mirror of
https://github.com/autc04/Retro68.git
synced 2024-12-27 07:31:35 +00:00
355 lines
10 KiB
C
355 lines
10 KiB
C
/* Division and remainder routines for Tile.
|
|
Copyright (C) 2011, 2012
|
|
Free Software Foundation, Inc.
|
|
Contributed by Walter Lee (walt@tilera.com)
|
|
|
|
This file is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation; either version 3, or (at your option) any
|
|
later version.
|
|
|
|
This file is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
Under Section 7 of GPL version 3, you are granted additional
|
|
permissions described in the GCC Runtime Library Exception, version
|
|
3.1, as published by the Free Software Foundation.
|
|
|
|
You should have received a copy of the GNU General Public License and
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
typedef int int32_t;
|
|
typedef unsigned uint32_t;
|
|
typedef long long int64_t;
|
|
typedef unsigned long long uint64_t;
|
|
|
|
/* Raise signal 8 (SIGFPE) with code 1 (FPE_INTDIV). */
|
|
static inline void
|
|
raise_intdiv (void)
|
|
{
|
|
asm ("{ raise; moveli zero, 8 + (1 << 6) }");
|
|
}
|
|
|
|
|
|
#ifndef __tilegx__
|
|
/*__udivsi3 - 32 bit integer unsigned divide */
|
|
static inline uint32_t __attribute__ ((always_inline))
|
|
__udivsi3_inline (uint32_t dividend, uint32_t divisor)
|
|
{
|
|
/* Divide out any power of two factor from dividend and divisor.
|
|
Note that when dividing by zero the divisor will remain zero,
|
|
which is all we need to detect that case below. */
|
|
const int power_of_two_factor = __insn_ctz (divisor);
|
|
divisor >>= power_of_two_factor;
|
|
dividend >>= power_of_two_factor;
|
|
|
|
/* Checks for division by power of two or division by zero. */
|
|
if (divisor <= 1)
|
|
{
|
|
if (divisor == 0)
|
|
{
|
|
raise_intdiv ();
|
|
return 0;
|
|
}
|
|
return dividend;
|
|
}
|
|
|
|
/* Compute (a / b) by repeatedly finding the largest N
|
|
such that (b << N) <= a. For each such N, set bit N in the
|
|
quotient, subtract (b << N) from a, and keep going. Think of this as
|
|
the reverse of the "shift-and-add" that a multiply does. The values
|
|
of N are precisely those shift counts.
|
|
|
|
Finding N is easy. First, use clz(b) - clz(a) to find the N
|
|
that lines up the high bit of (b << N) with the high bit of a.
|
|
Any larger value of N would definitely make (b << N) > a,
|
|
which is too big.
|
|
|
|
Then, if (b << N) > a (because it has larger low bits), decrement
|
|
N by one. This adjustment will definitely make (b << N) less
|
|
than a, because a's high bit is now one higher than b's. */
|
|
|
|
/* Precomputing the max_ values allows us to avoid a subtract
|
|
in the inner loop and just right shift by clz(remainder). */
|
|
const int divisor_clz = __insn_clz (divisor);
|
|
const uint32_t max_divisor = divisor << divisor_clz;
|
|
const uint32_t max_qbit = 1 << divisor_clz;
|
|
|
|
uint32_t quotient = 0;
|
|
uint32_t remainder = dividend;
|
|
|
|
while (remainder >= divisor)
|
|
{
|
|
int shift = __insn_clz (remainder);
|
|
uint32_t scaled_divisor = max_divisor >> shift;
|
|
uint32_t quotient_bit = max_qbit >> shift;
|
|
|
|
int too_big = (scaled_divisor > remainder);
|
|
scaled_divisor >>= too_big;
|
|
quotient_bit >>= too_big;
|
|
remainder -= scaled_divisor;
|
|
quotient |= quotient_bit;
|
|
}
|
|
return quotient;
|
|
}
|
|
#endif /* !__tilegx__ */
|
|
|
|
|
|
/* __udivdi3 - 64 bit integer unsigned divide */
|
|
static inline uint64_t __attribute__ ((always_inline))
|
|
__udivdi3_inline (uint64_t dividend, uint64_t divisor)
|
|
{
|
|
/* Divide out any power of two factor from dividend and divisor.
