(multiple sub-space support)
|
|
: addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
|
|
: ldw RR'lt_ptr+ltoff(%r1),%r21
|
|
: ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
|
|
: ldsid (%r21),%r1
|
|
: mtsp %r1,%sr0
|
|
: be 0(%sr0,%r21) ; branch to target
|
|
: stw %rp,-24(%sp) ; save rp
|
|
|
|
Import stub to call shared library routine from shared library
|
|
(multiple sub-space support)
|
|
: addil LR'ltoff,%r19 ; get procedure entry point
|
|
: ldw RR'ltoff(%r1),%r21
|
|
: ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
|
|
: ldsid (%r21),%r1
|
|
: mtsp %r1,%sr0
|
|
: be 0(%sr0,%r21) ; branch to target
|
|
: stw %rp,-24(%sp) ; save rp
|
|
|
|
Export stub to return from shared lib routine (multiple sub-space support)
|
|
One of these is created for each exported procedure in a shared
|
|
library (and stored in the shared lib). Shared lib routines are
|
|
called via the first instruction in the export stub so that we can
|
|
do an inter-space return. Not required for single sub-space.
|
|
: bl,n X,%rp ; trap the return
|
|
: nop
|
|
: ldw -24(%sp),%rp ; restore the original rp
|
|
: ldsid (%rp),%r1
|
|
: mtsp %r1,%sr0
|
|
: be,n 0(%sr0,%rp) ; inter-space return. */
|
|
|
|
|
|
/* Variable names follow a coding style.
|
|
Please follow this (Apps Hungarian) style:
|
|
|
|
Structure/Variable Prefix
|
|
elf_link_hash_table "etab"
|
|
elf_link_hash_entry "eh"
|
|
|
|
elf32_hppa_link_hash_table "htab"
|
|
elf32_hppa_link_hash_entry "hh"
|
|
|
|
bfd_hash_table "btab"
|
|
bfd_hash_entry "bh"
|
|
|
|
bfd_hash_table containing stubs "bstab"
|
|
elf32_hppa_stub_hash_entry "hsh"
|
|
|
|
elf32_hppa_dyn_reloc_entry "hdh"
|
|
|
|
Always remember to use GNU Coding Style. */
|
|
|
|
#define PLT_ENTRY_SIZE 8
|
|
#define GOT_ENTRY_SIZE 4
|
|
#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
|
|
|
|
static const bfd_byte plt_stub[] =
|
|
{
|
|
0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
|
|
0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
|
|
0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
|
|
#define PLT_STUB_ENTRY (3*4)
|
|
0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
|
|
0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
|
|
0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
|
|
0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
|
|
};
|
|
|
|
/* Section name for stubs is the associated section name plus this
|
|
string. */
|
|
#define STUB_SUFFIX ".stub"
|
|
|
|
/* We don't need to copy certain PC- or GP-relative dynamic relocs
|
|
into a shared object's dynamic section. All the relocs of the
|
|
limited class we are interested in, are absolute. */
|
|
#ifndef RELATIVE_DYNRELOCS
|
|
#define RELATIVE_DYNRELOCS 0
|
|
#define IS_ABSOLUTE_RELOC(r_type) 1
|
|
#endif
|
|
|
|
/* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
|
|
copying dynamic variables from a shared lib into an app's dynbss
|
|
section, and instead use a dynamic relocation to point into the
|
|
shared lib. */
|
|
#define ELIMINATE_COPY_RELOCS 1
|
|
|
|
enum elf32_hppa_stub_type
|
|
{
|
|
hppa_stub_long_branch,
|
|
hppa_stub_long_branch_shared,
|
|
hppa_stub_import,
|
|
hppa_stub_import_shared,
|
|
hppa_stub_export,
|
|
hppa_stub_none
|
|
};
|
|
|
|
struct elf32_hppa_stub_hash_entry
|
|
{
|
|
/* Base hash table entry structure. */
|
|
struct bfd_hash_entry bh_root;
|
|
|
|
/* The stub section. */
|
|
asection *stub_sec;
|
|
|
|
/* Offset within stub_sec of the beginning of this stub. */
|
|
bfd_vma stub_offset;
|
|
|
|
/* Given the symbol's value and its section we can determine its final
|
|
value when building the stubs (so the stub knows where to jump. */
|
|
bfd_vma target_value;
|
|
asection *target_section;
|
|
|
|
enum elf32_hppa_stub_type stub_type;
|
|
|
|
/* The symbol table entry, if any, that this was derived from. */
|
|
struct elf32_hppa_link_hash_entry *hh;
|
|
|
|
/* Where this stub is being called from, or, in the case of combined
|
|
stub sections, the first input section in the group. */
|
|
asection *id_sec;
|
|
};
|
|
|
|
struct elf32_hppa_link_hash_entry
|
|
{
|
|
struct elf_link_hash_entry eh;
|
|
|
|
/* A pointer to the most recently used stub hash entry against this
|
|
symbol. */
|
|
struct elf32_hppa_stub_hash_entry *hsh_cache;
|
|
|
|
/* Used to count relocations for delayed sizing of relocation
|
|
sections. */
|
|
struct elf32_hppa_dyn_reloc_entry
|
|
{
|
|
/* Next relocation in the chain. */
|
|
struct elf32_hppa_dyn_reloc_entry *hdh_next;
|
|
|
|
/* The input section of the reloc. */
|
|
asection *sec;
|
|
|
|
/* Number of relocs copied in this section. */
|
|
bfd_size_type count;
|
|
|
|
#if RELATIVE_DYNRELOCS
|
|
/* Number of relative relocs copied for the input section. */
|
|
bfd_size_type relative_count;
|
|
#endif
|
|
} *dyn_relocs;
|
|
|
|
enum
|
|
{
|
|
GOT_UNKNOWN = 0, GOT_NORMAL = 1, GOT_TLS_GD = 2, GOT_TLS_LDM = 4, GOT_TLS_IE = 8
|
|
} tls_type;
|
|
|
|
/* Set if this symbol is used by a plabel reloc. */
|
|
unsigned int plabel:1;
|
|
};
|
|
|
|
struct elf32_hppa_link_hash_table
|
|
{
|
|
/* The main hash table. */
|
|
struct elf_link_hash_table etab;
|
|
|
|
/* The stub hash table. */
|
|
struct bfd_hash_table bstab;
|
|
|
|
/* Linker stub bfd. */
|
|
bfd *stub_bfd;
|
|
|
|
/* Linker call-backs. */
|
|
asection * (*add_stub_section) (const char *, asection *);
|
|
void (*layout_sections_again) (void);
|
|
|
|
/* Array to keep track of which stub sections have been created, and
|
|
information on stub grouping. */
|
|
struct map_stub
|
|
{
|
|
/* This is the section to which stubs in the group will be
|
|
attached. */
|
|
asection *link_sec;
|
|
/* The stub section. */
|
|
asection *stub_sec;
|
|
} *stub_group;
|
|
|
|
/* Assorted information used by elf32_hppa_size_stubs. */
|
|
unsigned int bfd_count;
|
|
int top_index;
|
|
asection **input_list;
|
|
Elf_Internal_Sym **all_local_syms;
|
|
|
|
/* Short-cuts to get to dynamic linker sections. */
|
|
asection *sgot;
|
|
asection *srelgot;
|
|
asection *splt;
|
|
asection *srelplt;
|
|
asection *sdynbss;
|
|
asection *srelbss;
|
|
|
|
/* Used during a final link to store the base of the text and data
|
|
segments so that we can perform SEGREL relocations. */
|
|
bfd_vma text_segment_base;
|
|
bfd_vma data_segment_base;
|
|
|
|
/* Whether we support multiple sub-spaces for shared libs. */
|
|
unsigned int multi_subspace:1;
|
|
|
|
/* Flags set when various size branches are detected. Used to
|
|
select suitable defaults for the stub group size. */
|
|
unsigned int has_12bit_branch:1;
|
|
unsigned int has_17bit_branch:1;
|
|
unsigned int has_22bit_branch:1;
|
|
|
|
/* Set if we need a .plt stub to support lazy dynamic linking. */
|
|
unsigned int need_plt_stub:1;
|
|
|
|
/* Small local sym cache. */
|
|
struct sym_cache sym_cache;
|
|
|
|
/* Data for LDM relocations. */
|
|
union
|
|
{
|
|
bfd_signed_vma refcount;
|
|
bfd_vma offset;
|
|
} tls_ldm_got;
|
|
};
|
|
|
|
/* Various hash macros and functions. */
|
|
#define hppa_link_hash_table(p) \
|
|
(elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
|
|
== HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
|
|
|
|
#define hppa_elf_hash_entry(ent) \
|
|
((struct elf32_hppa_link_hash_entry *)(ent))
|
|
|
|
#define hppa_stub_hash_entry(ent) \
|
|
((struct elf32_hppa_stub_hash_entry *)(ent))
|
|
|
|
#define hppa_stub_hash_lookup(table, string, create, copy) \
|
|
((struct elf32_hppa_stub_hash_entry *) \
|
|
bfd_hash_lookup ((table), (string), (create), (copy)))
|
|
|
|
#define hppa_elf_local_got_tls_type(abfd) \
|
|
((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
|
|
|
|
#define hh_name(hh) \
|
|
(hh ? hh->eh.root.root.string : "<undef>")
|
|
|
|
#define eh_name(eh) \
|
|
(eh ? eh->root.root.string : "<undef>")
|
|
|
|
/* Assorted hash table functions. */
|
|
|
|
/* Initialize an entry in the stub hash table. */
|
|
|
|
static struct bfd_hash_entry *
|
|
stub_hash_newfunc (struct bfd_hash_entry *entry,
|
|
struct bfd_hash_table *table,
|
|
const char *string)
|
|
{
|
|
/* Allocate the structure if it has not already been allocated by a
|
|
subclass. */
|
|
if (entry == NULL)
|
|
{
|
|
entry = bfd_hash_allocate (table,
|
|
sizeof (struct elf32_hppa_stub_hash_entry));
|
|
if (entry == NULL)
|
|
return entry;
|
|
}
|
|
|
|
/* Call the allocation method of the superclass. */
|
|
entry = bfd_hash_newfunc (entry, table, string);
|
|
if (entry != NULL)
|
|
{
|
|
struct elf32_hppa_stub_hash_entry *hsh;
|
|
|
|
/* Initialize the local fields. */
|
|
hsh = hppa_stub_hash_entry (entry);
|
|
hsh->stub_sec = NULL;
|
|
hsh->stub_offset = 0;
|
|
hsh->target_value = 0;
|
|
hsh->target_section = NULL;
|
|
hsh->stub_type = hppa_stub_long_branch;
|
|
hsh->hh = NULL;
|
|
hsh->id_sec = NULL;
|
|
}
|
|
|
|
return entry;
|
|
}
|
|
|
|
/* Initialize an entry in the link hash table. */
|
|
|
|
static struct bfd_hash_entry *
|
|
hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
|
|
struct bfd_hash_table *table,
|
|
const char *string)
|
|
{
|
|
/* Allocate the structure if it has not already been allocated by a
|
|
subclass. */
|
|
if (entry == NULL)
|
|
{
|
|
entry = bfd_hash_allocate (table,
|
|
sizeof (struct elf32_hppa_link_hash_entry));
|
|
if (entry == NULL)
|
|
return entry;
|
|
}
|
|
|
|
/* Call the allocation method of the superclass. */
|
|
entry = _bfd_elf_link_hash_newfunc (entry, table, string);
|
|
if (entry != NULL)
|
|
{
|
|
struct elf32_hppa_link_hash_entry *hh;
|
|
|
|
/* Initialize the local fields. */
|
|
hh = hppa_elf_hash_entry (entry);
|
|
hh->hsh_cache = NULL;
|
|
hh->dyn_relocs = NULL;
|
|
hh->plabel = 0;
|
|
hh->tls_type = GOT_UNKNOWN;
|
|
}
|
|
|
|
return entry;
|
|
}
|
|
|
|
/* Free the derived linker hash table. */
|
|
|
|
static void
|
|
elf32_hppa_link_hash_table_free (bfd *obfd)
|
|
{
|
|
struct elf32_hppa_link_hash_table *htab
|
|
= (struct elf32_hppa_link_hash_table *) obfd->link.hash;
|
|
|
|
bfd_hash_table_free (&htab->bstab);
|
|
_bfd_elf_link_hash_table_free (obfd);
|
|
}
|
|
|
|
/* Create the derived linker hash table. The PA ELF port uses the derived
|
|
hash table to keep information specific to the PA ELF linker (without
|
|
using static variables). */
|
|
|
|
static struct bfd_link_hash_table *
|
|
elf32_hppa_link_hash_table_create (bfd *abfd)
|
|
{
|
|
struct elf32_hppa_link_hash_table *htab;
|
|
bfd_size_type amt = sizeof (*htab);
|
|
|
|
htab = bfd_zmalloc (amt);
|
|
if (htab == NULL)
|
|
return NULL;
|
|
|
|
if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
|
|
sizeof (struct elf32_hppa_link_hash_entry),
|
|
HPPA32_ELF_DATA))
|
|
{
|
|
free (htab);
|
|
return NULL;
|
|
}
|
|
|
|
/* Init the stub hash table too. */
|
|
if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
|
|
sizeof (struct elf32_hppa_stub_hash_entry)))
|
|
{
|
|
_bfd_elf_link_hash_table_free (abfd);
|
|
return NULL;
|
|
}
|
|
htab->etab.root.hash_table_free = elf32_hppa_link_hash_table_free;
|
|
|
|
htab->text_segment_base = (bfd_vma) -1;
|
|
htab->data_segment_base = (bfd_vma) -1;
|
|
return &htab->etab.root;
|
|
}
|
|
|
|
/* Build a name for an entry in the stub hash table. */
|
|
|
|
static char *
|
|
hppa_stub_name (const asection *input_section,
|
|
const asection *sym_sec,
|
|
const struct elf32_hppa_link_hash_entry *hh,
|
|
const Elf_Internal_Rela *rela)
|
|
{
|
|
char *stub_name;
|
|
bfd_size_type len;
|
|
|
|
if (hh)
|
|
{
|
|
len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
|
|
stub_name = bfd_malloc (len);
|
|
if (stub_name != NULL)
|
|
sprintf (stub_name, "%08x_%s+%x",
|
|
input_section->id & 0xffffffff,
|
|
hh_name (hh),
|
|
(int) rela->r_addend & 0xffffffff);
|
|
}
|
|
else
|
|
{
|
|
len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
|
|
stub_name = bfd_malloc (len);
|
|
if (stub_name != NULL)
|
|
sprintf (stub_name, "%08x_%x:%x+%x",
|
|
input_section->id & 0xffffffff,
|
|
sym_sec->id & 0xffffffff,
|
|
(int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
|
|
(int) rela->r_addend & 0xffffffff);
|
|
}
|
|
return stub_name;
|
|
}
|
|
|
|
/* Look up an entry in the stub hash. Stub entries are cached because
|
|
creating the stub name takes a bit of time. */
|
|
|
|
static struct elf32_hppa_stub_hash_entry *
|
|
hppa_get_stub_entry (const asection *input_section,
|
|
const asection *sym_sec,
|
|
struct elf32_hppa_link_hash_entry *hh,
|
|
const Elf_Internal_Rela *rela,
|
|
struct elf32_hppa_link_hash_table *htab)
|
|
{
|
|
struct elf32_hppa_stub_hash_entry *hsh_entry;
|
|
const asection *id_sec;
|
|
|
|
/* If this input section is part of a group of sections sharing one
|
|
stub section, then use the id of the first section in the group.
|
|
Stub names need to include a section id, as there may well be
|
|
more than one stub used to reach say, printf, and we need to
|
|
distinguish between them. */
|
|
id_sec = htab->stub_group[input_section->id].link_sec;
|
|
|
|
if (hh != NULL && hh->hsh_cache != NULL
|
|
&& hh->hsh_cache->hh == hh
|
|
&& hh->hsh_cache->id_sec == id_sec)
|
|
{
|
|
hsh_entry = hh->hsh_cache;
|
|
}
|
|
else
|
|
{
|
|
char *stub_name;
|
|
|
|
stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
|
|
if (stub_name == NULL)
|
|
return NULL;
|
|
|
|
hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
|
|
stub_name, FALSE, FALSE);
|
|
if (hh != NULL)
|
|
hh->hsh_cache = hsh_entry;
|
|
|
|
free (stub_name);
|
|
}
|
|
|
|
return hsh_entry;
|
|
}
|
|
|
|
/* Add a new stub entry to the stub hash. Not all fields of the new
|
|
stub entry are initialised. */
|
|
|
|
static struct elf32_hppa_stub_hash_entry *
|
|
hppa_add_stub (const char *stub_name,
|
|
asection *section,
|
|
struct elf32_hppa_link_hash_table *htab)
|
|
{
|
|
asection *link_sec;
|
|
asection *stub_sec;
|
|
struct elf32_hppa_stub_hash_entry *hsh;
|
|
|
|
link_sec = htab->stub_group[section->id].link_sec;
|
|
stub_sec = htab->stub_group[section->id].stub_sec;
|
|
if (stub_sec == NULL)
|
|
{
|
|
stub_sec = htab->stub_group[link_sec->id].stub_sec;
|
|
if (stub_sec == NULL)
|
|
{
|
|
size_t namelen;
|
|
bfd_size_type len;
|
|
char *s_name;
|
|
|
|
namelen = strlen (link_sec->name);
|
|
len = namelen + sizeof (STUB_SUFFIX);
|
|
s_name = bfd_alloc (htab->stub_bfd, len);
|
|
if (s_name == NULL)
|
|
return NULL;
|
|
|
|
memcpy (s_name, link_sec->name, namelen);
|
|
memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
|
|
stub_sec = (*htab->add_stub_section) (s_name, link_sec);
|
|
if (stub_sec == NULL)
|
|
return NULL;
|
|
htab->stub_group[link_sec->id].stub_sec = stub_sec;
|
|
}
|
|
htab->stub_group[section->id].stub_sec = stub_sec;
|
|
}
|
|
|
|
/* Enter this entry into the linker stub hash table. */
|
|
hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
|
|
TRUE, FALSE);
|
|
if (hsh == NULL)
|
|
{
|
|
(*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
|
|
section->owner,
|
|
stub_name);
|
|
return NULL;
|
|
}
|
|
|
|
hsh->stub_sec = stub_sec;
|
|
hsh->stub_offset = 0;
|
|
hsh->id_sec = link_sec;
|
|
return hsh;
|
|
}
|
|
|
|
/* Determine the type of stub needed, if any, for a call. */
|
|
|
|
static enum elf32_hppa_stub_type
|
|
hppa_type_of_stub (asection *input_sec,
|
|
const Elf_Internal_Rela *rela,
|
|
struct elf32_hppa_link_hash_entry *hh,
|
|
bfd_vma destination,
|
|
struct bfd_link_info *info)
|
|
{
|
|
bfd_vma location;
|
|
bfd_vma branch_offset;
|
|
bfd_vma max_branch_offset;
|
|
unsigned int r_type;
|
|
|
|
if (hh != NULL
|
|
&& hh->eh.plt.offset != (bfd_vma) -1
|
|
&& hh->eh.dynindx != -1
|
|
&& !hh->plabel
|
|
&& (info->shared
|
|
|| !hh->eh.def_regular
|
|
|| hh->eh.root.type == bfd_link_hash_defweak))
|
|
{
|
|
/* We need an import stub. Decide between hppa_stub_import
|
|
and hppa_stub_import_shared later. */
|
|
return hppa_stub_import;
|
|
}
|
|
|
|
/* Determine where the call point is. */
|
|
location = (input_sec->output_offset
|
|
+ input_sec->output_section->vma
|
|
+ rela->r_offset);
|
|
|
|
branch_offset = destination - location - 8;
|
|
r_type = ELF32_R_TYPE (rela->r_info);
|
|
|
|
/* Determine if a long branch stub is needed. parisc branch offsets
|
|
are relative to the second instruction past the branch, ie. +8
|
|
bytes on from the branch instruction location. The offset is
|
|
signed and counts in units of 4 bytes. */
|
|
if (r_type == (unsigned int) R_PARISC_PCREL17F)
|
|
max_branch_offset = (1 << (17 - 1)) << 2;
|
|
|
|
else if (r_type == (unsigned int) R_PARISC_PCREL12F)
|
|
max_branch_offset = (1 << (12 - 1)) << 2;
|
|
|
|
else /* R_PARISC_PCREL22F. */
|
|
max_branch_offset = (1 << (22 - 1)) << 2;
|
|
|
|
if (branch_offset + max_branch_offset >= 2*max_branch_offset)
|
|
return hppa_stub_long_branch;
|
|
|
|
return hppa_stub_none;
|
|
}
|
|
|
|
/* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
|
|
IN_ARG contains the link info pointer. */
|
|
|
|
#define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
|
|
#define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
|
|
|
|
#define BL_R1 0xe8200000 /* b,l .+8,%r1 */
|
|
#define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
|
|
#define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
|
|
|
|
#define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
|
|
#define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
|
|
#define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
|
|
#define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
|
|
|
|
#define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
|
|
#define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
|
|
|
|
#define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
|
|
#define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
|
|
#define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
|
|
#define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
|
|
|
|
#define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
|
|
#define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
|
|
#define NOP 0x08000240 /* nop */
|
|
#define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
|
|
#define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
|
|
#define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
|
|
|
|
#ifndef R19_STUBS
|
|
#define R19_STUBS 1
|
|
#endif
|
|
|
|
#if R19_STUBS
|
|
#define LDW_R1_DLT LDW_R1_R19
|
|
#else
|
|
#define LDW_R1_DLT LDW_R1_DP
|
|
#endif
|
|
|
|
static bfd_boolean
|
|
hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
|
|
{
|
|
struct elf32_hppa_stub_hash_entry *hsh;
|
|
struct bfd_link_info *info;
|
|
struct elf32_hppa_link_hash_table *htab;
|
|
asection *stub_sec;
|
|
bfd *stub_bfd;
|
|
bfd_byte *loc;
|
|
bfd_vma sym_value;
|
|
bfd_vma insn;
|
|
bfd_vma off;
|
|
int val;
|
|
int size;
|
|
|
|
/* Massage our args to the form they really have. */
|
|
hsh = hppa_stub_hash_entry (bh);
|
|
info = (struct bfd_link_info *)in_arg;
|
|
|
|
htab = hppa_link_hash_table (info);
|
|
if (htab == NULL)
|
|
return FALSE;
|
|
|
|
stub_sec = hsh->stub_sec;
|
|
|
|
/* Make a note of the offset within the stubs for this entry. */
|
|
hsh->stub_offset = stub_sec->size;
|
|
loc = stub_sec->contents + hsh->stub_offset;
|
|
|
|
stub_bfd = stub_sec->owner;
|
|
|
|
switch (hsh->stub_type)
|
|
{
|
|
case hppa_stub_long_branch:
|
|
/* Create the long branch. A long branch is formed with "ldil"
|
|
loading the upper bits of the target address into a register,
|
|
then branching with "be" which adds in the lower bits.
|
|
The "be" has its delay slot nullified. */
|
|
sym_value = (hsh->target_value
|
|
+ hsh->target_section->output_offset
|
|
+ hsh->target_section->output_section->vma);
|
|
|
|
val = hppa_field_adjust (sym_value, 0, e_lrsel);
|
|
insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
|
|
bfd_put_32 (stub_bfd, insn, loc);
|
|
|
|
val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
|
|
insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
|
|
bfd_put_32 (stub_bfd, insn, loc + 4);
|
|
|
|
size = 8;
|
|
break;
|
|
|
|
case hppa_stub_long_branch_shared:
|
|
/* Branches are relative. This is where we are going to. */
|
|
sym_value = (hsh->target_value
|
|
+ hsh->target_section->output_offset
|
|
+ hsh->target_section->output_section->vma);
|
|
|
|
/* And this is where we are coming from, more or less. */
|
|
sym_value -= (hsh->stub_offset
|
|
+ stub_sec->output_offset
|
|
+ stub_sec->output_section->vma);
|
|
|
|
bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
|
|
val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
|
|
insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
|
|
bfd_put_32 (stub_bfd, insn, loc + 4);
|
|
|
|
val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
|
|
insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
|
|
bfd_put_32 (stub_bfd, insn, loc + 8);
|
|
size = 12;
|
|
break;
|
|
|
|
case hppa_stub_import:
|
|
case hppa_stub_import_shared:
|
|
off = hsh->hh->eh.plt.offset;
|
|
if (off >= (bfd_vma) -2)
|
|
abort ();
|
|
|
|
off &= ~ (bfd_vma) 1;
|
|
sym_value = (off
|
|
+ htab->splt->output_offset
|
|
+ htab->splt->output_section->vma
|
|
- elf_gp (htab->splt->output_section->owner));
|
|
|
|
insn = ADDIL_DP;
|
|
#if R19_STUBS
|
|
if (hsh->stub_type == hppa_stub_import_shared)
|
|
insn = ADDIL_R19;
|
|
#endif
|
|
val = hppa_field_adjust (sym_value, 0, e_lrsel),
|
|
insn = hppa_rebuild_insn ((int) insn, val, 21);
|
|
bfd_put_32 (stub_bfd, insn, loc);
|
|
|
|
/* It is critical to use lrsel/rrsel here because we are using
|
|
two different offsets (+0 and +4) from sym_value. If we use
|
|
lsel/rsel then with unfortunate sym_values we will round
|
|
sym_value+4 up to the next 2k block leading to a mis-match
|
|
between the lsel and rsel value. */
|
|
val = hppa_field_adjust (sym_value, 0, e_rrsel);
|
|
insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
|
|
bfd_put_32 (stub_bfd, insn, loc + 4);
|
|
|
|
if (htab->multi_subspace)
|
|
{
|
|
val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
|
|
insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
|
|
bfd_put_32 (stub_bfd, insn, loc + 8);
|
|
|
|
bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
|
|
bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
|
|
bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
|
|
bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
|
|
|
|
size = 28;
|
|
}
|
|
else
|
|
{
|
|
bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
|
|
val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
|
|
insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
|
|
bfd_put_32 (stub_bfd, insn, loc + 12);
|
|
|
|
size = 16;
|
|
}
|
|
|
|
break;
|
|
|
|
case hppa_stub_export:
|
|
/* Branches are relative. This is where we are going to. */
|
|
sym_value = (hsh->target_value
|
|
+ hsh->target_section->output_offset
|
|
+ hsh->target_section->output_section->vma);
|
|
|
|
/* And this is where we are coming from. */
|
|
sym_value -= (hsh->stub_offset
|
|
+ stub_sec->output_offset
|
|
+ stub_sec->output_section->vma);
|
|
|
|
if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
|
|
&& (!htab->has_22bit_branch
|
|
|| sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
|
|
{
|
|
(*_bfd_error_handler)
|
|
(_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
|
|
hsh->target_section->owner,
|
|
stub_sec,
|
|
(long) hsh->stub_offset,
|
|
hsh->bh_root.string);
|
|
bfd_set_error (bfd_error_bad_value);
|
|
return FALSE;
|
|
}
|
|
|
|
val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
|
|
if (!htab->has_22bit_branch)
|
|
insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
|
|
else
|
|
insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
|
|
bfd_put_32 (stub_bfd, insn, loc);
|
|
|
|
bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
|
|
bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
|
|
bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
|
|
bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
|
|
bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
|
|
|
|
/* Point the function symbol at the stub. */
|
|
hsh->hh->eh.root.u.def.section = stub_sec;
|
|
hsh->hh->eh.root.u.def.value = stub_sec->size;
|
|
|
|
size = 24;
|
|
break;
|
|
|
|
default:
|
|
BFD_FAIL ();
|
|
return FALSE;
|
|
}
|
|
|
|
stub_sec->size += size;
|
|
return TRUE;
|
|
}
|
|
|
|
#undef LDIL_R1
|
|
#undef BE_SR4_R1
|
|
#undef BL_R1
|
|
#undef ADDIL_R1
|
|
#undef DEPI_R1
|
|
#undef LDW_R1_R21
|
|
#undef LDW_R1_DLT
|
|
#undef LDW_R1_R19
|
|
#undef ADDIL_R19
|
|
#undef LDW_R1_DP
|
|
#undef LDSID_R21_R1
|
|
#undef MTSP_R1
|
|
#undef BE_SR0_R21
|
|
#undef STW_RP
|
|
#undef BV_R0_R21
|
|
#undef BL_RP
|
|
#undef NOP
|
|
#undef LDW_RP
|
|
#undef LDSID_RP_R1
|
|
#undef BE_SR0_RP
|
|
|
|
/* As above, but don't actually build the stub. Just bump offset so
|
|
we know stub section sizes. */
|
|
|
|
static bfd_boolean
|
|
hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
|
|
{
|
|
struct elf32_hppa_stub_hash_entry *hsh;
|
|
struct elf32_hppa_link_hash_table *htab;
|
|
int size;
|
|
|
|
/* Massage our args to the form they really have. */
|
|
hsh = hppa_stub_hash_entry (bh);
|
|
htab = in_arg;
|
|
|
|
if (hsh->stub_type == hppa_stub_long_branch)
|
|
size = 8;
|
|
else if (hsh->stub_type == hppa_stub_long_branch_shared)
|
|
size = 12;
|
|
else if (hsh->stub_type == hppa_stub_export)
|
|
size = 24;
|
|
else /* hppa_stub_import or hppa_stub_import_shared. */
|
|
{
|
|
if (htab->multi_subspace)
|
|
size = 28;
|
|
else
|
|
size = 16;
|
|
}
|
|
|
|
hsh->stub_sec->size += size;
|
|
return TRUE;
|
|
}
|
|
|
|
/* Return nonzero if ABFD represents an HPPA ELF32 file.
|
|
Additionally we set the default architecture and machine. */
|
|
|
|
static bfd_boolean
|
|
elf32_hppa_object_p (bfd *abfd)
|
|
{
|
|
Elf_Internal_Ehdr * i_ehdrp;
|
|
unsigned int flags;
|
|
|
|
i_ehdrp = elf_elfheader (abfd);
|
|
if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
|
|
{
|
|
/* GCC on hppa-linux produces binaries with OSABI=GNU,
|
|
but the kernel produces corefiles with OSABI=SysV. */
|
|
if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU &&
|
|
i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
|
|
return FALSE;
|
|
}
|
|
else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
|
|
{
|
|
/* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
|
|
but the kernel produces corefiles with OSABI=SysV. */
|
|
if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
|
|
i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
|
|
return FALSE;
|
|
}
|
|
else
|
|
{
|
|
if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
|
|
return FALSE;
|
|
}
|
|
|
|
flags = i_ehdrp->e_flags;
|
|
switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
|
|
{
|
|
case EFA_PARISC_1_0:
|
|
return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
|
|
case EFA_PARISC_1_1:
|
|
return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
|
|
case EFA_PARISC_2_0:
|
|
return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
|
|
case EFA_PARISC_2_0 | EF_PARISC_WIDE:
|
|
return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
/* Create the .plt and .got sections, and set up our hash table
|
|
short-cuts to various dynamic sections. */
|
|
|
|
static bfd_boolean
|
|
elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
|
|
{
|
|
struct elf32_hppa_link_hash_table *htab;
|
|
struct elf_link_hash_entry *eh;
|
|
|
|
/* Don't try to create the .plt and .got twice. */
|
|
htab = hppa_link_hash_table (info);
|
|
if (htab == NULL)
|
|
return FALSE;
|
|
if (htab->splt != NULL)
|
|
return TRUE;
|
|
|
|
/* Call the generic code to do most of the work. */
|
|
if (! _bfd_elf_create_dynamic_sections (abfd, info))
|
|
return FALSE;
|
|
|
|
htab->splt = bfd_get_linker_section (abfd, ".plt");
|
|
htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
|
|
|
|
htab->sgot = bfd_get_linker_section (abfd, ".got");
|
|
htab->srelgot = bfd_get_linker_section (abfd, ".rela.got");
|
|
|
|
htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
|
|
htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
|
|
|
|
/* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
|
|
application, because __canonicalize_funcptr_for_compare needs it. */
|
|
eh = elf_hash_table (info)->hgot;
|
|
eh->forced_local = 0;
|
|
eh->other = STV_DEFAULT;
|
|
return bfd_elf_link_record_dynamic_symbol (info, eh);
|
|
}
|
|
|
|
/* Copy the extra info we tack onto an elf_link_hash_entry. */
|
|
|
|
static void
|
|
elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
|
|
struct elf_link_hash_entry *eh_dir,
|
|
struct elf_link_hash_entry *eh_ind)
|
|
{
|
|
struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
|
|
|
|
hh_dir = hppa_elf_hash_entry (eh_dir);
|
|
hh_ind = hppa_elf_hash_entry (eh_ind);
|
|
|
|
if (hh_ind->dyn_relocs != NULL)
|
|
{
|
|
if (hh_dir->dyn_relocs != NULL)
|
|
{
|
|
struct elf32_hppa_dyn_reloc_entry **hdh_pp;
|
|
struct elf32_hppa_dyn_reloc_entry *hdh_p;
|
|
|
|
/* Add reloc counts against the indirect sym to the direct sym
|
|
list. Merge any entries against the same section. */
|
|
for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
|
|
{
|
|
struct elf32_hppa_dyn_reloc_entry *hdh_q;
|
|
|
|
for (hdh_q = hh_dir->dyn_relocs;
|
|
hdh_q != NULL;
|
|
hdh_q = hdh_q->hdh_next)
|
|
if (hdh_q->sec == hdh_p->sec)
|
|
{
|
|
#if RELATIVE_DYNRELOCS
|
|
hdh_q->relative_count += hdh_p->relative_count;
|
|
#endif
|
|
hdh_q->count += hdh_p->count;
|
|
*hdh_pp = hdh_p->hdh_next;
|
|
break;
|
|
}
|
|
if (hdh_q == NULL)
|
|
hdh_pp = &hdh_p->hdh_next;
|
|
}
|
|
*hdh_pp = hh_dir->dyn_relocs;
|
|
}
|
|
|
|
hh_dir->dyn_relocs = hh_ind->dyn_relocs;
|
|
hh_ind->dyn_relocs = NULL;
|
|
}
|
|
|
|
if (ELIMINATE_COPY_RELOCS
|
|
&& eh_ind->root.type != bfd_link_hash_indirect
|
|
&& eh_dir->dynamic_adjusted)
|
|
{
|
|
/* If called to transfer flags for a weakdef during processing
|
|
of elf_adjust_dynamic_symbol, don't copy non_got_ref.
|
|
We clear it ourselves for ELIMINATE_COPY_RELOCS. */
|
|
eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
|
|
eh_dir->ref_regular |= eh_ind->ref_regular;
|
|
eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
|
|
eh_dir->needs_plt |= eh_ind->needs_plt;
|
|
}
|
|
else
|
|
{
|
|
if (eh_ind->root.type == bfd_link_hash_indirect
|
|
&& eh_dir->got.refcount <= 0)
|
|
{
|
|
hh_dir->tls_type = hh_ind->tls_type;
|
|
hh_ind->tls_type = GOT_UNKNOWN;
|
|
}
|
|
|
|
_bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
|
|
}
|
|
}
|
|
|
|
static int
|
|
elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
|
int r_type, int is_local ATTRIBUTE_UNUSED)
|
|
{
|
|
/* For now we don't support linker optimizations. */
|
|
return r_type;
|
|
}
|
|
|
|
/* Return a pointer to the local GOT, PLT and TLS reference counts
|
|
for ABFD. Returns NULL if the storage allocation fails. */
|
|
|
|
static bfd_signed_vma *
|
|
hppa32_elf_local_refcounts (bfd *abfd)
|
|
{
|
|
Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
|
bfd_signed_vma *local_refcounts;
|
|
|
|
local_refcounts = elf_local_got_refcounts (abfd);
|
|
if (local_refcounts == NULL)
|
|
{
|
|
bfd_size_type size;
|
|
|
|
/* Allocate space for local GOT and PLT reference
|
|
counts. Done this way to save polluting elf_obj_tdata
|
|
with another target specific pointer. */
|
|
size = symtab_hdr->sh_info;
|
|
size *= 2 * sizeof (bfd_signed_vma);
|
|
/* Add in space to store the local GOT TLS types. */
|
|
size += symtab_hdr->sh_info;
|
|
local_refcounts = bfd_zalloc (abfd, size);
|
|
if (local_refcounts == NULL)
|
|
return NULL;
|
|
elf_local_got_refcounts (abfd) = local_refcounts;
|
|
memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
|
|
symtab_hdr->sh_info);
|
|
}
|
|
return local_refcounts;
|
|
}
|
|
|
|
|
|
/* Look through the relocs for a section during the first phase, and
|
|
calculate needed space in the global offset table, procedure linkage
|
|
table, and dynamic reloc sections. At this point we haven't
|
|
necessarily read all the input files. */
|
|
|
|
static bfd_boolean
|
|
elf32_hppa_check_relocs (bfd *abfd,
|
|
struct bfd_link_info *info,
|
|
asection *sec,
|
|
const Elf_Internal_Rela *relocs)
|
|
{
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
struct elf_link_hash_entry **eh_syms;
|
|
const Elf_Internal_Rela *rela;
|
|
const Elf_Internal_Rela *rela_end;
|
|
struct elf32_hppa_link_hash_table *htab;
|
|
asection *sreloc;
|
|
int tls_type = GOT_UNKNOWN, old_tls_type = GOT_UNKNOWN;
|
|
|
|
if (info->relocatable)
|
|
return TRUE;
|
|
|
|
htab = hppa_link_hash_table (info);
|
|
if (htab == NULL)
|
|
return FALSE;
|
|
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
|
eh_syms = elf_sym_hashes (abfd);
|
|
sreloc = NULL;
|
|
|
|
rela_end = relocs + sec->reloc_count;
|
|
for (rela = relocs; rela < rela_end; rela++)
|
|
{
|
|
enum {
|
|
NEED_GOT = 1,
|
|
NEED_PLT = 2,
|
|
NEED_DYNREL = 4,
|
|
PLT_PLABEL = 8
|
|
};
|
|
|
|
unsigned int r_symndx, r_type;
|
|
struct elf32_hppa_link_hash_entry *hh;
|
|
int need_entry = 0;
|
|
|
|
r_symndx = ELF32_R_SYM (rela->r_info);
|
|
|
|
if (r_symndx < symtab_hdr->sh_info)
|
|
hh = NULL;
|
|
else
|
|
{
|
|
hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
|
|
while (hh->eh.root.type == bfd_link_hash_indirect
|
|
|| hh->eh.root.type == bfd_link_hash_warning)
|
|
hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
|
|
|
|
/* PR15323, ref flags aren't set for references in the same
|
|
object. */
|
|
hh->eh.root.non_ir_ref = 1;
|
|
}
|
|
|
|
r_type = ELF32_R_TYPE (rela->r_info);
|
|
r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
|
|
|
|
switch (r_type)
|
|
{
|
|
case R_PARISC_DLTIND14F:
|
|
case R_PARISC_DLTIND14R:
|
|
case R_PARISC_DLTIND21L:
|
|
/* This symbol requires a global offset table entry. */
|
|
need_entry = NEED_GOT;
|
|
break;
|
|
|
|
case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
|
|
case R_PARISC_PLABEL21L:
|
|
case R_PARISC_PLABEL32:
|
|
/* If the addend is non-zero, we break badly. */
|
|
if (rela->r_addend != 0)
|
|
abort ();
|
|
|
|
/* If we are creating a shared library, then we need to
|
|
create a PLT entry for all PLABELs, because PLABELs with
|
|
local symbols may be passed via a pointer to another
|
|
object. Additionally, output a dynamic relocation
|
|
pointing to the PLT entry.
|
|
|
|
For executables, the original 32-bit ABI allowed two
|
|
different styles of PLABELs (function pointers): For
|
|
global functions, the PLABEL word points into the .plt
|
|
two bytes past a (function address, gp) pair, and for
|
|
local functions the PLABEL points directly at the
|
|
function. The magic +2 for the first type allows us to
|
|
differentiate between the two. As you can imagine, this
|
|
is a real pain when it comes to generating code to call
|
|
functions indirectly or to compare function pointers.