|
|
Note that when dividing by zero the divisor will remain zero,
|
|
which is all we need to detect that case below. */
|
|
const int power_of_two_factor = __builtin_ctzll (divisor);
|
|
divisor >>= power_of_two_factor;
|
|
dividend >>= power_of_two_factor;
|
|
|
|
/* Checks for division by power of two or division by zero. */
|
|
if (divisor <= 1)
|
|
{
|
|
if (divisor == 0)
|
|
{
|
|
raise_intdiv ();
|
|
return 0;
|
|
}
|
|
return dividend;
|
|
}
|
|
|
|
#ifndef __tilegx__
|
|
if (((uint32_t) (dividend >> 32) | ((uint32_t) (divisor >> 32))) == 0)
|
|
{
|
|
/* Operands both fit in 32 bits, so use faster 32 bit algorithm. */
|
|
return __udivsi3_inline ((uint32_t) dividend, (uint32_t) divisor);
|
|
}
|
|
#endif /* !__tilegx__ */
|
|
|
|
/* See algorithm description in __udivsi3 */
|
|
|
|
const int divisor_clz = __builtin_clzll (divisor);
|
|
const uint64_t max_divisor = divisor << divisor_clz;
|
|
const uint64_t max_qbit = 1ULL << divisor_clz;
|
|
|
|
uint64_t quotient = 0;
|
|
uint64_t remainder = dividend;
|
|
|
|
while (remainder >= divisor)
|
|
{
|
|
int shift = __builtin_clzll (remainder);
|
|
uint64_t scaled_divisor = max_divisor >> shift;
|
|
uint64_t quotient_bit = max_qbit >> shift;
|
|
|
|
int too_big = (scaled_divisor > remainder);
|
|
scaled_divisor >>= too_big;
|
|
quotient_bit >>= too_big;
|
|
remainder -= scaled_divisor;
|
|
quotient |= quotient_bit;
|
|
}
|
|
return quotient;
|
|
}
|
|
|
|
|
|
#ifndef __tilegx__
|
|
/* __umodsi3 - 32 bit integer unsigned modulo */
|
|
static inline uint32_t __attribute__ ((always_inline))
|
|
__umodsi3_inline (uint32_t dividend, uint32_t divisor)
|
|
{
|
|
/* Shortcircuit mod by a power of two (and catch mod by zero). */
|
|
const uint32_t mask = divisor - 1;
|
|
if ((divisor & mask) == 0)
|
|
{
|
|
if (divisor == 0)
|
|
{
|
|
raise_intdiv ();
|
|
return 0;
|
|
}
|
|
return dividend & mask;
|
|
}
|
|
|
|
/* We compute the remainder (a % b) by repeatedly subtracting off
|
|
multiples of b from a until a < b. The key is that subtracting
|
|
off a multiple of b does not affect the result mod b.
|
|
|
|
To make the algorithm run efficiently, we need to subtract
|
|
off a large multiple of b at each step. We subtract the largest
|
|
(b << N) that is <= a.
|
|
|
|
Finding N is easy. First, use clz(b) - clz(a) to find the N
|
|
that lines up the high bit of (b << N) with the high bit of a.
|
|
Any larger value of N would definitely make (b << N) > a,
|
|
which is too big.
|
|
|
|
Then, if (b << N) > a (because it has larger low bits), decrement
|
|
N by one. This adjustment will definitely make (b << N) less
|
|
than a, because a's high bit is now one higher than b's. */
|
|
const uint32_t max_divisor = divisor << __insn_clz (divisor);
|
|
|
|
uint32_t remainder = dividend;
|
|
while (remainder >= divisor)
|
|
{
|
|
const int shift = __insn_clz (remainder);
|
|
uint32_t scaled_divisor = max_divisor >> shift;
|
|
scaled_divisor >>= (scaled_divisor > remainder);
|
|
remainder -= scaled_divisor;
|
|
}
|
|
|
|
return remainder;
|
|
}
|
|
#endif /* !__tilegx__ */
|
|
|
|
|
|
/* __umoddi3 - 64 bit integer unsigned modulo */
|
|
static inline uint64_t __attribute__ ((always_inline))
|
|
__umoddi3_inline (uint64_t dividend, uint64_t divisor)
|
|
{
|
|
#ifndef __tilegx__
|
|
if (((uint32_t) (dividend >> 32) | ((uint32_t) (divisor >> 32))) == 0)
|
|
{
|
|
/* Operands both fit in 32 bits, so use faster 32 bit algorithm. */
|
|
return __umodsi3_inline ((uint32_t) dividend, (uint32_t) divisor);
|
|
}
|
|
#endif /* !__tilegx__ */
|
|
|
|
/* Shortcircuit mod by a power of two (and catch mod by zero). */
|
|
const uint64_t mask = divisor - 1;
|
|
if ((divisor & mask) == 0)