|
|
We avoid the mess by always pointing a PLABEL into the
|
|
.plt, even for local functions. */
|
|
need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
|
|
break;
|
|
|
|
case R_PARISC_PCREL12F:
|
|
htab->has_12bit_branch = 1;
|
|
goto branch_common;
|
|
|
|
case R_PARISC_PCREL17C:
|
|
case R_PARISC_PCREL17F:
|
|
htab->has_17bit_branch = 1;
|
|
goto branch_common;
|
|
|
|
case R_PARISC_PCREL22F:
|
|
htab->has_22bit_branch = 1;
|
|
branch_common:
|
|
/* Function calls might need to go through the .plt, and
|
|
might require long branch stubs. */
|
|
if (hh == NULL)
|
|
{
|
|
/* We know local syms won't need a .plt entry, and if
|
|
they need a long branch stub we can't guarantee that
|
|
we can reach the stub. So just flag an error later
|
|
if we're doing a shared link and find we need a long
|
|
branch stub. */
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
/* Global symbols will need a .plt entry if they remain
|
|
global, and in most cases won't need a long branch
|
|
stub. Unfortunately, we have to cater for the case
|
|
where a symbol is forced local by versioning, or due
|
|
to symbolic linking, and we lose the .plt entry. */
|
|
need_entry = NEED_PLT;
|
|
if (hh->eh.type == STT_PARISC_MILLI)
|
|
need_entry = 0;
|
|
}
|
|
break;
|
|
|
|
case R_PARISC_SEGBASE: /* Used to set segment base. */
|
|
case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
|
|
case R_PARISC_PCREL14F: /* PC relative load/store. */
|
|
case R_PARISC_PCREL14R:
|
|
case R_PARISC_PCREL17R: /* External branches. */
|
|
case R_PARISC_PCREL21L: /* As above, and for load/store too. */
|
|
case R_PARISC_PCREL32:
|
|
/* We don't need to propagate the relocation if linking a
|
|
shared object since these are section relative. */
|
|
continue;
|
|
|
|
case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
|
|
case R_PARISC_DPREL14R:
|
|
case R_PARISC_DPREL21L:
|
|
if (info->shared)
|
|
{
|
|
(*_bfd_error_handler)
|
|
(_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
|
|
abfd,
|
|
elf_hppa_howto_table[r_type].name);
|
|
bfd_set_error (bfd_error_bad_value);
|
|
return FALSE;
|
|
}
|
|
/* Fall through. */
|
|
|
|
case R_PARISC_DIR17F: /* Used for external branches. */
|
|
case R_PARISC_DIR17R:
|
|
case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
|
|
case R_PARISC_DIR14R:
|
|
case R_PARISC_DIR21L: /* As above, and for ext branches too. */
|
|
case R_PARISC_DIR32: /* .word relocs. */
|
|
/* We may want to output a dynamic relocation later. */
|
|
need_entry = NEED_DYNREL;
|
|
break;
|
|
|
|
/* This relocation describes the C++ object vtable hierarchy.
|
|
Reconstruct it for later use during GC. */
|
|
case R_PARISC_GNU_VTINHERIT:
|
|
if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
|
|
return FALSE;
|
|
continue;
|
|
|
|
/* This relocation describes which C++ vtable entries are actually
|
|
used. Record for later use during GC. */
|
|
case R_PARISC_GNU_VTENTRY:
|
|
BFD_ASSERT (hh != NULL);
|
|
if (hh != NULL
|
|
&& !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
|
|
return FALSE;
|
|
continue;
|
|
|
|
case R_PARISC_TLS_GD21L:
|
|
case R_PARISC_TLS_GD14R:
|
|
case R_PARISC_TLS_LDM21L:
|
|
case R_PARISC_TLS_LDM14R:
|
|
need_entry = NEED_GOT;
|
|
break;
|
|
|
|
case R_PARISC_TLS_IE21L:
|
|
case R_PARISC_TLS_IE14R:
|
|
if (info->shared)
|
|
info->flags |= DF_STATIC_TLS;
|
|
need_entry = NEED_GOT;
|
|
break;
|
|
|
|
default:
|
|
continue;
|
|
}
|
|
|
|
/* Now carry out our orders. */
|
|
if (need_entry & NEED_GOT)
|
|
{
|
|
switch (r_type)
|
|
{
|
|
default:
|
|
tls_type = GOT_NORMAL;
|
|
break;
|
|
case R_PARISC_TLS_GD21L:
|
|
case R_PARISC_TLS_GD14R:
|
|
tls_type |= GOT_TLS_GD;
|
|
break;
|
|
case R_PARISC_TLS_LDM21L:
|
|
case R_PARISC_TLS_LDM14R:
|
|
tls_type |= GOT_TLS_LDM;
|
|
break;
|
|
case R_PARISC_TLS_IE21L:
|
|
case R_PARISC_TLS_IE14R:
|
|
tls_type |= GOT_TLS_IE;
|
|
break;
|
|
}
|
|
|
|
/* Allocate space for a GOT entry, as well as a dynamic
|
|
relocation for this entry. */
|
|
if (htab->sgot == NULL)
|
|
{
|
|
if (htab->etab.dynobj == NULL)
|
|
htab->etab.dynobj = abfd;
|
|
if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
|
|
return FALSE;
|
|
}
|
|
|
|
if (r_type == R_PARISC_TLS_LDM21L
|
|
|| r_type == R_PARISC_TLS_LDM14R)
|
|
htab->tls_ldm_got.refcount += 1;
|
|
else
|
|
{
|
|
if (hh != NULL)
|
|
{
|
|
hh->eh.got.refcount += 1;
|
|
old_tls_type = hh->tls_type;
|
|
}
|
|
else
|
|
{
|
|
bfd_signed_vma *local_got_refcounts;
|
|
|
|
/* This is a global offset table entry for a local symbol. */
|
|
local_got_refcounts = hppa32_elf_local_refcounts (abfd);
|
|
if (local_got_refcounts == NULL)
|
|
return FALSE;
|
|
local_got_refcounts[r_symndx] += 1;
|
|
|
|
old_tls_type = hppa_elf_local_got_tls_type (abfd) [r_symndx];
|
|
}
|
|
|
|
tls_type |= old_tls_type;
|
|
|
|
if (old_tls_type != tls_type)
|
|
{
|
|
if (hh != NULL)
|
|
hh->tls_type = tls_type;
|
|
else
|
|
hppa_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
if (need_entry & NEED_PLT)
|
|
{
|
|
/* If we are creating a shared library, and this is a reloc
|
|
against a weak symbol or a global symbol in a dynamic
|
|
object, then we will be creating an import stub and a
|
|
.plt entry for the symbol. Similarly, on a normal link
|
|
to symbols defined in a dynamic object we'll need the
|
|
import stub and a .plt entry. We don't know yet whether
|
|
the symbol is defined or not, so make an entry anyway and
|
|
clean up later in adjust_dynamic_symbol. */
|
|
if ((sec->flags & SEC_ALLOC) != 0)
|
|
{
|
|
if (hh != NULL)
|
|
{
|
|
hh->eh.needs_plt = 1;
|
|
hh->eh.plt.refcount += 1;
|
|
|
|
/* If this .plt entry is for a plabel, mark it so
|
|
that adjust_dynamic_symbol will keep the entry
|
|
even if it appears to be local. */
|
|
if (need_entry & PLT_PLABEL)
|
|
hh->plabel = 1;
|
|
}
|
|
else if (need_entry & PLT_PLABEL)
|
|
{
|
|
bfd_signed_vma *local_got_refcounts;
|
|
bfd_signed_vma *local_plt_refcounts;
|
|
|
|
local_got_refcounts = hppa32_elf_local_refcounts (abfd);
|
|
if (local_got_refcounts == NULL)
|
|
return FALSE;
|
|
local_plt_refcounts = (local_got_refcounts
|
|
+ symtab_hdr->sh_info);
|
|
local_plt_refcounts[r_symndx] += 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (need_entry & NEED_DYNREL)
|
|
{
|
|
/* Flag this symbol as having a non-got, non-plt reference
|
|
so that we generate copy relocs if it turns out to be
|
|
dynamic. */
|
|
if (hh != NULL && !info->shared)
|
|
hh->eh.non_got_ref = 1;
|
|
|
|
/* If we are creating a shared library then we need to copy
|
|
the reloc into the shared library. However, if we are
|
|
linking with -Bsymbolic, we need only copy absolute
|
|
relocs or relocs against symbols that are not defined in
|
|
an object we are including in the link. PC- or DP- or
|
|
DLT-relative relocs against any local sym or global sym
|
|
with DEF_REGULAR set, can be discarded. At this point we
|
|
have not seen all the input files, so it is possible that
|
|
DEF_REGULAR is not set now but will be set later (it is
|
|
never cleared). We account for that possibility below by
|
|
storing information in the dyn_relocs field of the
|
|
hash table entry.
|
|
|
|
A similar situation to the -Bsymbolic case occurs when
|
|
creating shared libraries and symbol visibility changes
|
|
render the symbol local.
|
|
|
|
As it turns out, all the relocs we will be creating here
|
|
are absolute, so we cannot remove them on -Bsymbolic
|
|
links or visibility changes anyway. A STUB_REL reloc
|
|
is absolute too, as in that case it is the reloc in the
|
|
stub we will be creating, rather than copying the PCREL
|
|
reloc in the branch.
|
|
|
|
If on the other hand, we are creating an executable, we
|
|
may need to keep relocations for symbols satisfied by a
|
|
dynamic library if we manage to avoid copy relocs for the
|
|
symbol. */
|
|
if ((info->shared
|
|
&& (sec->flags & SEC_ALLOC) != 0
|
|
&& (IS_ABSOLUTE_RELOC (r_type)
|
|
|| (hh != NULL
|
|
&& (!info->symbolic
|
|
|| hh->eh.root.type == bfd_link_hash_defweak
|
|
|| !hh->eh.def_regular))))
|
|
|| (ELIMINATE_COPY_RELOCS
|
|
&& !info->shared
|
|
&& (sec->flags & SEC_ALLOC) != 0
|
|
&& hh != NULL
|
|
&& (hh->eh.root.type == bfd_link_hash_defweak
|
|
|| !hh->eh.def_regular)))
|
|
{
|
|
struct elf32_hppa_dyn_reloc_entry *hdh_p;
|
|
struct elf32_hppa_dyn_reloc_entry **hdh_head;
|
|
|
|
/* Create a reloc section in dynobj and make room for
|
|
this reloc. */
|
|
if (sreloc == NULL)
|
|
{
|
|
if (htab->etab.dynobj == NULL)
|
|
htab->etab.dynobj = abfd;
|
|
|
|
sreloc = _bfd_elf_make_dynamic_reloc_section
|
|
(sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
|
|
|
|
if (sreloc == NULL)
|
|
{
|
|
bfd_set_error (bfd_error_bad_value);
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
/* If this is a global symbol, we count the number of
|
|
relocations we need for this symbol. */
|
|
if (hh != NULL)
|
|
{
|
|
hdh_head = &hh->dyn_relocs;
|
|
}
|
|
else
|
|
{
|
|
/* Track dynamic relocs needed for local syms too.
|
|
We really need local syms available to do this
|
|
easily. Oh well. */
|
|
asection *sr;
|
|
void *vpp;
|
|
Elf_Internal_Sym *isym;
|
|
|
|
isym = bfd_sym_from_r_symndx (&htab->sym_cache,
|
|
abfd, r_symndx);
|
|
if (isym == NULL)
|
|
return FALSE;
|
|
|
|
sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
|
|
if (sr == NULL)
|
|
sr = sec;
|
|
|
|
vpp = &elf_section_data (sr)->local_dynrel;
|
|
hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
|
|
}
|
|
|
|
hdh_p = *hdh_head;
|
|
if (hdh_p == NULL || hdh_p->sec != sec)
|
|
{
|
|
hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
|
|
if (hdh_p == NULL)
|
|
return FALSE;
|
|
hdh_p->hdh_next = *hdh_head;
|
|
*hdh_head = hdh_p;
|
|
hdh_p->sec = sec;
|
|
hdh_p->count = 0;
|
|
#if RELATIVE_DYNRELOCS
|
|
hdh_p->relative_count = 0;
|
|
#endif
|
|
}
|
|
|
|
hdh_p->count += 1;
|
|
#if RELATIVE_DYNRELOCS
|
|
if (!IS_ABSOLUTE_RELOC (rtype))
|
|
hdh_p->relative_count += 1;
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Return the section that should be marked against garbage collection
|
|
for a given relocation. */
|
|
|
|
static asection *
|
|
elf32_hppa_gc_mark_hook (asection *sec,
|
|
struct bfd_link_info *info,
|
|
Elf_Internal_Rela *rela,
|
|
struct elf_link_hash_entry *hh,
|
|
Elf_Internal_Sym *sym)
|
|
{
|
|
if (hh != NULL)
|
|
switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
|
|
{
|
|
case R_PARISC_GNU_VTINHERIT:
|
|
case R_PARISC_GNU_VTENTRY:
|
|
return NULL;
|
|
}
|
|
|
|
return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
|
|
}
|
|
|
|
/* Update the got and plt entry reference counts for the section being
|
|
removed. */
|
|
|
|
static bfd_boolean
|
|
elf32_hppa_gc_sweep_hook (bfd *abfd,
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
|
asection *sec,
|
|
const Elf_Internal_Rela *relocs)
|
|
{
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
struct elf_link_hash_entry **eh_syms;
|
|
bfd_signed_vma *local_got_refcounts;
|
|
bfd_signed_vma *local_plt_refcounts;
|
|
const Elf_Internal_Rela *rela, *relend;
|
|
struct elf32_hppa_link_hash_table *htab;
|
|
|
|
if (info->relocatable)
|
|
return TRUE;
|
|
|
|
htab = hppa_link_hash_table (info);
|
|
if (htab == NULL)
|
|
return FALSE;
|
|
|
|
elf_section_data (sec)->local_dynrel = NULL;
|
|
|
|
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
|
eh_syms = elf_sym_hashes (abfd);
|
|
local_got_refcounts = elf_local_got_refcounts (abfd);
|
|
local_plt_refcounts = local_got_refcounts;
|
|
if (local_plt_refcounts != NULL)
|
|
local_plt_refcounts += symtab_hdr->sh_info;
|
|
|
|
relend = relocs + sec->reloc_count;
|
|
for (rela = relocs; rela < relend; rela++)
|
|
{
|
|
unsigned long r_symndx;
|
|
unsigned int r_type;
|
|
struct elf_link_hash_entry *eh = NULL;
|
|
|
|
r_symndx = ELF32_R_SYM (rela->r_info);
|
|
if (r_symndx >= symtab_hdr->sh_info)
|
|
{
|
|
struct elf32_hppa_link_hash_entry *hh;
|
|
struct elf32_hppa_dyn_reloc_entry **hdh_pp;
|
|
struct elf32_hppa_dyn_reloc_entry *hdh_p;
|
|
|
|
eh = eh_syms[r_symndx - symtab_hdr->sh_info];
|
|
while (eh->root.type == bfd_link_hash_indirect
|
|
|| eh->root.type == bfd_link_hash_warning)
|
|
eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
|
|
hh = hppa_elf_hash_entry (eh);
|
|
|
|
for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
|
|
if (hdh_p->sec == sec)
|
|
{
|
|
/* Everything must go for SEC. */
|
|
*hdh_pp = hdh_p->hdh_next;
|
|
break;
|
|
}
|
|
}
|
|
|
|
r_type = ELF32_R_TYPE (rela->r_info);
|
|
r_type = elf32_hppa_optimized_tls_reloc (info, r_type, eh != NULL);
|
|
|
|
switch (r_type)
|
|
{
|
|
case R_PARISC_DLTIND14F:
|
|
case R_PARISC_DLTIND14R:
|
|
case R_PARISC_DLTIND21L:
|
|
case R_PARISC_TLS_GD21L:
|
|
case R_PARISC_TLS_GD14R:
|
|
case R_PARISC_TLS_IE21L:
|
|
case R_PARISC_TLS_IE14R:
|
|
if (eh != NULL)
|
|
{
|
|
if (eh->got.refcount > 0)
|
|
eh->got.refcount -= 1;
|
|
}
|
|
else if (local_got_refcounts != NULL)
|
|
{
|
|
if (local_got_refcounts[r_symndx] > 0)
|
|
local_got_refcounts[r_symndx] -= 1;
|
|
}
|
|
break;
|
|
|
|
case R_PARISC_TLS_LDM21L:
|
|
case R_PARISC_TLS_LDM14R:
|
|
htab->tls_ldm_got.refcount -= 1;
|
|
break;
|
|
|
|
case R_PARISC_PCREL12F:
|
|
case R_PARISC_PCREL17C:
|
|
case R_PARISC_PCREL17F:
|
|
case R_PARISC_PCREL22F:
|
|
if (eh != NULL)
|
|
{
|
|
if (eh->plt.refcount > 0)
|
|
eh->plt.refcount -= 1;
|
|
}
|
|
break;
|
|
|
|
case R_PARISC_PLABEL14R:
|
|
case R_PARISC_PLABEL21L:
|
|
case R_PARISC_PLABEL32:
|
|
if (eh != NULL)
|
|
{
|
|
if (eh->plt.refcount > 0)
|
|
eh->plt.refcount -= 1;
|
|
}
|
|
else if (local_plt_refcounts != NULL)
|
|
{
|
|
if (local_plt_refcounts[r_symndx] > 0)
|
|
local_plt_refcounts[r_symndx] -= 1;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Support for core dump NOTE sections. */
|
|
|
|
static bfd_boolean
|
|
elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
|
|
{
|
|
int offset;
|
|
size_t size;
|
|
|
|
switch (note->descsz)
|
|
{
|
|
default:
|
|
return FALSE;
|
|
|
|
case 396: /* Linux/hppa */
|
|
/* pr_cursig */
|
|
elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
|
|
|
|
/* pr_pid */
|
|
elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
|
|
|
|
/* pr_reg */
|
|
offset = 72;
|
|
size = 320;
|
|
|
|
break;
|
|
}
|
|
|
|
/* Make a ".reg/999" section. */
|
|
return _bfd_elfcore_make_pseudosection (abfd, ".reg",
|
|
size, note->descpos + offset);
|
|
}
|
|
|
|
static bfd_boolean
|
|
elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
|
|
{
|
|
switch (note->descsz)
|
|
{
|
|
default:
|
|
return FALSE;
|
|
|
|
case 124: /* Linux/hppa elf_prpsinfo. */
|
|
elf_tdata (abfd)->core->program
|
|
= _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
|
|
elf_tdata (abfd)->core->command
|
|
= _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
|
|
}
|
|
|
|
/* Note that for some reason, a spurious space is tacked
|
|
onto the end of the args in some (at least one anyway)
|
|
implementations, so strip it off if it exists. */
|
|
{
|
|
char *command = elf_tdata (abfd)->core->command;
|
|
int n = strlen (command);
|
|
|
|
if (0 < n && command[n - 1] == ' ')
|
|
command[n - 1] = '\0';
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Our own version of hide_symbol, so that we can keep plt entries for
|
|
plabels. */
|
|
|
|
static void
|
|
elf32_hppa_hide_symbol (struct bfd_link_info *info,
|
|
struct elf_link_hash_entry *eh,
|
|
bfd_boolean force_local)
|
|
{
|
|
if (force_local)
|
|
{
|
|
eh->forced_local = 1;
|
|
if (eh->dynindx != -1)
|
|
{
|
|
eh->dynindx = -1;
|
|
_bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
|
|
eh->dynstr_index);
|
|
}
|
|
|
|
/* PR 16082: Remove version information from hidden symbol. */
|
|
eh->verinfo.verdef = NULL;
|
|
eh->verinfo.vertree = NULL;
|
|
}
|
|
|
|
/* STT_GNU_IFUNC symbol must go through PLT. */
|
|
if (! hppa_elf_hash_entry (eh)->plabel
|
|
&& eh->type != STT_GNU_IFUNC)
|
|
{
|
|
eh->needs_plt = 0;
|
|
eh->plt = elf_hash_table (info)->init_plt_offset;
|
|
}
|
|
}
|
|
|
|
/* Adjust a symbol defined by a dynamic object and referenced by a
|
|
regular object. The current definition is in some section of the
|
|
dynamic object, but we're not including those sections. We have to
|
|
change the definition to something the rest of the link can
|
|
understand. */
|
|
|
|
static bfd_boolean
|
|
elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
|
|
struct elf_link_hash_entry *eh)
|
|
{
|
|
struct elf32_hppa_link_hash_table *htab;
|
|
asection *sec;
|
|
|
|
/* If this is a function, put it in the procedure linkage table. We
|
|
will fill in the contents of the procedure linkage table later. */
|
|
if (eh->type == STT_FUNC
|
|
|| eh->needs_plt)
|
|
{
|
|
/* If the symbol is used by a plabel, we must allocate a PLT slot.
|
|
The refcounts are not reliable when it has been hidden since
|
|
hide_symbol can be called before the plabel flag is set. */
|
|
if (hppa_elf_hash_entry (eh)->plabel
|
|
&& eh->plt.refcount <= 0)
|
|
eh->plt.refcount = 1;
|
|
|
|
if (eh->plt.refcount <= 0
|
|
|| (eh->def_regular
|
|
&& eh->root.type != bfd_link_hash_defweak
|
|
&& ! hppa_elf_hash_entry (eh)->plabel
|
|
&& (!info->shared || info->symbolic)))
|
|
{
|
|
/* The .plt entry is not needed when:
|
|
a) Garbage collection has removed all references to the
|
|
symbol, or
|
|
b) We know for certain the symbol is defined in this
|
|
object, and it's not a weak definition, nor is the symbol
|
|
used by a plabel relocation. Either this object is the
|
|
application or we are doing a shared symbolic link. */
|
|
|
|
eh->plt.offset = (bfd_vma) -1;
|
|
eh->needs_plt = 0;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
else
|
|
eh->plt.offset = (bfd_vma) -1;
|
|
|
|
/* If this is a weak symbol, and there is a real definition, the
|
|
processor independent code will have arranged for us to see the
|
|
real definition first, and we can just use the same value. */
|
|
if (eh->u.weakdef != NULL)
|
|
{
|
|
if (eh->u.weakdef->root.type != bfd_link_hash_defined
|
|
&& eh->u.weakdef->root.type != bfd_link_hash_defweak)
|
|
abort ();
|
|
eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
|
|
eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
|
|
if (ELIMINATE_COPY_RELOCS)
|
|
eh->non_got_ref = eh->u.weakdef->non_got_ref;
|
|
return TRUE;
|
|
}
|
|
|
|
/* This is a reference to a symbol defined by a dynamic object which
|
|
is not a function. */
|
|
|
|
/* If we are creating a shared library, we must presume that the
|
|
only references to the symbol are via the global offset table.
|
|
For such cases we need not do anything here; the relocations will
|
|
be handled correctly by relocate_section. */
|
|
if (info->shared)
|
|
return TRUE;
|
|
|
|
/* If there are no references to this symbol that do not use the
|
|
GOT, we don't need to generate a copy reloc. */
|
|
if (!eh->non_got_ref)
|
|
return TRUE;
|
|
|
|
if (ELIMINATE_COPY_RELOCS)
|
|
{
|
|
struct elf32_hppa_link_hash_entry *hh;
|
|
struct elf32_hppa_dyn_reloc_entry *hdh_p;
|
|
|
|
hh = hppa_elf_hash_entry (eh);
|
|
for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
|
|
{
|
|
sec = hdh_p->sec->output_section;
|
|
if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
|
|
break;
|
|
}
|
|
|
|
/* If we didn't find any dynamic relocs in read-only sections, then
|
|
we'll be keeping the dynamic relocs and avoiding the copy reloc. */
|
|
if (hdh_p == NULL)
|
|
{
|
|
eh->non_got_ref = 0;
|
|
return TRUE;
|
|
}
|
|
}
|
|
|
|
/* We must allocate the symbol in our .dynbss section, which will
|
|
become part of the .bss section of the executable. There will be
|
|
an entry for this symbol in the .dynsym section. The dynamic
|
|
object will contain position independent code, so all references
|
|
from the dynamic object to this symbol will go through the global
|
|
offset table. The dynamic linker will use the .dynsym entry to
|
|
determine the address it must put in the global offset table, so
|
|
both the dynamic object and the regular object will refer to the
|
|
same memory location for the variable. */
|
|
|
|
htab = hppa_link_hash_table (info);
|
|
if (htab == NULL)
|
|
return FALSE;
|
|
|
|
/* We must generate a COPY reloc to tell the dynamic linker to
|
|
copy the initial value out of the dynamic object and into the
|
|
runtime process image. */
|
|
if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0 && eh->size != 0)
|
|
{
|
|
htab->srelbss->size += sizeof (Elf32_External_Rela);
|
|
eh->needs_copy = 1;
|
|
}
|
|
|
|
sec = htab->sdynbss;
|
|
|
|
return _bfd_elf_adjust_dynamic_copy (info, eh, sec);
|
|
}
|
|
|
|
/* Allocate space in the .plt for entries that won't have relocations.
|
|
ie. plabel entries. */
|
|
|
|
static bfd_boolean
|
|
allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
|
|
{
|
|
struct bfd_link_info *info;
|
|
struct elf32_hppa_link_hash_table *htab;
|
|
struct elf32_hppa_link_hash_entry *hh;
|
|
asection *sec;
|
|
|
|
if (eh->root.type == bfd_link_hash_indirect)
|
|
return TRUE;
|
|
|
|
info = (struct bfd_link_info *) inf;
|
|
hh = hppa_elf_hash_entry (eh);
|
|
htab = hppa_link_hash_table (info);
|
|
if (htab == NULL)
|
|
return FALSE;
|
|
|
|
if (htab->etab.dynamic_sections_created
|
|
&& eh->plt.refcount > 0)
|
|
{
|
|
/* Make sure this symbol is output as a dynamic symbol.
|
|
Undefined weak syms won't yet be marked as dynamic. */
|
|
if (eh->dynindx == -1
|
|
&& !eh->forced_local
|
|
&& eh->type != STT_PARISC_MILLI)
|
|
{
|
|
if (! bfd_elf_link_record_dynamic_symbol (info, eh))
|
|
return FALSE;
|
|
}
|
|
|
|
if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, eh))
|
|
{
|
|
/* Allocate these later. From this point on, h->plabel
|
|
means that the plt entry is only used by a plabel.
|
|
We'll be using a normal plt entry for this symbol, so
|
|
clear the plabel indicator. */
|
|
|
|
hh->plabel = 0;
|
|
}
|
|
else if (hh->plabel)
|
|
{
|
|
/* Make an entry in the .plt section for plabel references
|
|
that won't have a .plt entry for other reasons. */
|
|
sec = htab->splt;
|
|
eh->plt.offset = sec->size;
|
|
sec->size += PLT_ENTRY_SIZE;
|
|
}
|
|
else
|
|
{
|
|
/* No .plt entry needed. */
|
|
eh->plt.offset = (bfd_vma) -1;
|
|
eh->needs_plt = 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
eh->plt.offset = (bfd_vma) -1;
|
|
eh->needs_plt = 0;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Allocate space in .plt, .got and associated reloc sections for
|
|
global syms. */
|
|
|
|
static bfd_boolean
|
|
allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
|
|
{
|
|
struct bfd_link_info *info;
|
|
struct elf32_hppa_link_hash_table *htab;
|
|
asection *sec;
|
|
struct elf32_hppa_link_hash_entry *hh;
|
|
struct elf32_hppa_dyn_reloc_entry *hdh_p;
|
|
|
|
if (eh->root.type == bfd_link_hash_indirect)
|
|
return TRUE;
|
|
|
|
info = inf;
|
|
htab = hppa_link_hash_table (info);
|
|
if (htab == NULL)
|
|
return FALSE;
|
|
|
|
hh = hppa_elf_hash_entry (eh);
|
|
|
|
if (htab->etab.dynamic_sections_created
|
|
&& eh->plt.offset != (bfd_vma) -1
|
|
&& !hh->plabel
|
|
&& eh->plt.refcount > 0)
|
|
{
|
|
/* Make an entry in the .plt section. */
|
|
sec = htab->splt;
|
|
eh->plt.offset = sec->size;
|
|
sec->size += PLT_ENTRY_SIZE;
|
|
|
|
/* We also need to make an entry in the .rela.plt section. */
|
|
htab->srelplt->size += sizeof (Elf32_External_Rela);
|
|
htab->need_plt_stub = 1;
|
|
}
|
|
|
|
if (eh->got.refcount > 0)
|
|
{
|
|
/* Make sure this symbol is output as a dynamic symbol.
|
|
Undefined weak syms won't yet be marked as dynamic. */
|
|
if (eh->dynindx == -1
|
|
&& !eh->forced_local
|
|
&& eh->type != STT_PARISC_MILLI)
|
|
{
|
|
if (! bfd_elf_link_record_dynamic_symbol (info, eh))
|
|
return FALSE;
|
|
}
|
|
|
|
sec = htab->sgot;
|
|
eh->got.offset = sec->size;
|
|
sec->size += GOT_ENTRY_SIZE;
|
|
/* R_PARISC_TLS_GD* needs two GOT entries */
|
|
if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
|
|
sec->size += GOT_ENTRY_SIZE * 2;
|
|
else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
|
|
sec->size += GOT_ENTRY_SIZE;
|
|
if (htab->etab.dynamic_sections_created
|
|
&& (info->shared
|
|
|| (eh->dynindx != -1
|
|
&& !eh->forced_local)))
|
|
{
|
|
htab->srelgot->size += sizeof (Elf32_External_Rela);
|
|
if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
|
|
htab->srelgot->size += 2 * sizeof (Elf32_External_Rela);
|
|
else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
|
|
htab->srelgot->size += sizeof (Elf32_External_Rela);
|
|
}
|
|
}
|
|
else
|
|
eh->got.offset = (bfd_vma) -1;
|
|
|
|
if (hh->dyn_relocs == NULL)
|
|
return TRUE;
|
|
|
|
/* If this is a -Bsymbolic shared link, then we need to discard all
|
|
space allocated for dynamic pc-relative relocs against symbols
|
|
defined in a regular object. For the normal shared case, discard
|
|
space for relocs that have become local due to symbol visibility
|
|
changes. */
|
|
if (info->shared)
|
|
{
|
|
#if RELATIVE_DYNRELOCS
|
|
if (SYMBOL_CALLS_LOCAL (info, eh))
|
|
{
|
|
struct elf32_hppa_dyn_reloc_entry **hdh_pp;
|
|
|
|
for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
|
|
{
|
|
hdh_p->count -= hdh_p->relative_count;
|
|
hdh_p->relative_count = 0;
|
|
if (hdh_p->count == 0)
|
|
*hdh_pp = hdh_p->hdh_next;
|
|
else
|
|
hdh_pp = &hdh_p->hdh_next;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Also discard relocs on undefined weak syms with non-default
|
|
visibility. */
|
|
if (hh->dyn_relocs != NULL
|
|
&& eh->root.type == bfd_link_hash_undefweak)
|
|
{
|
|
if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
|
|
hh->dyn_relocs = NULL;
|
|
|
|
/* Make sure undefined weak symbols are output as a dynamic
|
|
symbol in PIEs. */
|
|
else if (eh->dynindx == -1
|
|
&& !eh->forced_local)
|
|
{
|
|
if (! bfd_elf_link_record_dynamic_symbol (info, eh))
|
|
return FALSE;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* For the non-shared case, discard space for relocs against
|
|
symbols which turn out to need copy relocs or are not
|
|
dynamic. */
|
|
|
|
if (!eh->non_got_ref
|
|
&& ((ELIMINATE_COPY_RELOCS
|
|
&& eh->def_dynamic
|
|
&& !eh->def_regular)
|
|
|| (htab->etab.dynamic_sections_created
|
|
&& (eh->root.type == bfd_link_hash_undefweak
|
|
|| eh->root.type == bfd_link_hash_undefined))))
|
|
{
|
|
/* Make sure this symbol is output as a dynamic symbol.
|
|
Undefined weak syms won't yet be marked as dynamic. */
|
|
if (eh->dynindx == -1
|
|
&& !eh->forced_local
|
|
&& eh->type != STT_PARISC_MILLI)
|
|
{
|
|
if (! bfd_elf_link_record_dynamic_symbol (info, eh))
|
|
return FALSE;
|
|
}
|
|
|
|
/* If that succeeded, we know we'll be keeping all the
|
|
relocs. */
|
|
if (eh->dynindx != -1)
|
|
goto keep;
|
|
}
|
|
|
|
hh->dyn_relocs = NULL;
|
|
return TRUE;
|
|
|
|
keep: ;
|
|
}
|
|
|
|
/* Finally, allocate space. */
|
|
for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
|
|
{
|
|
asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
|
|
sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* This function is called via elf_link_hash_traverse to force
|
|
millicode symbols local so they do not end up as globals in the
|
|
dynamic symbol table. We ought to be able to do this in
|
|
adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
|
|
for all dynamic symbols. Arguably, this is a bug in
|
|
elf_adjust_dynamic_symbol. */
|
|
|
|
static bfd_boolean
|
|
clobber_millicode_symbols (struct elf_link_hash_entry *eh,
|
|
struct bfd_link_info *info)
|
|
{
|
|
if (eh->type == STT_PARISC_MILLI
|
|
&& !eh->forced_local)
|
|
{
|
|
elf32_hppa_hide_symbol (info, eh, TRUE);
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
/* Find any dynamic relocs that apply to read-only sections. */
|
|
|
|
static bfd_boolean
|
|
readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
|
|
{
|
|
struct elf32_hppa_link_hash_entry *hh;
|
|
struct elf32_hppa_dyn_reloc_entry *hdh_p;
|
|
|
|
hh = hppa_elf_hash_entry (eh);
|
|
for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
|
|
{
|
|
asection *sec = hdh_p->sec->output_section;
|
|
|
|
if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
|
|
{
|
|
struct bfd_link_info *info = inf;
|
|
|
|
info->flags |= DF_TEXTREL;
|
|
|
|
/* Not an error, just cut short the traversal. */
|
|
return FALSE;
|
|
}
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
/* Set the sizes of the dynamic sections. */
|
|
|
|
static bfd_boolean
|
|
elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
|
|
struct bfd_link_info *info)
|
|
{
|
|
struct elf32_hppa_link_hash_table *htab;
|
|
bfd *dynobj;
|
|
bfd *ibfd;
|
|
asection *sec;
|
|
bfd_boolean relocs;
|
|
|
|
htab = hppa_link_hash_table (info);
|
|
if (htab == NULL)
|
|
return FALSE;
|
|
|
|
dynobj = htab->etab.dynobj;
|
|
if (dynobj == NULL)
|
|
abort ();
|
|
|
|
if (htab->etab.dynamic_sections_created)
|
|
{
|
|
/* Set the contents of the .interp section to the interpreter. */
|
|
if (info->executable)
|
|
{
|
|
sec = bfd_get_linker_section (dynobj, ".interp");
|
|
if (sec == NULL)
|
|
abort ();
|
|
sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
|
|
sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
|
|
}
|
|
|
|
/* Force millicode symbols local. */
|
|
elf_link_hash_traverse (&htab->etab,
|
|
clobber_millicode_symbols,
|
|
info);
|
|
}
|
|
|
|
/* Set up .got and .plt offsets for local syms, and space for local
|
|
dynamic relocs. */
|
|
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
|
|
{
|
|
bfd_signed_vma *local_got;
|
|
bfd_signed_vma *end_local_got;
|
|
bfd_signed_vma *local_plt;
|
|
bfd_signed_vma *end_local_plt;
|
|
bfd_size_type locsymcount;
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
asection *srel;
|
|
char *local_tls_type;
|
|
|
|
if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
|
|
continue;
|
|
|
|
for (sec = ibfd->sections; sec != NULL; sec = sec->next)
|
|
{
|
|
struct elf32_hppa_dyn_reloc_entry *hdh_p;
|
|
|
|
for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
|
|
elf_section_data (sec)->local_dynrel);
|
|
hdh_p != NULL;
|
|
hdh_p = hdh_p->hdh_next)
|
|
{
|
|
if (!bfd_is_abs_section (hdh_p->sec)
|
|
&& bfd_is_abs_section (hdh_p->sec->output_section))
|
|
{
|
|
/* Input section has been discarded, either because
|
|
it is a copy of a linkonce section or due to
|
|
linker script /DISCARD/, so we'll be discarding
|
|
the relocs too. */
|
|
}
|
|
else if (hdh_p->count != 0)
|
|
{
|
|
srel = elf_section_data (hdh_p->sec)->sreloc;
|
|
srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
|
|
if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
|
|
info->flags |= DF_TEXTREL;
|
|
}
|
|
}
|
|
}
|
|
|
|
local_got = elf_local_got_refcounts (ibfd);
|
|
if (!local_got)
|
|
continue;
|
|
|
|
symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
|
|
locsymcount = symtab_hdr->sh_info;
|
|
end_local_got = local_got + locsymcount;
|
|
local_tls_type = hppa_elf_local_got_tls_type (ibfd);
|
|
sec = htab->sgot;
|
|
srel = htab->srelgot;
|
|
for (; local_got < end_local_got; ++local_got)
|
|
{
|
|
if (*local_got > 0)
|
|
{
|
|
*local_got = sec->size;
|
|
sec->size += GOT_ENTRY_SIZE;
|
|
if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
|
|
sec->size += 2 * GOT_ENTRY_SIZE;
|
|
else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
|
|
sec->size += GOT_ENTRY_SIZE;
|
|
if (info->shared)
|
|
{
|
|
srel->size += sizeof (Elf32_External_Rela);
|
|
if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
|
|
srel->size += 2 * sizeof (Elf32_External_Rela);
|
|
else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
|
|
srel->size += sizeof (Elf32_External_Rela);
|
|
}
|
|
}
|
|
else
|
|
*local_got = (bfd_vma) -1;
|
|
|
|
++local_tls_type;
|
|
}
|
|
|
|
local_plt = end_local_got;
|
|
end_local_plt = local_plt + locsymcount;
|
|
if (! htab->etab.dynamic_sections_created)
|
|
{
|
|
/* Won't be used, but be safe. */
|
|