|
|
{
|
|
if (divisor == 0)
|
|
{
|
|
raise_intdiv ();
|
|
return 0;
|
|
}
|
|
return dividend & mask;
|
|
}
|
|
|
|
/* See algorithm description in __umodsi3 */
|
|
const uint64_t max_divisor = divisor << __builtin_clzll (divisor);
|
|
|
|
uint64_t remainder = dividend;
|
|
while (remainder >= divisor)
|
|
{
|
|
const int shift = __builtin_clzll (remainder);
|
|
uint64_t scaled_divisor = max_divisor >> shift;
|
|
scaled_divisor >>= (scaled_divisor > remainder);
|
|
remainder -= scaled_divisor;
|
|
}
|
|
|
|
return remainder;
|
|
}
|
|
|
|
|
|
uint32_t __udivsi3 (uint32_t dividend, uint32_t divisor);
|
|
#ifdef L_tile_udivsi3
|
|
uint32_t
|
|
__udivsi3 (uint32_t dividend, uint32_t divisor)
|
|
{
|
|
#ifndef __tilegx__
|
|
return __udivsi3_inline (dividend, divisor);
|
|
#else /* !__tilegx__ */
|
|
uint64_t n = __udivdi3_inline (((uint64_t) dividend), ((uint64_t) divisor));
|
|
return (uint32_t) n;
|
|
#endif /* !__tilegx__ */
|
|
}
|
|
#endif
|
|
|
|
#define ABS(x) ((x) >= 0 ? (x) : -(x))
|
|
|
|
int32_t __divsi3 (int32_t dividend, int32_t divisor);
|
|
#ifdef L_tile_divsi3
|
|
/* __divsi3 - 32 bit integer signed divide */
|
|
int32_t
|
|
__divsi3 (int32_t dividend, int32_t divisor)
|
|
{
|
|
#ifndef __tilegx__
|
|
uint32_t n = __udivsi3_inline (ABS (dividend), ABS (divisor));
|
|
#else /* !__tilegx__ */
|
|
uint64_t n =
|
|
__udivdi3_inline (ABS ((int64_t) dividend), ABS ((int64_t) divisor));
|
|
#endif /* !__tilegx__ */
|
|
if ((dividend ^ divisor) < 0)
|
|
n = -n;
|
|
return (int32_t) n;
|
|
}
|
|
#endif
|
|
|
|
|
|
uint64_t __udivdi3 (uint64_t dividend, uint64_t divisor);
|
|
#ifdef L_tile_udivdi3
|
|
uint64_t
|
|
__udivdi3 (uint64_t dividend, uint64_t divisor)
|
|
{
|
|
return __udivdi3_inline (dividend, divisor);
|
|
}
|
|
#endif
|
|
|
|
/*__divdi3 - 64 bit integer signed divide */
|
|
int64_t __divdi3 (int64_t dividend, int64_t divisor);
|
|
#ifdef L_tile_divdi3
|
|
int64_t
|
|
__divdi3 (int64_t dividend, int64_t divisor)
|
|
{
|
|
uint64_t n = __udivdi3_inline (ABS (dividend), ABS (divisor));
|
|
if ((dividend ^ divisor) < 0)
|
|
n = -n;
|
|
return (int64_t) n;
|
|
}
|
|
#endif
|
|
|
|
|
|
uint32_t __umodsi3 (uint32_t dividend, uint32_t divisor);
|
|
#ifdef L_tile_umodsi3
|
|
uint32_t
|
|
__umodsi3 (uint32_t dividend, uint32_t divisor)
|
|
{
|
|
#ifndef __tilegx__
|
|
return __umodsi3_inline (dividend, divisor);
|
|
#else /* !__tilegx__ */
|
|
return __umoddi3_inline ((uint64_t) dividend, (uint64_t) divisor);
|
|
#endif /* !__tilegx__ */
|
|
}
|
|
#endif
|
|
|
|
|
|
/* __modsi3 - 32 bit integer signed modulo */
|
|
int32_t __modsi3 (int32_t dividend, int32_t divisor);
|
|
#ifdef L_tile_modsi3
|
|
int32_t
|
|
__modsi3 (int32_t dividend, int32_t divisor)
|
|
{
|
|
#ifndef __tilegx__
|
|
uint32_t remainder = __umodsi3_inline (ABS (dividend), ABS (divisor));
|
|
#else /* !__tilegx__ */
|
|
uint64_t remainder =
|
|
__umoddi3_inline (ABS ((int64_t) dividend), ABS ((int64_t) divisor));
|
|
#endif /* !__tilegx__ */
|
|
return (int32_t) ((dividend >= 0) ? remainder : -remainder);
|
|
}
|
|
#endif
|
|
|
|
|
|
uint64_t __umoddi3 (uint64_t dividend, uint64_t divisor);
|
|
#ifdef L_tile_umoddi3
|
|
uint64_t
|
|
__umoddi3 (uint64_t dividend, uint64_t divisor)
|
|
{
|
|
return __umoddi3_inline (dividend, divisor);
|
|
}
|
|
#endif
|
|
|
|
|
|
/* __moddi3 - 64 bit integer signed modulo */
|
|
int64_t __moddi3 (int64_t dividend, int64_t divisor);
|
|
#ifdef L_tile_moddi3
|
|
int64_t
|
|
__moddi3 (int64_t dividend, int64_t divisor)
|
|
{
|
|
uint64_t remainder = __umoddi3_inline (ABS (dividend), ABS (divisor));
|
|
return (int64_t) ((dividend >= 0) ? remainder : -remainder);
|
|
}
|
|
#endif
|