for (; local_plt < end_local_plt; ++local_plt)
|
|
*local_plt = (bfd_vma) -1;
|
|
}
|
|
else
|
|
{
|
|
sec = htab->splt;
|
|
srel = htab->srelplt;
|
|
for (; local_plt < end_local_plt; ++local_plt)
|
|
{
|
|
if (*local_plt > 0)
|
|
{
|
|
*local_plt = sec->size;
|
|
sec->size += PLT_ENTRY_SIZE;
|
|
if (info->shared)
|
|
srel->size += sizeof (Elf32_External_Rela);
|
|
}
|
|
else
|
|
*local_plt = (bfd_vma) -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (htab->tls_ldm_got.refcount > 0)
|
|
{
|
|
/* Allocate 2 got entries and 1 dynamic reloc for
|
|
R_PARISC_TLS_DTPMOD32 relocs. */
|
|
htab->tls_ldm_got.offset = htab->sgot->size;
|
|
htab->sgot->size += (GOT_ENTRY_SIZE * 2);
|
|
htab->srelgot->size += sizeof (Elf32_External_Rela);
|
|
}
|
|
else
|
|
htab->tls_ldm_got.offset = -1;
|
|
|
|
/* Do all the .plt entries without relocs first. The dynamic linker
|
|
uses the last .plt reloc to find the end of the .plt (and hence
|
|
the start of the .got) for lazy linking. */
|
|
elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
|
|
|
|
/* Allocate global sym .plt and .got entries, and space for global
|
|
sym dynamic relocs. */
|
|
elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
|
|
|
|
/* The check_relocs and adjust_dynamic_symbol entry points have
|
|
determined the sizes of the various dynamic sections. Allocate
|
|
memory for them. */
|
|
relocs = FALSE;
|
|
for (sec = dynobj->sections; sec != NULL; sec = sec->next)
|
|
{
|
|
if ((sec->flags & SEC_LINKER_CREATED) == 0)
|
|
continue;
|
|
|
|
if (sec == htab->splt)
|
|
{
|
|
if (htab->need_plt_stub)
|
|
{
|
|
/* Make space for the plt stub at the end of the .plt
|
|
section. We want this stub right at the end, up
|
|
against the .got section. */
|
|
int gotalign = bfd_section_alignment (dynobj, htab->sgot);
|
|
int pltalign = bfd_section_alignment (dynobj, sec);
|
|
bfd_size_type mask;
|
|
|
|
if (gotalign > pltalign)
|
|
(void) bfd_set_section_alignment (dynobj, sec, gotalign);
|
|
mask = ((bfd_size_type) 1 << gotalign) - 1;
|
|
sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
|
|
}
|
|
}
|
|
else if (sec == htab->sgot
|
|
|| sec == htab->sdynbss)
|
|
;
|
|
else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
|
|
{
|
|
if (sec->size != 0)
|
|
{
|
|
/* Remember whether there are any reloc sections other
|
|
than .rela.plt. */
|
|
if (sec != htab->srelplt)
|
|
relocs = TRUE;
|
|
|
|
/* We use the reloc_count field as a counter if we need
|
|
to copy relocs into the output file. */
|
|
sec->reloc_count = 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* It's not one of our sections, so don't allocate space. */
|
|
continue;
|
|
}
|
|
|
|
if (sec->size == 0)
|
|
{
|
|
/* If we don't need this section, strip it from the
|
|
output file. This is mostly to handle .rela.bss and
|
|
.rela.plt. We must create both sections in
|
|
create_dynamic_sections, because they must be created
|
|
before the linker maps input sections to output
|
|
sections. The linker does that before
|
|
adjust_dynamic_symbol is called, and it is that
|
|
function which decides whether anything needs to go
|
|
into these sections. */
|
|
sec->flags |= SEC_EXCLUDE;
|
|
continue;
|
|
}
|
|
|
|
if ((sec->flags & SEC_HAS_CONTENTS) == 0)
|
|
continue;
|
|
|
|
/* Allocate memory for the section contents. Zero it, because
|
|
we may not fill in all the reloc sections. */
|
|
sec->contents = bfd_zalloc (dynobj, sec->size);
|
|
if (sec->contents == NULL)
|
|
return FALSE;
|
|
}
|
|
|
|
if (htab->etab.dynamic_sections_created)
|
|
{
|
|
/* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
|
|
actually has nothing to do with the PLT, it is how we
|
|
communicate the LTP value of a load module to the dynamic
|
|
linker. */
|
|
#define add_dynamic_entry(TAG, VAL) \
|
|
_bfd_elf_add_dynamic_entry (info, TAG, VAL)
|
|
|
|
if (!add_dynamic_entry (DT_PLTGOT, 0))
|
|
return FALSE;
|
|
|
|
/* Add some entries to the .dynamic section. We fill in the
|
|
values later, in elf32_hppa_finish_dynamic_sections, but we
|
|
must add the entries now so that we get the correct size for
|
|
the .dynamic section. The DT_DEBUG entry is filled in by the
|
|
dynamic linker and used by the debugger. */
|
|
if (info->executable)
|
|
{
|
|
if (!add_dynamic_entry (DT_DEBUG, 0))
|
|
return FALSE;
|
|
}
|
|
|
|
if (htab->srelplt->size != 0)
|
|
{
|
|
if (!add_dynamic_entry (DT_PLTRELSZ, 0)
|
|
|| !add_dynamic_entry (DT_PLTREL, DT_RELA)
|
|
|| !add_dynamic_entry (DT_JMPREL, 0))
|
|
return FALSE;
|
|
}
|
|
|
|
if (relocs)
|
|
{
|
|
if (!add_dynamic_entry (DT_RELA, 0)
|
|
|| !add_dynamic_entry (DT_RELASZ, 0)
|
|
|| !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
|
|
return FALSE;
|
|
|
|
/* If any dynamic relocs apply to a read-only section,
|
|
then we need a DT_TEXTREL entry. */
|
|
if ((info->flags & DF_TEXTREL) == 0)
|
|
elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
|
|
|
|
if ((info->flags & DF_TEXTREL) != 0)
|
|
{
|
|
if (!add_dynamic_entry (DT_TEXTREL, 0))
|
|
return FALSE;
|
|
}
|
|
}
|
|
}
|
|
#undef add_dynamic_entry
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* External entry points for sizing and building linker stubs. */
|
|
|
|
/* Set up various things so that we can make a list of input sections
|
|
for each output section included in the link. Returns -1 on error,
|
|
0 when no stubs will be needed, and 1 on success. */
|
|
|
|
int
|
|
elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
|
|
{
|
|
bfd *input_bfd;
|
|
unsigned int bfd_count;
|
|
int top_id, top_index;
|
|
asection *section;
|
|
asection **input_list, **list;
|
|
bfd_size_type amt;
|
|
struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
|
|
|
|
if (htab == NULL)
|
|
return -1;
|
|
|
|
/* Count the number of input BFDs and find the top input section id. */
|
|
for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
|
|
input_bfd != NULL;
|
|
input_bfd = input_bfd->link.next)
|
|
{
|
|
bfd_count += 1;
|
|
for (section = input_bfd->sections;
|
|
section != NULL;
|
|
section = section->next)
|
|
{
|
|
if (top_id < section->id)
|
|
top_id = section->id;
|
|
}
|
|
}
|
|
htab->bfd_count = bfd_count;
|
|
|
|
amt = sizeof (struct map_stub) * (top_id + 1);
|
|
htab->stub_group = bfd_zmalloc (amt);
|
|
if (htab->stub_group == NULL)
|
|
return -1;
|
|
|
|
/* We can't use output_bfd->section_count here to find the top output
|
|
section index as some sections may have been removed, and
|
|
strip_excluded_output_sections doesn't renumber the indices. */
|
|
for (section = output_bfd->sections, top_index = 0;
|
|
section != NULL;
|
|
section = section->next)
|
|
{
|
|
if (top_index < section->index)
|
|
top_index = section->index;
|
|
}
|
|
|
|
htab->top_index = top_index;
|
|
amt = sizeof (asection *) * (top_index + 1);
|
|
input_list = bfd_malloc (amt);
|
|
htab->input_list = input_list;
|
|
if (input_list == NULL)
|
|
return -1;
|
|
|
|
/* For sections we aren't interested in, mark their entries with a
|
|
value we can check later. */
|
|
list = input_list + top_index;
|
|
do
|
|
*list = bfd_abs_section_ptr;
|
|
while (list-- != input_list);
|
|
|
|
for (section = output_bfd->sections;
|
|
section != NULL;
|
|
section = section->next)
|
|
{
|
|
if ((section->flags & SEC_CODE) != 0)
|
|
input_list[section->index] = NULL;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* The linker repeatedly calls this function for each input section,
|
|
in the order that input sections are linked into output sections.
|
|
Build lists of input sections to determine groupings between which
|
|
we may insert linker stubs. */
|
|
|
|
void
|
|
elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
|
|
{
|
|
struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
|
|
|
|
if (htab == NULL)
|
|
return;
|
|
|
|
if (isec->output_section->index <= htab->top_index)
|
|
{
|
|
asection **list = htab->input_list + isec->output_section->index;
|
|
if (*list != bfd_abs_section_ptr)
|
|
{
|
|
/* Steal the link_sec pointer for our list. */
|
|
#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
|
|
/* This happens to make the list in reverse order,
|
|
which is what we want. */
|
|
PREV_SEC (isec) = *list;
|
|
*list = isec;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* See whether we can group stub sections together. Grouping stub
|
|
sections may result in fewer stubs. More importantly, we need to
|
|
put all .init* and .fini* stubs at the beginning of the .init or
|
|
.fini output sections respectively, because glibc splits the
|
|
_init and _fini functions into multiple parts. Putting a stub in
|
|
the middle of a function is not a good idea. */
|
|
|
|
static void
|
|
group_sections (struct elf32_hppa_link_hash_table *htab,
|
|
bfd_size_type stub_group_size,
|
|
bfd_boolean stubs_always_before_branch)
|
|
{
|
|
asection **list = htab->input_list + htab->top_index;
|
|
do
|
|
{
|
|
asection *tail = *list;
|
|
if (tail == bfd_abs_section_ptr)
|
|
continue;
|
|
while (tail != NULL)
|
|
{
|
|
asection *curr;
|
|
asection *prev;
|
|
bfd_size_type total;
|
|
bfd_boolean big_sec;
|
|
|
|
curr = tail;
|
|
total = tail->size;
|
|
big_sec = total >= stub_group_size;
|
|
|
|
while ((prev = PREV_SEC (curr)) != NULL
|
|
&& ((total += curr->output_offset - prev->output_offset)
|
|
< stub_group_size))
|
|
curr = prev;
|
|
|
|
/* OK, the size from the start of CURR to the end is less
|
|
than 240000 bytes and thus can be handled by one stub
|
|
section. (or the tail section is itself larger than
|
|
240000 bytes, in which case we may be toast.)
|
|
We should really be keeping track of the total size of
|
|
stubs added here, as stubs contribute to the final output
|
|
section size. That's a little tricky, and this way will
|
|
only break if stubs added total more than 22144 bytes, or
|
|
2768 long branch stubs. It seems unlikely for more than
|
|
2768 different functions to be called, especially from
|
|
code only 240000 bytes long. This limit used to be
|
|
250000, but c++ code tends to generate lots of little
|
|
functions, and sometimes violated the assumption. */
|
|
do
|
|
{
|
|
prev = PREV_SEC (tail);
|
|
/* Set up this stub group. */
|
|
htab->stub_group[tail->id].link_sec = curr;
|
|
}
|
|
while (tail != curr && (tail = prev) != NULL);
|
|
|
|
/* But wait, there's more! Input sections up to 240000
|
|
bytes before the stub section can be handled by it too.
|
|
Don't do this if we have a really large section after the
|
|
stubs, as adding more stubs increases the chance that
|
|
branches may not reach into the stub section. */
|
|
if (!stubs_always_before_branch && !big_sec)
|
|
{
|
|
total = 0;
|
|
while (prev != NULL
|
|
&& ((total += tail->output_offset - prev->output_offset)
|
|
< stub_group_size))
|
|
{
|
|
tail = prev;
|
|
prev = PREV_SEC (tail);
|
|
htab->stub_group[tail->id].link_sec = curr;
|
|
}
|
|
}
|
|
tail = prev;
|
|
}
|
|
}
|
|
while (list-- != htab->input_list);
|
|
free (htab->input_list);
|
|
#undef PREV_SEC
|
|
}
|
|
|
|
/* Read in all local syms for all input bfds, and create hash entries
|
|
for export stubs if we are building a multi-subspace shared lib.
|
|
Returns -1 on error, 1 if export stubs created, 0 otherwise. */
|
|
|
|
static int
|
|
get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
|
|
{
|
|
unsigned int bfd_indx;
|
|
Elf_Internal_Sym *local_syms, **all_local_syms;
|
|
int stub_changed = 0;
|
|
struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
|
|
|
|
if (htab == NULL)
|
|
return -1;
|
|
|
|
/* We want to read in symbol extension records only once. To do this
|
|
we need to read in the local symbols in parallel and save them for
|
|
later use; so hold pointers to the local symbols in an array. */
|
|
bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
|
|
all_local_syms = bfd_zmalloc (amt);
|
|
htab->all_local_syms = all_local_syms;
|
|
if (all_local_syms == NULL)
|
|
return -1;
|
|
|
|
/* Walk over all the input BFDs, swapping in local symbols.
|
|
If we are creating a shared library, create hash entries for the
|
|
export stubs. */
|
|
for (bfd_indx = 0;
|
|
input_bfd != NULL;
|
|
input_bfd = input_bfd->link.next, bfd_indx++)
|
|
{
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
|
|
/* We'll need the symbol table in a second. */
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
|
if (symtab_hdr->sh_info == 0)
|
|
continue;
|
|
|
|
/* We need an array of the local symbols attached to the input bfd. */
|
|
local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
|
|
if (local_syms == NULL)
|
|
{
|
|
local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
|
|
symtab_hdr->sh_info, 0,
|
|
NULL, NULL, NULL);
|
|
/* Cache them for elf_link_input_bfd. */
|
|
symtab_hdr->contents = (unsigned char *) local_syms;
|
|
}
|
|
if (local_syms == NULL)
|
|
return -1;
|
|
|
|
all_local_syms[bfd_indx] = local_syms;
|
|
|
|
if (info->shared && htab->multi_subspace)
|
|
{
|
|
struct elf_link_hash_entry **eh_syms;
|
|
struct elf_link_hash_entry **eh_symend;
|
|
unsigned int symcount;
|
|
|
|
symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
|
|
- symtab_hdr->sh_info);
|
|
eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
|
|
eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
|
|
|
|
/* Look through the global syms for functions; We need to
|
|
build export stubs for all globally visible functions. */
|
|
for (; eh_syms < eh_symend; eh_syms++)
|
|
{
|
|
struct elf32_hppa_link_hash_entry *hh;
|
|
|
|
hh = hppa_elf_hash_entry (*eh_syms);
|
|
|
|
while (hh->eh.root.type == bfd_link_hash_indirect
|
|
|| hh->eh.root.type == bfd_link_hash_warning)
|
|
hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
|
|
|
|
/* At this point in the link, undefined syms have been
|
|
resolved, so we need to check that the symbol was
|
|
defined in this BFD. */
|
|
if ((hh->eh.root.type == bfd_link_hash_defined
|
|
|| hh->eh.root.type == bfd_link_hash_defweak)
|
|
&& hh->eh.type == STT_FUNC
|
|
&& hh->eh.root.u.def.section->output_section != NULL
|
|
&& (hh->eh.root.u.def.section->output_section->owner
|
|
== output_bfd)
|
|
&& hh->eh.root.u.def.section->owner == input_bfd
|
|
&& hh->eh.def_regular
|
|
&& !hh->eh.forced_local
|
|
&& ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
|
|
{
|
|
asection *sec;
|
|
const char *stub_name;
|
|
struct elf32_hppa_stub_hash_entry *hsh;
|
|
|
|
sec = hh->eh.root.u.def.section;
|
|
stub_name = hh_name (hh);
|
|
hsh = hppa_stub_hash_lookup (&htab->bstab,
|
|
stub_name,
|
|
FALSE, FALSE);
|
|
if (hsh == NULL)
|
|
{
|
|
hsh = hppa_add_stub (stub_name, sec, htab);
|
|
if (!hsh)
|
|
return -1;
|
|
|
|
hsh->target_value = hh->eh.root.u.def.value;
|
|
hsh->target_section = hh->eh.root.u.def.section;
|
|
hsh->stub_type = hppa_stub_export;
|
|
hsh->hh = hh;
|
|
stub_changed = 1;
|
|
}
|
|
else
|
|
{
|
|
(*_bfd_error_handler) (_("%B: duplicate export stub %s"),
|
|
input_bfd,
|
|
stub_name);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return stub_changed;
|
|
}
|
|
|
|
/* Determine and set the size of the stub section for a final link.
|
|
|
|
The basic idea here is to examine all the relocations looking for
|
|
PC-relative calls to a target that is unreachable with a "bl"
|
|
instruction. */
|
|
|
|
bfd_boolean
|
|
elf32_hppa_size_stubs
|
|
(bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
|
|
bfd_boolean multi_subspace, bfd_signed_vma group_size,
|
|
asection * (*add_stub_section) (const char *, asection *),
|
|
void (*layout_sections_again) (void))
|
|
{
|
|
bfd_size_type stub_group_size;
|
|
bfd_boolean stubs_always_before_branch;
|
|
bfd_boolean stub_changed;
|
|
struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
|
|
|
|
if (htab == NULL)
|
|
return FALSE;
|
|
|
|
/* Stash our params away. */
|
|
htab->stub_bfd = stub_bfd;
|
|
htab->multi_subspace = multi_subspace;
|
|
htab->add_stub_section = add_stub_section;
|
|
htab->layout_sections_again = layout_sections_again;
|
|
stubs_always_before_branch = group_size < 0;
|
|
if (group_size < 0)
|
|
stub_group_size = -group_size;
|
|
else
|
|
stub_group_size = group_size;
|
|
if (stub_group_size == 1)
|
|
{
|
|
/* Default values. */
|
|
if (stubs_always_before_branch)
|
|
{
|
|
stub_group_size = 7680000;
|
|
if (htab->has_17bit_branch || htab->multi_subspace)
|
|
stub_group_size = 240000;
|
|
if (htab->has_12bit_branch)
|
|
stub_group_size = 7500;
|
|
}
|
|
else
|
|
{
|
|
stub_group_size = 6971392;
|
|
if (htab->has_17bit_branch || htab->multi_subspace)
|
|
stub_group_size = 217856;
|
|
if (htab->has_12bit_branch)
|
|
stub_group_size = 6808;
|
|
}
|
|
}
|
|
|
|
group_sections (htab, stub_group_size, stubs_always_before_branch);
|
|
|
|
switch (get_local_syms (output_bfd, info->input_bfds, info))
|
|
{
|
|
default:
|
|
if (htab->all_local_syms)
|
|
goto error_ret_free_local;
|
|
return FALSE;
|
|
|
|
case 0:
|
|
stub_changed = FALSE;
|
|
break;
|
|
|
|
case 1:
|
|
stub_changed = TRUE;
|
|
break;
|
|
}
|
|
|
|
while (1)
|
|
{
|
|
bfd *input_bfd;
|
|
unsigned int bfd_indx;
|
|
asection *stub_sec;
|
|
|
|
for (input_bfd = info->input_bfds, bfd_indx = 0;
|
|
input_bfd != NULL;
|
|
input_bfd = input_bfd->link.next, bfd_indx++)
|
|
{
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
asection *section;
|
|
Elf_Internal_Sym *local_syms;
|
|
|
|
/* We'll need the symbol table in a second. */
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
|
if (symtab_hdr->sh_info == 0)
|
|
continue;
|
|
|
|
local_syms = htab->all_local_syms[bfd_indx];
|
|
|
|
/* Walk over each section attached to the input bfd. */
|
|
for (section = input_bfd->sections;
|
|
section != NULL;
|
|
section = section->next)
|
|
{
|
|
Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
|
|
|
|
/* If there aren't any relocs, then there's nothing more
|
|
to do. */
|
|
if ((section->flags & SEC_RELOC) == 0
|
|
|| section->reloc_count == 0)
|
|
continue;
|
|
|
|
/* If this section is a link-once section that will be
|
|
discarded, then don't create any stubs. */
|
|
if (section->output_section == NULL
|
|
|| section->output_section->owner != output_bfd)
|
|
continue;
|
|
|
|
/* Get the relocs. */
|
|
internal_relocs
|
|
= _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
|
|
info->keep_memory);
|
|
if (internal_relocs == NULL)
|
|
goto error_ret_free_local;
|
|
|
|
/* Now examine each relocation. */
|
|
irela = internal_relocs;
|
|
irelaend = irela + section->reloc_count;
|
|
for (; irela < irelaend; irela++)
|
|
{
|
|
unsigned int r_type, r_indx;
|
|
enum elf32_hppa_stub_type stub_type;
|
|
struct elf32_hppa_stub_hash_entry *hsh;
|
|
asection *sym_sec;
|
|
bfd_vma sym_value;
|
|
bfd_vma destination;
|
|
struct elf32_hppa_link_hash_entry *hh;
|
|
char *stub_name;
|
|
const asection *id_sec;
|
|
|
|
r_type = ELF32_R_TYPE (irela->r_info);
|
|
r_indx = ELF32_R_SYM (irela->r_info);
|
|
|
|
if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
|
|
{
|
|
bfd_set_error (bfd_error_bad_value);
|
|
error_ret_free_internal:
|
|
if (elf_section_data (section)->relocs == NULL)
|
|
free (internal_relocs);
|
|
goto error_ret_free_local;
|
|
}
|
|
|
|
/* Only look for stubs on call instructions. */
|
|
if (r_type != (unsigned int) R_PARISC_PCREL12F
|
|
&& r_type != (unsigned int) R_PARISC_PCREL17F
|
|
&& r_type != (unsigned int) R_PARISC_PCREL22F)
|
|
continue;
|
|
|
|
/* Now determine the call target, its name, value,
|
|
section. */
|
|
sym_sec = NULL;
|
|
sym_value = 0;
|
|
destination = 0;
|
|
hh = NULL;
|
|
if (r_indx < symtab_hdr->sh_info)
|
|
{
|
|
/* It's a local symbol. */
|
|
Elf_Internal_Sym *sym;
|
|
Elf_Internal_Shdr *hdr;
|
|
unsigned int shndx;
|
|
|
|
sym = local_syms + r_indx;
|
|
if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
|
|
sym_value = sym->st_value;
|
|
shndx = sym->st_shndx;
|
|
if (shndx < elf_numsections (input_bfd))
|
|
{
|
|
hdr = elf_elfsections (input_bfd)[shndx];
|
|
sym_sec = hdr->bfd_section;
|
|
destination = (sym_value + irela->r_addend
|
|
+ sym_sec->output_offset
|
|
+ sym_sec->output_section->vma);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* It's an external symbol. */
|
|
int e_indx;
|
|
|
|
e_indx = r_indx - symtab_hdr->sh_info;
|
|
hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
|
|
|
|
while (hh->eh.root.type == bfd_link_hash_indirect
|
|
|| hh->eh.root.type == bfd_link_hash_warning)
|
|
hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
|
|
|
|
if (hh->eh.root.type == bfd_link_hash_defined
|
|
|| hh->eh.root.type == bfd_link_hash_defweak)
|
|
{
|
|
sym_sec = hh->eh.root.u.def.section;
|
|
sym_value = hh->eh.root.u.def.value;
|
|
if (sym_sec->output_section != NULL)
|
|
destination = (sym_value + irela->r_addend
|
|
+ sym_sec->output_offset
|
|
+ sym_sec->output_section->vma);
|
|
}
|
|
else if (hh->eh.root.type == bfd_link_hash_undefweak)
|
|
{
|
|
if (! info->shared)
|
|
continue;
|
|
}
|
|
else if (hh->eh.root.type == bfd_link_hash_undefined)
|
|
{
|
|
if (! (info->unresolved_syms_in_objects == RM_IGNORE
|
|
&& (ELF_ST_VISIBILITY (hh->eh.other)
|
|
== STV_DEFAULT)
|
|
&& hh->eh.type != STT_PARISC_MILLI))
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
bfd_set_error (bfd_error_bad_value);
|
|
goto error_ret_free_internal;
|
|
}
|
|
}
|
|
|
|
/* Determine what (if any) linker stub is needed. */
|
|
stub_type = hppa_type_of_stub (section, irela, hh,
|
|
destination, info);
|
|
if (stub_type == hppa_stub_none)
|
|
continue;
|
|
|
|
/* Support for grouping stub sections. */
|
|
id_sec = htab->stub_group[section->id].link_sec;
|
|
|
|
/* Get the name of this stub. */
|
|
stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
|
|
if (!stub_name)
|
|
goto error_ret_free_internal;
|
|
|
|
hsh = hppa_stub_hash_lookup (&htab->bstab,
|
|
stub_name,
|
|
FALSE, FALSE);
|
|
if (hsh != NULL)
|
|
{
|
|
/* The proper stub has already been created. */
|
|
free (stub_name);
|
|
continue;
|
|
}
|
|
|
|
hsh = hppa_add_stub (stub_name, section, htab);
|
|
if (hsh == NULL)
|
|
{
|
|
free (stub_name);
|
|
goto error_ret_free_internal;
|
|
}
|
|
|
|
hsh->target_value = sym_value;
|
|
hsh->target_section = sym_sec;
|
|
hsh->stub_type = stub_type;
|
|
if (info->shared)
|
|
{
|
|
if (stub_type == hppa_stub_import)
|
|
hsh->stub_type = hppa_stub_import_shared;
|
|
else if (stub_type == hppa_stub_long_branch)
|
|
hsh->stub_type = hppa_stub_long_branch_shared;
|
|
}
|
|
hsh->hh = hh;
|
|
stub_changed = TRUE;
|
|
}
|
|
|
|
/* We're done with the internal relocs, free them. */
|
|
if (elf_section_data (section)->relocs == NULL)
|
|
free (internal_relocs);
|
|
}
|
|
}
|
|
|
|
if (!stub_changed)
|
|
break;
|
|
|
|
/* OK, we've added some stubs. Find out the new size of the
|
|
stub sections. */
|
|
for (stub_sec = htab->stub_bfd->sections;
|
|
stub_sec != NULL;
|
|
stub_sec = stub_sec->next)
|
|
stub_sec->size = 0;
|
|
|
|
bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
|
|
|
|
/* Ask the linker to do its stuff. */
|
|
(*htab->layout_sections_again) ();
|
|
stub_changed = FALSE;
|
|
}
|
|
|
|
free (htab->all_local_syms);
|
|
return TRUE;
|
|
|
|
error_ret_free_local:
|
|
free (htab->all_local_syms);
|
|
return FALSE;
|
|
}
|
|
|
|
/* For a final link, this function is called after we have sized the
|
|
stubs to provide a value for __gp. */
|
|
|
|
bfd_boolean
|
|
elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
|
|
{
|
|
struct bfd_link_hash_entry *h;
|
|
asection *sec = NULL;
|
|
bfd_vma gp_val = 0;
|
|
struct elf32_hppa_link_hash_table *htab;
|
|
|
|
htab = hppa_link_hash_table (info);
|
|
if (htab == NULL)
|
|
return FALSE;
|
|
|
|
h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
|
|
|
|
if (h != NULL
|
|
&& (h->type == bfd_link_hash_defined
|
|
|| h->type == bfd_link_hash_defweak))
|
|
{
|
|
gp_val = h->u.def.value;
|
|
sec = h->u.def.section;
|
|
}
|
|
else
|
|
{
|
|
asection *splt = bfd_get_section_by_name (abfd, ".plt");
|
|
asection *sgot = bfd_get_section_by_name (abfd, ".got");
|
|
|
|
/* Choose to point our LTP at, in this order, one of .plt, .got,
|
|
or .data, if these sections exist. In the case of choosing
|
|
.plt try to make the LTP ideal for addressing anywhere in the
|
|
.plt or .got with a 14 bit signed offset. Typically, the end
|
|
of the .plt is the start of the .got, so choose .plt + 0x2000
|
|
if either the .plt or .got is larger than 0x2000. If both
|
|
the .plt and .got are smaller than 0x2000, choose the end of
|
|
the .plt section. */
|
|
sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
|
|
? NULL : splt;
|
|
if (sec != NULL)
|
|
{
|
|
gp_val = sec->size;
|
|
if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
|
|
{
|
|
gp_val = 0x2000;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
sec = sgot;
|
|
if (sec != NULL)
|
|
{
|
|
if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
|
|
{
|
|
/* We know we don't have a .plt. If .got is large,
|
|
offset our LTP. */
|
|
if (sec->size > 0x2000)
|
|
gp_val = 0x2000;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* No .plt or .got. Who cares what the LTP is? */
|
|
sec = bfd_get_section_by_name (abfd, ".data");
|
|
}
|
|
}
|
|
|
|
if (h != NULL)
|
|
{
|
|
h->type = bfd_link_hash_defined;
|
|
h->u.def.value = gp_val;
|
|
if (sec != NULL)
|
|
h->u.def.section = sec;
|
|
else
|
|
h->u.def.section = bfd_abs_section_ptr;
|
|
}
|
|
}
|
|
|
|
if (sec != NULL && sec->output_section != NULL)
|
|
gp_val += sec->output_section->vma + sec->output_offset;
|
|
|
|
elf_gp (abfd) = gp_val;
|
|
return TRUE;
|
|
}
|
|
|
|
/* Build all the stubs associated with the current output file. The
|
|
stubs are kept in a hash table attached to the main linker hash
|
|
table. We also set up the .plt entries for statically linked PIC
|
|
functions here. This function is called via hppaelf_finish in the
|
|
linker. */
|
|
|
|
bfd_boolean
|
|
elf32_hppa_build_stubs (struct bfd_link_info *info)
|
|
{
|
|
asection *stub_sec;
|
|
struct bfd_hash_table *table;
|
|
struct elf32_hppa_link_hash_table *htab;
|
|
|
|
htab = hppa_link_hash_table (info);
|
|
if (htab == NULL)
|
|
return FALSE;
|
|
|
|
for (stub_sec = htab->stub_bfd->sections;
|
|
stub_sec != NULL;
|
|
stub_sec = stub_sec->next)
|
|
{
|
|
bfd_size_type size;
|
|
|
|
/* Allocate memory to hold the linker stubs. */
|
|
size = stub_sec->size;
|
|
stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
|
|
if (stub_sec->contents == NULL && size != 0)
|
|
return FALSE;
|
|
stub_sec->size = 0;
|
|
}
|
|
|
|
/* Build the stubs as directed by the stub hash table. */
|
|
table = &htab->bstab;
|
|
bfd_hash_traverse (table, hppa_build_one_stub, info);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Return the base vma address which should be subtracted from the real
|
|
address when resolving a dtpoff relocation.
|
|
This is PT_TLS segment p_vaddr. */
|
|
|
|
static bfd_vma
|
|
dtpoff_base (struct bfd_link_info *info)
|
|
{
|
|
/* If tls_sec is NULL, we should have signalled an error already. */
|
|
if (elf_hash_table (info)->tls_sec == NULL)
|
|
return 0;
|
|
return elf_hash_table (info)->tls_sec->vma;
|
|
}
|
|
|
|
/* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
|
|
|
|
static bfd_vma
|
|
tpoff (struct bfd_link_info *info, bfd_vma address)
|
|
{
|
|
struct elf_link_hash_table *htab = elf_hash_table (info);
|
|
|
|
/* If tls_sec is NULL, we should have signalled an error already. */
|
|
if (htab->tls_sec == NULL)
|
|
return 0;
|
|
/* hppa TLS ABI is variant I and static TLS block start just after
|
|
tcbhead structure which has 2 pointer fields. */
|
|
return (address - htab->tls_sec->vma
|
|
+ align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
|
|
}
|
|
|
|
/* Perform a final link. */
|
|
|
|
static bfd_boolean
|
|
elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
|
|
{
|
|
/* Invoke the regular ELF linker to do all the work. */
|
|
if (!bfd_elf_final_link (abfd, info))
|
|
return FALSE;
|
|
|
|
/* If we're producing a final executable, sort the contents of the
|
|
unwind section. */
|
|
if (info->relocatable)
|
|
return TRUE;
|
|
|
|
return elf_hppa_sort_unwind (abfd);
|
|
}
|
|
|
|
/* Record the lowest address for the data and text segments. */
|
|
|
|
static void
|
|
hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
|
|
{
|
|
struct elf32_hppa_link_hash_table *htab;
|
|
|
|
htab = (struct elf32_hppa_link_hash_table*) data;
|
|
if (htab == NULL)
|
|
return;
|
|
|
|
if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
|
|
{
|
|
bfd_vma value;
|
|
Elf_Internal_Phdr *p;
|
|
|
|
p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
|
|
BFD_ASSERT (p != NULL);
|
|
value = p->p_vaddr;
|
|
|
|
if ((section->flags & SEC_READONLY) != 0)
|
|
{
|
|
if (value < htab->text_segment_base)
|
|
htab->text_segment_base = value;
|
|
}
|
|
else
|
|
{
|
|
if (value < htab->data_segment_base)
|
|
htab->data_segment_base = value;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Perform a relocation as part of a final link. */
|
|
|
|
static bfd_reloc_status_type
|
|
final_link_relocate (asection *input_section,
|
|
bfd_byte *contents,
|
|
const Elf_Internal_Rela *rela,
|
|
bfd_vma value,
|
|
struct elf32_hppa_link_hash_table *htab,
|
|
asection *sym_sec,
|
|
struct elf32_hppa_link_hash_entry *hh,
|
|
struct bfd_link_info *info)
|
|
{
|
|
int insn;
|
|
unsigned int r_type = ELF32_R_TYPE (rela->r_info);
|
|
unsigned int orig_r_type = r_type;
|
|
reloc_howto_type *howto = elf_hppa_howto_table + r_type;
|
|
int r_format = howto->bitsize;
|
|
enum hppa_reloc_field_selector_type_alt r_field;
|
|
bfd *input_bfd = input_section->owner;
|
|
bfd_vma offset = rela->r_offset;
|
|
bfd_vma max_branch_offset = 0;
|
|
bfd_byte *hit_data = contents + offset;
|
|
bfd_signed_vma addend = rela->r_addend;
|
|
bfd_vma location;
|
|
struct elf32_hppa_stub_hash_entry *hsh = NULL;
|
|
int val;
|
|
|
|
if (r_type == R_PARISC_NONE)
|
|
return bfd_reloc_ok;
|
|
|
|
insn = bfd_get_32 (input_bfd, hit_data);
|
|
|
|
/* Find out where we are and where we're going. */
|
|
location = (offset +
|
|
input_section->output_offset +
|
|
input_section->output_section->vma);
|
|
|
|
/* If we are not building a shared library, convert DLTIND relocs to
|
|
DPREL relocs. */
|
|
if (!info->shared)
|
|
{
|
|
switch (r_type)
|
|
{
|
|
case R_PARISC_DLTIND21L:
|
|
case R_PARISC_TLS_GD21L:
|
|
case R_PARISC_TLS_LDM21L:
|
|
case R_PARISC_TLS_IE21L:
|
|
r_type = R_PARISC_DPREL21L;
|
|
break;
|
|
|
|
case R_PARISC_DLTIND14R:
|
|
case R_PARISC_TLS_GD14R:
|
|
case R_PARISC_TLS_LDM14R:
|
|
case R_PARISC_TLS_IE14R:
|
|
r_type = R_PARISC_DPREL14R;
|
|
break;
|
|
|
|
case R_PARISC_DLTIND14F:
|
|
r_type = R_PARISC_DPREL14F;
|
|
break;
|
|
}
|
|
}
|
|
|
|
switch (r_type)
|
|
{
|
|
case R_PARISC_PCREL12F:
|
|
case R_PARISC_PCREL17F:
|
|
case R_PARISC_PCREL22F:
|
|
/* If this call should go via the plt, find the import stub in
|
|
the stub hash. */
|
|
if (sym_sec == NULL
|
|
|| sym_sec->output_section == NULL
|
|
|| (hh != NULL
|
|
&& hh->eh.plt.offset != (bfd_vma) -1
|
|
&& hh->eh.dynindx != -1
|
|
&& !hh->plabel
|
|
&& (info->shared
|
|
|| !hh->eh.def_regular
|
|
|| hh->eh.root.type == bfd_link_hash_defweak)))
|
|
{
|
|
hsh = hppa_get_stub_entry (input_section, sym_sec,
|
|
hh, rela, htab);
|
|
if (hsh != NULL)
|
|
{
|
|
value = (hsh->stub_offset
|
|
+ hsh->stub_sec->output_offset
|
|
+ hsh->stub_sec->output_section->vma);
|
|
addend = 0;
|
|
}
|
|
else if (sym_sec == NULL && hh != NULL
|
|
&& hh->eh.root.type == bfd_link_hash_undefweak)
|
|
{
|
|
/* It's OK if undefined weak. Calls to undefined weak
|
|
symbols behave as if the "called" function
|
|
immediately returns. We can thus call to a weak
|
|
function without first checking whether the function
|
|
is defined. */
|
|
value = location;
|
|
addend = 8;
|
|
}
|
|
else
|
|
return bfd_reloc_undefined;
|
|
}
|
|
/* Fall thru. */
|
|
|
|
case R_PARISC_PCREL21L:
|
|
case R_PARISC_PCREL17C:
|
|
case R_PARISC_PCREL17R:
|
|
case R_PARISC_PCREL14R:
|
|
case R_PARISC_PCREL14F:
|
|
case R_PARISC_PCREL32:
|
|
/* Make it a pc relative offset. */
|
|
value -= location;
|
|
addend -= 8;
|
|
break;
|
|
|
|
case R_PARISC_DPREL21L:
|
|
case R_PARISC_DPREL14R:
|
|
case R_PARISC_DPREL14F:
|
|
/* Convert instructions that use the linkage table pointer (r19) to
|
|
instructions that use the global data pointer (dp). This is the
|
|
most efficient way of using PIC code in an incomplete executable,
|
|
but the user must follow the standard runtime conventions for
|
|
accessing data for this to work. */
|
|
if (orig_r_type != r_type)
|
|
{
|
|
if (r_type == R_PARISC_DPREL21L)
|
|
{
|
|
/* GCC sometimes uses a register other than r19 for the
|
|
operation, so we must convert any addil instruction
|
|
that uses this relocation. */
|
|
if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
|
|
insn = ADDIL_DP;
|
|
else
|
|
/* We must have a ldil instruction. It's too hard to find
|
|
and convert the associated add instruction, so issue an
|
|
error. */
|
|
(*_bfd_error_handler)
|
|
(_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
|
|
input_bfd,
|
|
input_section,
|
|
(long) offset,
|
|
howto->name,
|
|
insn);
|
|
}
|
|
else if (r_type == R_PARISC_DPREL14F)
|
|
{
|
|
/* This must be a format 1 load/store. Change the base
|
|
register to dp. */
|
|
insn = (insn & 0xfc1ffff) | (27 << 21);
|
|
}
|
|
}
|
|
|
|
/* For all the DP relative relocations, we need to examine the symbol's
|
|
section. If it has no section or if it's a code section, then
|
|
"data pointer relative" makes no sense. In that case we don't
|
|
adjust the "value", and for 21 bit addil instructions, we change the
|
|
source addend register from %dp to %r0. This situation commonly
|
|
arises for undefined weak symbols and when a variable's "constness"
|
|
is declared differently from the way the variable is defined. For
|
|
instance: "extern int foo" with foo defined as "const int foo". */
|
|
if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
|
|
{
|
|
if ((insn & ((0x3f << 26) | (0x1f << 21)))
|
|
== (((int) OP_ADDIL << 26) | (27 << 21)))
|
|
{
|
|
insn &= ~ (0x1f << 21);
|
|
}
|
|
/* Now try to make things easy for the dynamic linker. */
|
|
|
|
break;
|
|
}
|
|
/* Fall thru. */
|
|
|
|
case R_PARISC_DLTIND21L:
|
|
case R_PARISC_DLTIND14R:
|
|
case R_PARISC_DLTIND14F:
|
|
case R_PARISC_TLS_GD21L:
|
|
case R_PARISC_TLS_LDM21L:
|
|
case R_PARISC_TLS_IE21L:
|
|
case R_PARISC_TLS_GD14R:
|
|
case R_PARISC_TLS_LDM14R:
|
|
case R_PARISC_TLS_IE14R:
|
|
value -= elf_gp (input_section->output_section->owner);
|
|
break;
|
|
|
|
case R_PARISC_SEGREL32:
|
|
if ((sym_sec->flags & SEC_CODE) != 0)
|
|
value -= htab->text_segment_base;
|
|
else
|
|
value -= htab->data_segment_base;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
switch (r_type)
|
|
{
|
|
case R_PARISC_DIR32:
|
|
case R_PARISC_DIR14F:
|
|
case R_PARISC_DIR17F:
|
|
case R_PARISC_PCREL17C:
|
|
case R_PARISC_PCREL14F:
|
|
case R_PARISC_PCREL32:
|
|
case R_PARISC_DPREL14F:
|
|
case R_PARISC_PLABEL32:
|
|
case R_PARISC_DLTIND14F:
|
|
case R_PARISC_SEGBASE:
|
|
case R_PARISC_SEGREL32:
|
|
case R_PARISC_TLS_DTPMOD32:
|
|
case R_PARISC_TLS_DTPOFF32:
|
|
case R_PARISC_TLS_TPREL32:
|
|
r_field = e_fsel;
|
|
break;
|
|
|
|
case R_PARISC_DLTIND21L:
|
|
case R_PARISC_PCREL21L:
|
|
case R_PARISC_PLABEL21L:
|
|
r_field = e_lsel;
|
|
break;
|
|
|
|
case R_PARISC_DIR21L:
|
|
case R_PARISC_DPREL21L:
|
|
case R_PARISC_TLS_GD21L:
|
|
case R_PARISC_TLS_LDM21L:
|
|
case R_PARISC_TLS_LDO21L:
|
|
case R_PARISC_TLS_IE21L:
|
|
case R_PARISC_TLS_LE21L:
|
|
r_field = e_lrsel;
|
|
break;
|
|
|
|
case R_PARISC_PCREL17R:
|
|
case R_PARISC_PCREL14R:
|
|
case R_PARISC_PLABEL14R:
|
|
case R_PARISC_DLTIND14R:
|
|
r_field = e_rsel;
|
|
break;
|
|
|
|
case R_PARISC_DIR17R:
|
|
case R_PARISC_DIR14R:
|
|
case R_PARISC_DPREL14R:
|
|
case R_PARISC_TLS_GD14R:
|
|
case R_PARISC_TLS_LDM14R:
|
|
case R_PARISC_TLS_LDO14R:
|
|
case R_PARISC_TLS_IE14R:
|
|
case R_PARISC_TLS_LE14R:
|
|
r_field = e_rrsel;
|
|
break;
|
|
|
|
case R_PARISC_PCREL12F:
|
|
case R_PARISC_PCREL17F:
|
|
case R_PARISC_PCREL22F:
|
|
r_field = e_fsel;
|
|
|
|
if (r_type == (unsigned int) R_PARISC_PCREL17F)
|
|
{
|
|
max_branch_offset = (1 << (17-1)) << 2;
|
|
}
|
|
else if (r_type == (unsigned int) R_PARISC_PCREL12F)
|
|
{
|
|
max_branch_offset = (1 << (12-1)) << 2;
|
|
}
|
|
else
|
|
{
|
|
max_branch_offset = (1 << (22-1)) << 2;
|
|
}
|
|
|
|
/* sym_sec is NULL on undefined weak syms or when shared on
|
|
undefined syms. We've already checked for a stub for the
|
|
shared undefined case. */
|
|
if (sym_sec == NULL)
|
|
break;
|
|
|
|
/* If the branch is out of reach, then redirect the
|
|
call to the local stub for this function. */
|
|
if (value + addend + max_branch_offset >= 2*max_branch_offset)
|
|
{
|
|
hsh = hppa_get_stub_entry (input_section, sym_sec,
|
|
hh, rela, htab);
|
|
if (hsh == NULL)
|
|
return bfd_reloc_undefined;
|
|
|
|
/* Munge up the value and addend so that we call the stub
|
|
rather than the procedure directly. */
|
|
value = (hsh->stub_offset
|
|
+ hsh->stub_sec->output_offset
|
|
+ hsh->stub_sec->output_section->vma
|
|
- location);
|
|
addend = -8;
|
|
}
|
|
break;
|
|
|
|
/* Something we don't know how to handle. */
|
|
default:
|
|
return bfd_reloc_notsupported;
|
|
}
|
|
|
|
/* Make sure we can reach the stub. */
|
|
if (max_branch_offset != 0
|
|
&& value + addend + max_branch_offset >= 2*max_branch_offset)
|
|
{
|
|
(*_bfd_error_handler)
|
|
(_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
|
|
input_bfd,
|
|
input_section,
|
|
(long) offset,
|
|
hsh->bh_root.string);
|
|
bfd_set_error (bfd_error_bad_value);
|
|
return bfd_reloc_notsupported;
|
|
}
|
|
|
|
val = hppa_field_adjust (value, addend, r_field);
|
|
|
|
switch (r_type)
|
|
{
|
|
case R_PARISC_PCREL12F:
|
|
case R_PARISC_PCREL17C:
|
|
case R_PARISC_PCREL17F:
|
|
case R_PARISC_PCREL17R:
|
|
case R_PARISC_PCREL22F:
|
|
case R_PARISC_DIR17F:
|
|
case R_PARISC_DIR17R:
|
|
/* This is a branch. Divide the offset by four.
|
|
Note that we need to decide whether it's a branch or
|
|
otherwise by inspecting the reloc. Inspecting insn won't
|
|
work as insn might be from a .word directive. */
|
|
val >>= 2;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
insn = hppa_rebuild_insn (insn, val, r_format);
|
|
|
|
/* Update the instruction word. */
|
|
bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
|
|
return bfd_reloc_ok;
|
|
}
|
|
|
|
/* Relocate an HPPA ELF section. */
|
|
|
|
static bfd_boolean
|
|
elf32_hppa_relocate_section (bfd *output_bfd,
|
|
struct bfd_link_info *info,
|
|
bfd *input_bfd,
|
|
asection *input_section,
|
|
bfd_byte *contents,
|
|
Elf_Internal_Rela *relocs,
|
|
Elf_Internal_Sym *local_syms,
|
|
asection **local_sections)
|
|
{
|
|
bfd_vma *local_got_offsets;
|
|
struct elf32_hppa_link_hash_table *htab;
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
Elf_Internal_Rela *rela;
|
|
Elf_Internal_Rela *relend;
|
|
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
|
|
|
htab = hppa_link_hash_table (info);
|
|
if (htab == NULL)
|
|
return FALSE;
|
|
|
|
local_got_offsets = elf_local_got_offsets (input_bfd);
|
|
|
|
rela = relocs;
|
|
relend = relocs + input_section->reloc_count;
|
|
for (; rela < relend; rela++)
|
|
{
|
|
unsigned int r_type;
|
|
reloc_howto_type *howto;
|
|
unsigned int r_symndx;
|
|
struct elf32_hppa_link_hash_entry *hh;
|
|
Elf_Internal_Sym *sym;
|
|
asection *sym_sec;
|
|
bfd_vma relocation;
|
|
bfd_reloc_status_type rstatus;
|
|
const char *sym_name;
|
|
bfd_boolean plabel;
|
|
bfd_boolean warned_undef;
|
|
|
|
r_type = ELF32_R_TYPE (rela->r_info);
|
|
if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
|
|
{
|
|
bfd_set_error (bfd_error_bad_value);
|
|
return FALSE;
|
|
}
|
|
if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
|
|
|| r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
|
|
continue;
|
|
|
|
r_symndx = ELF32_R_SYM (rela->r_info);
|
|
hh = NULL;
|
|
sym = NULL;
|
|
sym_sec = NULL;
|
|
warned_undef = FALSE;
|
|
if (r_symndx < symtab_hdr->sh_info)
|
|
{
|
|
/* This is a local symbol, h defaults to NULL. */
|
|
sym = local_syms + r_symndx;
|
|
sym_sec = local_sections[r_symndx];
|
|
relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
|
|
}
|
|
else
|
|
{
|
|
struct elf_link_hash_entry *eh;
|
|
bfd_boolean unresolved_reloc, ignored;
|
|
struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
|
|
|
|
RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
|
|
r_symndx, symtab_hdr, sym_hashes,
|
|
eh, sym_sec, relocation,
|
|
unresolved_reloc, warned_undef,
|
|
ignored);
|
|
|
|
if (!info->relocatable
|
|
&& relocation == 0
|
|
&& eh->root.type != bfd_link_hash_defined
|
|
&& eh->root.type != bfd_link_hash_defweak
|
|
&& eh->root.type != bfd_link_hash_undefweak)
|
|
{
|
|
if (info->unresolved_syms_in_objects == RM_IGNORE
|
|
&& ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
|
|
&& eh->type == STT_PARISC_MILLI)
|
|
{
|
|
if (! info->callbacks->undefined_symbol
|
|
(info, eh_name (eh), input_bfd,
|
|
input_section, rela->r_offset, FALSE))
|
|
return FALSE;
|
|
warned_undef = TRUE;
|
|
}
|
|
}
|
|
hh = hppa_elf_hash_entry (eh);
|
|
}
|
|
|
|
if (sym_sec != NULL && discarded_section (sym_sec))
|
|
RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
|
|
rela, 1, relend,
|
|
elf_hppa_howto_table + r_type, 0,
|
|
contents);
|
|
|
|
if (info->relocatable)
|
|
continue;
|
|
|
|
/* Do any required modifications to the relocation value, and
|
|
determine what types of dynamic info we need to output, if
|
|
any. */
|
|
plabel = 0;
|
|
switch (r_type)
|
|
{
|
|
case R_PARISC_DLTIND14F:
|
|
case R_PARISC_DLTIND14R:
|
|
case R_PARISC_DLTIND21L:
|
|
{
|
|
bfd_vma off;
|
|
bfd_boolean do_got = 0;
|
|
|
|
/* Relocation is to the entry for this symbol in the
|
|
global offset table. */
|
|
if (hh != NULL)
|
|
{
|
|
bfd_boolean dyn;
|
|
|
|
off = hh->eh.got.offset;
|
|
dyn = htab->etab.dynamic_sections_created;
|
|
if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
|
|
&hh->eh))
|
|
{
|
|
/* If we aren't going to call finish_dynamic_symbol,
|
|
then we need to handle initialisation of the .got
|
|
entry and create needed relocs here. Since the
|
|
offset must always be a multiple of 4, we use the
|
|
least significant bit to record whether we have
|
|
initialised it already. */
|
|
if ((off & 1) != 0)
|
|
off &= ~1;
|
|
else
|
|
{
|
|
hh->eh.got.offset |= 1;
|
|
do_got = 1;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Local symbol case. */
|
|
if (local_got_offsets == NULL)
|
|
abort ();
|
|
|
|
off = local_got_offsets[r_symndx];
|
|
|
|
/* The offset must always be a multiple of 4. We use
|
|
the least significant bit to record whether we have
|
|
already generated the necessary reloc. */
|
|
if ((off & 1) != 0)
|
|
off &= ~1;
|
|
else
|
|
{
|
|
local_got_offsets[r_symndx] |= 1;
|
|
do_got = 1;
|
|
}
|
|
}
|
|
|
|
if (do_got)
|
|
{
|
|
if (info->shared)
|
|
{
|
|
/* Output a dynamic relocation for this GOT entry.
|
|
In this case it is relative to the base of the
|
|
object because the symbol index is zero. */
|
|
Elf_Internal_Rela outrel;
|
|
bfd_byte *loc;
|
|
asection *sec = htab->srelgot;
|
|
|
|
outrel.r_offset = (off
|
|
+ htab->sgot->output_offset
|
|
+ htab->sgot->output_section->vma);
|
|
outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
|
|
outrel.r_addend = relocation;
|
|
loc = sec->contents;
|
|
loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
|
|
bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
|
|
}
|
|
else
|
|
bfd_put_32 (output_bfd, relocation,
|
|
htab->sgot->contents + off);
|
|
}
|
|
|
|
if (off >= (bfd_vma) -2)
|
|
abort ();
|
|
|
|
/* Add the base of the GOT to the relocation value. */
|
|
relocation = (off
|
|
+ htab->sgot->output_offset
|
|
+ htab->sgot->output_section->vma);
|
|
}
|
|
break;
|
|
|
|
case R_PARISC_SEGREL32:
|
|
/* If this is the first SEGREL relocation, then initialize
|
|
the segment base values. */
|
|
if (htab->text_segment_base == (bfd_vma) -1)
|
|
bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
|
|
break;
|
|
|
|
case R_PARISC_PLABEL14R:
|
|
case R_PARISC_PLABEL21L:
|
|
case R_PARISC_PLABEL32:
|
|
if (htab->etab.dynamic_sections_created)
|
|
{
|
|
bfd_vma off;
|
|
bfd_boolean do_plt = 0;
|
|
/* If we have a global symbol with a PLT slot, then
|
|
redirect this relocation to it. */
|
|
if (hh != NULL)
|
|
{
|
|
off = hh->eh.plt.offset;
|
|
if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
|
|
&hh->eh))
|
|
{
|
|
/* In a non-shared link, adjust_dynamic_symbols
|
|
isn't called for symbols forced local. We
|
|
need to write out the plt entry here. */
|
|
if ((off & 1) != 0)
|
|
off &= ~1;
|
|
else
|
|
{
|
|
hh->eh.plt.offset |= 1;
|
|
do_plt = 1;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
bfd_vma *local_plt_offsets;
|
|
|
|
if (local_got_offsets == NULL)
|
|
abort ();
|
|
|
|
local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
|
|
off = local_plt_offsets[r_symndx];
|
|
|
|
/* As for the local .got entry case, we use the last
|
|
bit to record whether we've already initialised
|
|
this local .plt entry. */
|
|
if ((off & 1) != 0)
|
|
off &= ~1;
|
|
else
|
|
{
|
|
local_plt_offsets[r_symndx] |= 1;
|
|
do_plt = 1;
|
|
}
|
|
}
|
|
|
|
if (do_plt)
|
|
{
|
|
if (info->shared)
|
|
{
|
|
/* Output a dynamic IPLT relocation for this
|
|
PLT entry. */
|
|
Elf_Internal_Rela outrel;
|
|
bfd_byte *loc;
|
|
asection *s = htab->srelplt;
|
|
|
|
outrel.r_offset = (off
|
|
+ htab->splt->output_offset
|
|
+ htab->splt->output_section->vma);
|
|
outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
|
|
outrel.r_addend = relocation;
|
|
loc = s->contents;
|
|
loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
|
|
bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
|
|
}
|
|
else
|
|
{
|
|
bfd_put_32 (output_bfd,
|
|
relocation,
|
|
htab->splt->contents + off);
|
|
bfd_put_32 (output_bfd,
|
|
elf_gp (htab->splt->output_section->owner),
|
|
htab->splt->contents + off + 4);
|
|
}
|
|
}
|
|
|
|
if (off >= (bfd_vma) -2)
|
|
abort ();
|
|
|
|
/* PLABELs contain function pointers. Relocation is to
|
|
the entry for the function in the .plt. The magic +2
|
|
offset signals to $$dyncall that the function pointer
|
|
is in the .plt and thus has a gp pointer too.
|
|
Exception: Undefined PLABELs should have a value of
|
|
zero. */
|
|
if (hh == NULL
|
|
|| (hh->eh.root.type != bfd_link_hash_undefweak
|
|
&& hh->eh.root.type != bfd_link_hash_undefined))
|
|
{
|
|
relocation = (off
|
|
+ htab->splt->output_offset
|
|
+ htab->splt->output_section->vma
|
|
+ 2);
|
|
}
|
|
plabel = 1;
|
|
}
|
|
/* Fall through and possibly emit a dynamic relocation. */
|
|
|
|
case R_PARISC_DIR17F:
|
|
case R_PARISC_DIR17R:
|
|
case R_PARISC_DIR14F:
|
|
case R_PARISC_DIR14R:
|
|
case R_PARISC_DIR21L:
|
|
case R_PARISC_DPREL14F:
|
|
case R_PARISC_DPREL14R:
|
|
case R_PARISC_DPREL21L:
|
|
case R_PARISC_DIR32:
|
|
if ((input_section->flags & SEC_ALLOC) == 0)
|
|
break;
|
|
|
|
/* The reloc types handled here and this conditional
|
|
expression must match the code in ..check_relocs and
|
|
allocate_dynrelocs. ie. We need exactly the same condition
|
|
as in ..check_relocs, with some extra conditions (dynindx
|
|
test in this case) to cater for relocs removed by
|
|
allocate_dynrelocs. If you squint, the non-shared test
|
|
here does indeed match the one in ..check_relocs, the
|
|
difference being that here we test DEF_DYNAMIC as well as
|
|
!DEF_REGULAR. All common syms end up with !DEF_REGULAR,
|
|
which is why we can't use just that test here.
|
|
Conversely, DEF_DYNAMIC can't be used in check_relocs as
|
|
there all files have not been loaded. */
|
|
if ((info->shared
|
|
&& (hh == NULL
|
|
|| ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
|
|
|| hh->eh.root.type != bfd_link_hash_undefweak)
|
|
&& (IS_ABSOLUTE_RELOC (r_type)
|
|
|| !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
|
|
|| (!info->shared
|
|
&& hh != NULL
|
|
&& hh->eh.dynindx != -1
|
|
&& !hh->eh.non_got_ref
|
|
&& ((ELIMINATE_COPY_RELOCS
|
|
&& hh->eh.def_dynamic
|
|
&& !hh->eh.def_regular)
|
|
|| hh->eh.root.type == bfd_link_hash_undefweak
|
|
|| hh->eh.root.type == bfd_link_hash_undefined)))
|
|
{
|
|
Elf_Internal_Rela outrel;
|
|
bfd_boolean skip;
|
|
asection *sreloc;
|
|
bfd_byte *loc;
|
|
|
|
/* When generating a shared object, these relocations
|
|
are copied into the output file to be resolved at run
|
|
time. */
|
|
|
|
outrel.r_addend = rela->r_addend;
|
|
outrel.r_offset =
|
|
_bfd_elf_section_offset (output_bfd, info, input_section,
|
|
rela->r_offset);
|
|
skip = (outrel.r_offset == (bfd_vma) -1
|
|
|| outrel.r_offset == (bfd_vma) -2);
|
|
outrel.r_offset += (input_section->output_offset
|
|
+ input_section->output_section->vma);
|
|
|
|
if (skip)
|
|
{
|
|
memset (&outrel, 0, sizeof (outrel));
|
|
}
|
|
else if (hh != NULL
|
|
&& hh->eh.dynindx != -1
|
|
&& (plabel
|
|
|| !IS_ABSOLUTE_RELOC (r_type)
|
|
|| !info->shared
|
|
|| !info->symbolic
|
|
|| !hh->eh.def_regular))
|
|
{
|
|
outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
|
|
}
|
|
else /* It's a local symbol, or one marked to become local. */
|
|
{
|
|
int indx = 0;
|
|
|
|
/* Add the absolute offset of the symbol. */
|
|
outrel.r_addend += relocation;
|
|
|
|
/* Global plabels need to be processed by the
|
|
dynamic linker so that functions have at most one
|
|
fptr. For this reason, we need to differentiate
|
|
between global and local plabels, which we do by
|
|
providing the function symbol for a global plabel
|
|
reloc, and no symbol for local plabels. */
|
|
if (! plabel
|
|
&& sym_sec != NULL
|
|
&& sym_sec->output_section != NULL
|
|
&& ! bfd_is_abs_section (sym_sec))
|
|
{
|
|
asection *osec;
|
|
|
|
osec = sym_sec->output_section;
|
|
indx = elf_section_data (osec)->dynindx;
|
|
if (indx == 0)
|
|
{
|
|
osec = htab->etab.text_index_section;
|
|
indx = elf_section_data (osec)->dynindx;
|
|
}
|
|
BFD_ASSERT (indx != 0);
|
|
|
|
/* We are turning this relocation into one
|
|
against a section symbol, so subtract out the
|
|
output section's address but not the offset
|
|
of the input section in the output section. */
|
|
outrel.r_addend -= osec->vma;
|
|
}
|
|
|
|
outrel.r_info = ELF32_R_INFO (indx, r_type);
|
|
}
|
|
sreloc = elf_section_data (input_section)->sreloc;
|
|
if (sreloc == NULL)
|
|
abort ();
|
|
|
|
loc = sreloc->contents;
|
|
loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
|
|
bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
|
|
}
|
|
break;
|
|
|
|
case R_PARISC_TLS_LDM21L:
|
|
case R_PARISC_TLS_LDM14R:
|
|
{
|
|
bfd_vma off;
|
|
|
|
off = htab->tls_ldm_got.offset;
|
|
if (off & 1)
|
|
off &= ~1;
|
|
else
|
|
{
|
|
Elf_Internal_Rela outrel;
|
|
bfd_byte *loc;
|
|
|
|
outrel.r_offset = (off
|
|
+ htab->sgot->output_section->vma
|
|
+ htab->sgot->output_offset);
|
|
outrel.r_addend = 0;
|
|
outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
|
|
loc = htab->srelgot->contents;
|
|
loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
|
|
|
|
bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
|
|
htab->tls_ldm_got.offset |= 1;
|
|
}
|
|
|
|
/* Add the base of the GOT to the relocation value. */
|
|
relocation = (off
|
|
+ htab->sgot->output_offset
|
|
+ htab->sgot->output_section->vma);
|
|
|
|
break;
|
|
}
|
|
|
|
case R_PARISC_TLS_LDO21L:
|
|
case R_PARISC_TLS_LDO14R:
|
|
relocation -= dtpoff_base (info);
|
|
break;
|
|
|
|
case R_PARISC_TLS_GD21L:
|
|
case R_PARISC_TLS_GD14R:
|
|
case R_PARISC_TLS_IE21L:
|
|
case R_PARISC_TLS_IE14R:
|
|
{
|
|
bfd_vma off;
|
|
int indx;
|
|
char tls_type;
|
|
|
|
indx = 0;
|
|
if (hh != NULL)
|
|
{
|
|
bfd_boolean dyn;
|
|
dyn = htab->etab.dynamic_sections_created;
|
|
|
|
if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &hh->eh)
|
|
&& (!info->shared
|
|
|| !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
|
|
{
|
|
indx = hh->eh.dynindx;
|
|
}
|
|
off = hh->eh.got.offset;
|
|
tls_type = hh->tls_type;
|
|
}
|
|
else
|
|
{
|
|
off = local_got_offsets[r_symndx];
|
|
tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
|
|
}
|
|
|
|
if (tls_type == GOT_UNKNOWN)
|
|
abort ();
|
|
|
|
if ((off & 1) != 0)
|
|
off &= ~1;
|
|
else
|
|
{
|
|
bfd_boolean need_relocs = FALSE;
|
|
Elf_Internal_Rela outrel;
|
|
bfd_byte *loc = NULL;
|
|
int cur_off = off;
|
|
|
|
/* The GOT entries have not been initialized yet. Do it
|
|
now, and emit any relocations. If both an IE GOT and a
|
|
GD GOT are necessary, we emit the GD first. */
|
|
|
|
if ((info->shared || indx != 0)
|
|
&& (hh == NULL
|
|
|| ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
|
|
|| hh->eh.root.type != bfd_link_hash_undefweak))
|
|
{
|
|
need_relocs = TRUE;
|
|
loc = htab->srelgot->contents;
|
|
/* FIXME (CAO): Should this be reloc_count++ ? */
|
|
loc += htab->srelgot->reloc_count * sizeof (Elf32_External_Rela);
|
|
}
|
|
|
|
if (tls_type & GOT_TLS_GD)
|
|
{
|
|
if (need_relocs)
|
|
{
|
|
outrel.r_offset = (cur_off
|
|
+ htab->sgot->output_section->vma
|
|
+ htab->sgot->output_offset);
|
|
outrel.r_info = ELF32_R_INFO (indx,R_PARISC_TLS_DTPMOD32);
|
|
outrel.r_addend = 0;
|
|
bfd_put_32 (output_bfd, 0, htab->sgot->contents + cur_off);
|
|
bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
|
|
htab->srelgot->reloc_count++;
|
|
loc += sizeof (Elf32_External_Rela);
|
|
|
|
if (indx == 0)
|
|
bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
|
|
htab->sgot->contents + cur_off + 4);
|
|
else
|
|
{
|
|
bfd_put_32 (output_bfd, 0,
|
|
htab->sgot->contents + cur_off + 4);
|
|
outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
|
|
outrel.r_offset += 4;
|
|
bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc);
|
|
htab->srelgot->reloc_count++;
|
|
loc += sizeof (Elf32_External_Rela);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* If we are not emitting relocations for a
|
|
general dynamic reference, then we must be in a
|
|
static link or an executable link with the
|
|
symbol binding locally. Mark it as belonging
|
|
to module 1, the executable. */
|
|
bfd_put_32 (output_bfd, 1,
|
|
htab->sgot->contents + cur_off);
|
|
bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
|
|
htab->sgot->contents + cur_off + 4);
|
|
}
|
|
|
|
|
|
cur_off += 8;
|
|
}
|
|
|
|
if (tls_type & GOT_TLS_IE)
|
|
{
|
|
if (need_relocs)
|
|
{
|
|
outrel.r_offset = (cur_off
|
|
+ htab->sgot->output_section->vma
|
|
+ htab->sgot->output_offset);
|
|
outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_TPREL32);
|
|
|
|
if (indx == 0)
|
|
outrel.r_addend = relocation - dtpoff_base (info);
|
|
else
|
|
outrel.r_addend = 0;
|
|
|
|
bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
|
|
htab->srelgot->reloc_count++;
|
|
loc += sizeof (Elf32_External_Rela);
|
|
}
|
|
else
|
|
bfd_put_32 (output_bfd, tpoff (info, relocation),
|
|
htab->sgot->contents + cur_off);
|
|
|
|
cur_off += 4;
|
|
}
|
|
|
|
if (hh != NULL)
|
|
hh->eh.got.offset |= 1;
|
|
else
|
|
local_got_offsets[r_symndx] |= 1;
|
|
}
|
|
|
|
if ((tls_type & GOT_TLS_GD)
|
|
&& r_type != R_PARISC_TLS_GD21L
|
|
&& r_type != R_PARISC_TLS_GD14R)
|
|
off += 2 * GOT_ENTRY_SIZE;
|
|
|
|
/* Add the base of the GOT to the relocation value. */
|
|
relocation = (off
|
|
+ htab->sgot->output_offset
|
|
+ htab->sgot->output_section->vma);
|
|
|
|
break;
|
|
}
|
|
|
|
case R_PARISC_TLS_LE21L:
|
|
case R_PARISC_TLS_LE14R:
|
|
{
|
|
relocation = tpoff (info, relocation);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
rstatus = final_link_relocate (input_section, contents, rela, relocation,
|
|
htab, sym_sec, hh, info);
|
|
|
|
if (rstatus == bfd_reloc_ok)
|
|
continue;
|
|
|
|
if (hh != NULL)
|
|
sym_name = hh_name (hh);
|
|
else
|
|
{
|
|
sym_name = bfd_elf_string_from_elf_section (input_bfd,
|
|
symtab_hdr->sh_link,
|
|
sym->st_name);
|
|
if (sym_name == NULL)
|
|
return FALSE;
|
|
if (*sym_name == '\0')
|
|
sym_name = bfd_section_name (input_bfd, sym_sec);
|
|
}
|
|
|
|
howto = elf_hppa_howto_table + r_type;
|
|
|
|
if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
|
|
{
|
|
if (rstatus == bfd_reloc_notsupported || !warned_undef)
|
|
{
|
|
(*_bfd_error_handler)
|
|
(_("%B(%A+0x%lx): cannot handle %s for %s"),
|
|
input_bfd,
|
|
input_section,
|
|
(long) rela->r_offset,
|
|
howto->name,
|
|
sym_name);
|
|
bfd_set_error (bfd_error_bad_value);
|
|
return FALSE;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (!((*info->callbacks->reloc_overflow)
|
|
(info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
|
|
(bfd_vma) 0, input_bfd, input_section, rela->r_offset)))
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Finish up dynamic symbol handling. We set the contents of various
|
|
dynamic sections here. */
|
|
|
|
static bfd_boolean
|
|
elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
|
|
struct bfd_link_info *info,
|
|
struct elf_link_hash_entry *eh,
|
|
Elf_Internal_Sym *sym)
|
|
{
|
|
struct elf32_hppa_link_hash_table *htab;
|
|
Elf_Internal_Rela rela;
|
|
bfd_byte *loc;
|
|
|
|
htab = hppa_link_hash_table (info);
|
|
if (htab == NULL)
|
|
return FALSE;
|
|
|
|
if (eh->plt.offset != (bfd_vma) -1)
|
|
{
|
|
bfd_vma value;
|
|
|
|
if (eh->plt.offset & 1)
|
|
abort ();
|
|
|
|
/* This symbol has an entry in the procedure linkage table. Set
|
|
it up.
|
|
|
|
The format of a plt entry is
|
|
<funcaddr>
|
|
<__gp>
|
|
*/
|
|
value = 0;
|
|
if (eh->root.type == bfd_link_hash_defined
|
|
|| eh->root.type == bfd_link_hash_defweak)
|
|
{
|
|
value = eh->root.u.def.value;
|
|
if (eh->root.u.def.section->output_section != NULL)
|
|
value += (eh->root.u.def.section->output_offset
|
|
+ eh->root.u.def.section->output_section->vma);
|
|
}
|
|
|
|
/* Create a dynamic IPLT relocation for this entry. */
|
|
rela.r_offset = (eh->plt.offset
|
|
+ htab->splt->output_offset
|
|
+ htab->splt->output_section->vma);
|
|
if (eh->dynindx != -1)
|
|
{
|
|
rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
|
|
rela.r_addend = 0;
|
|
}
|
|
else
|
|
{
|
|
/* This symbol has been marked to become local, and is
|
|
used by a plabel so must be kept in the .plt. */
|
|
rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
|
|
rela.r_addend = value;
|
|
}
|
|
|
|
loc = htab->srelplt->contents;
|
|
loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
|
|
bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc);
|
|
|
|
if (!eh->def_regular)
|
|
{
|
|
/* Mark the symbol as undefined, rather than as defined in
|
|
the .plt section. Leave the value alone. */
|
|
sym->st_shndx = SHN_UNDEF;
|
|
}
|
|
}
|
|
|
|
if (eh->got.offset != (bfd_vma) -1
|
|
&& (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_GD) == 0
|
|
&& (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_IE) == 0)
|
|
{
|
|
/* This symbol has an entry in the global offset table. Set it
|
|
up. */
|
|
|
|
rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
|
|
+ htab->sgot->output_offset
|
|
+ htab->sgot->output_section->vma);
|
|
|
|
/* If this is a -Bsymbolic link and the symbol is defined
|
|
locally or was forced to be local because of a version file,
|
|
we just want to emit a RELATIVE reloc. The entry in the
|
|
global offset table will already have been initialized in the
|
|
relocate_section function. */
|
|
if (info->shared
|
|
&& (info->symbolic || eh->dynindx == -1)
|
|
&& eh->def_regular)
|
|
{
|
|
rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
|
|
rela.r_addend = (eh->root.u.def.value
|
|
+ eh->root.u.def.section->output_offset
|
|
+ eh->root.u.def.section->output_section->vma);
|
|
}
|
|
else
|
|
{
|
|
if ((eh->got.offset & 1) != 0)
|
|
abort ();
|
|
|
|
bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1));
|
|
rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
|
|
rela.r_addend = 0;
|
|
}
|
|
|
|
loc = htab->srelgot->contents;
|
|
loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
|
|
bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
|
|
}
|
|
|
|
if (eh->needs_copy)
|
|
{
|
|
asection *sec;
|
|
|
|
/* This symbol needs a copy reloc. Set it up. */
|
|
|
|
if (! (eh->dynindx != -1
|
|
&& (eh->root.type == bfd_link_hash_defined
|
|
|| eh->root.type == bfd_link_hash_defweak)))
|
|
abort ();
|
|
|
|
sec = htab->srelbss;
|
|
|
|
rela.r_offset = (eh->root.u.def.value
|
|
+ eh->root.u.def.section->output_offset
|
|
+ eh->root.u.def.section->output_section->vma);
|
|
rela.r_addend = 0;
|
|
rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
|
|
loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
|
|
bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
|
|
}
|
|
|
|
/* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
|
|
if (eh == htab->etab.hdynamic || eh == htab->etab.hgot)
|
|
{
|
|
sym->st_shndx = SHN_ABS;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Used to decide how to sort relocs in an optimal manner for the
|
|
dynamic linker, before writing them out. */
|
|
|
|
static enum elf_reloc_type_class
|
|
elf32_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
|
const asection *rel_sec ATTRIBUTE_UNUSED,
|
|
const Elf_Internal_Rela *rela)
|
|
{
|
|
/* Handle TLS relocs first; we don't want them to be marked
|
|
relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)"
|
|
check below. */
|
|
switch ((int) ELF32_R_TYPE (rela->r_info))
|
|
{
|
|
case R_PARISC_TLS_DTPMOD32:
|
|
case R_PARISC_TLS_DTPOFF32:
|
|
case R_PARISC_TLS_TPREL32:
|
|
return reloc_class_normal;
|
|
}
|
|
|
|
if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)
|
|
return reloc_class_relative;
|
|
|
|
switch ((int) ELF32_R_TYPE (rela->r_info))
|
|
{
|
|
case R_PARISC_IPLT:
|
|
return reloc_class_plt;
|
|
case R_PARISC_COPY:
|
|
return reloc_class_copy;
|
|
default:
|
|
return reloc_class_normal;
|
|
}
|
|
}
|
|
|
|
/* Finish up the dynamic sections. */
|
|
|
|
static bfd_boolean
|
|
elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
|
|
struct bfd_link_info *info)
|
|
{
|
|
bfd *dynobj;
|
|
struct elf32_hppa_link_hash_table *htab;
|
|
asection *sdyn;
|
|
asection * sgot;
|
|
|
|
htab = hppa_link_hash_table (info);
|
|
if (htab == NULL)
|
|
return FALSE;
|
|
|
|
dynobj = htab->etab.dynobj;
|
|
|
|
sgot = htab->sgot;
|
|
/* A broken linker script might have discarded the dynamic sections.
|
|
Catch this here so that we do not seg-fault later on. */
|
|
if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
|
|
return FALSE;
|
|
|
|
sdyn = bfd_get_linker_section (dynobj, ".dynamic");
|
|
|
|
if (htab->etab.dynamic_sections_created)
|
|
{
|
|
Elf32_External_Dyn *dyncon, *dynconend;
|
|
|
|
if (sdyn == NULL)
|
|
abort ();
|
|
|
|
dyncon = (Elf32_External_Dyn *) sdyn->contents;
|
|
dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
|
|
for (; dyncon < dynconend; dyncon++)
|
|
{
|
|
Elf_Internal_Dyn dyn;
|
|
asection *s;
|
|
|
|
bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
|
|
|
|
switch (dyn.d_tag)
|
|
{
|
|
default:
|
|
continue;
|
|
|
|
case DT_PLTGOT:
|
|
/* Use PLTGOT to set the GOT register. */
|
|
dyn.d_un.d_ptr = elf_gp (output_bfd);
|
|
break;
|
|
|
|
case DT_JMPREL:
|
|
s = htab->srelplt;
|
|
dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
|
|
break;
|
|
|
|
case DT_PLTRELSZ:
|
|
s = htab->srelplt;
|
|
dyn.d_un.d_val = s->size;
|
|
break;
|
|
|
|
case DT_RELASZ:
|
|
/* Don't count procedure linkage table relocs in the
|
|
overall reloc count. */
|
|
s = htab->srelplt;
|
|
if (s == NULL)
|
|
continue;
|
|
dyn.d_un.d_val -= s->size;
|
|
break;
|
|
|
|
case DT_RELA:
|
|
/* We may not be using the standard ELF linker script.
|
|
If .rela.plt is the first .rela section, we adjust
|
|
DT_RELA to not include it. */
|
|
s = htab->srelplt;
|
|
if (s == NULL)
|
|
continue;
|
|
if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
|
|
continue;
|
|
dyn.d_un.d_ptr += s->size;
|
|
break;
|
|
}
|
|
|
|
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
|
|
}
|
|
}
|
|
|
|
if (sgot != NULL && sgot->size != 0)
|
|
{
|
|
/* Fill in the first entry in the global offset table.
|
|
We use it to point to our dynamic section, if we have one. */
|
|
bfd_put_32 (output_bfd,
|
|
sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
|
|
sgot->contents);
|
|
|
|
/* The second entry is reserved for use by the dynamic linker. */
|
|
memset (sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
|
|
|
|
/* Set .got entry size. */
|
|
elf_section_data (sgot->output_section)
|
|
->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
|
|
}
|
|
|
|
if (htab->splt != NULL && htab->splt->size != 0)
|
|
{
|
|
/* Set plt entry size. */
|
|
elf_section_data (htab->splt->output_section)
|
|
->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
|
|
|
|
if (htab->need_plt_stub)
|
|
{
|
|
/* Set up the .plt stub. */
|
|
memcpy (htab->splt->contents
|
|
+ htab->splt->size - sizeof (plt_stub),
|
|
plt_stub, sizeof (plt_stub));
|
|
|
|
if ((htab->splt->output_offset
|
|
+ htab->splt->output_section->vma
|
|
+ htab->splt->size)
|
|
!= (sgot->output_offset
|
|
+ sgot->output_section->vma))
|
|
{
|
|
(*_bfd_error_handler)
|
|
(_(".got section not immediately after .plt section"));
|
|
return FALSE;
|
|
}
|
|
}
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Called when writing out an object file to decide the type of a
|
|
symbol. */
|
|
static int
|
|
elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
|
|
{
|
|
if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
|
|
return STT_PARISC_MILLI;
|
|
else
|
|
return type;
|
|
}
|
|
|
|
/* Misc BFD support code. */
|
|
#define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
|
|
#define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
|
|
#define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
|
|
#define elf_info_to_howto elf_hppa_info_to_howto
|
|
#define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
|
|
|
|
/* Stuff for the BFD linker. */
|
|
#define bfd_elf32_bfd_final_link elf32_hppa_final_link
|
|
#define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
|
|
#define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
|
|
#define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
|
|
#define elf_backend_check_relocs elf32_hppa_check_relocs
|
|
#define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
|
|
#define elf_backend_fake_sections elf_hppa_fake_sections
|
|
#define elf_backend_relocate_section elf32_hppa_relocate_section
|
|
#define elf_backend_hide_symbol elf32_hppa_hide_symbol
|
|
#define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
|
|
#define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
|
|
#define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
|
|
#define elf_backend_init_index_section _bfd_elf_init_1_index_section
|
|
#define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
|
|
#define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
|
|
#define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
|
|
#define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
|
|
#define elf_backend_object_p elf32_hppa_object_p
|
|
#define elf_backend_final_write_processing elf_hppa_final_write_processing
|
|
#define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
|
|
#define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
|
|
#define elf_backend_action_discarded elf_hppa_action_discarded
|
|
|
|
#define elf_backend_can_gc_sections 1
|
|
#define elf_backend_can_refcount 1
|
|
#define elf_backend_plt_alignment 2
|
|
#define elf_backend_want_got_plt 0
|
|
#define elf_backend_plt_readonly 0
|
|
#define elf_backend_want_plt_sym 0
|
|
#define elf_backend_got_header_size 8
|
|
#define elf_backend_rela_normal 1
|
|
|
|
#define TARGET_BIG_SYM hppa_elf32_vec
|
|
#define TARGET_BIG_NAME "elf32-hppa"
|
|
#define ELF_ARCH bfd_arch_hppa
|
|
#define ELF_TARGET_ID HPPA32_ELF_DATA
|
|
#define ELF_MACHINE_CODE EM_PARISC
|
|
#define ELF_MAXPAGESIZE 0x1000
|
|
#define ELF_OSABI ELFOSABI_HPUX
|
|
#define elf32_bed elf32_hppa_hpux_bed
|
|
|
|
#include "elf32-target.h"
|
|
|
|
#undef TARGET_BIG_SYM
|
|
#define TARGET_BIG_SYM hppa_elf32_linux_vec
|
|
#undef TARGET_BIG_NAME
|
|
#define TARGET_BIG_NAME "elf32-hppa-linux"
|
|
#undef ELF_OSABI
|
|
#define ELF_OSABI ELFOSABI_GNU
|
|
#undef elf32_bed
|
|
#define elf32_bed elf32_hppa_linux_bed
|
|
|
|
#include "elf32-target.h"
|
|
|
|
#undef TARGET_BIG_SYM
|
|
#define TARGET_BIG_SYM hppa_elf32_nbsd_vec
|
|
#undef TARGET_BIG_NAME
|
|
#define TARGET_BIG_NAME "elf32-hppa-netbsd"
|
|
#undef ELF_OSABI
|
|
#define ELF_OSABI ELFOSABI_NETBSD
|
|
#undef elf32_bed
|
|
#define elf32_bed elf32_hppa_netbsd_bed
|
|
|
|
#include "elf32-target.h"
|