mirror of
https://github.com/autc04/Retro68.git
synced 2025-01-20 19:30:37 +00:00
518 lines
14 KiB
Go
518 lines
14 KiB
Go
// Copyright 2011 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// +build linux
|
|
|
|
package syscall
|
|
|
|
import (
|
|
"unsafe"
|
|
)
|
|
|
|
//sysnb raw_prctl(option int, arg2 int, arg3 int, arg4 int, arg5 int) (ret int, err Errno)
|
|
//prctl(option _C_int, arg2 _C_long, arg3 _C_long, arg4 _C_long, arg5 _C_long) _C_int
|
|
|
|
//sysnb rawUnshare(flags int) (err Errno)
|
|
//unshare(flags _C_int) _C_int
|
|
|
|
//sysnb rawMount(source *byte, target *byte, fstype *byte, flags uintptr, data *byte) (err Errno)
|
|
//mount(source *byte, target *byte, fstype *byte, flags _C_long, data *byte) _C_int
|
|
|
|
// SysProcIDMap holds Container ID to Host ID mappings used for User Namespaces in Linux.
|
|
// See user_namespaces(7).
|
|
type SysProcIDMap struct {
|
|
ContainerID int // Container ID.
|
|
HostID int // Host ID.
|
|
Size int // Size.
|
|
}
|
|
|
|
type SysProcAttr struct {
|
|
Chroot string // Chroot.
|
|
Credential *Credential // Credential.
|
|
Ptrace bool // Enable tracing.
|
|
Setsid bool // Create session.
|
|
Setpgid bool // Set process group ID to Pgid, or, if Pgid == 0, to new pid.
|
|
Setctty bool // Set controlling terminal to fd Ctty (only meaningful if Setsid is set)
|
|
Noctty bool // Detach fd 0 from controlling terminal
|
|
Ctty int // Controlling TTY fd
|
|
Foreground bool // Place child's process group in foreground. (Implies Setpgid. Uses Ctty as fd of controlling TTY)
|
|
Pgid int // Child's process group ID if Setpgid.
|
|
Pdeathsig Signal // Signal that the process will get when its parent dies (Linux only)
|
|
Cloneflags uintptr // Flags for clone calls (Linux only)
|
|
Unshareflags uintptr // Flags for unshare calls (Linux only)
|
|
UidMappings []SysProcIDMap // User ID mappings for user namespaces.
|
|
GidMappings []SysProcIDMap // Group ID mappings for user namespaces.
|
|
// GidMappingsEnableSetgroups enabling setgroups syscall.
|
|
// If false, then setgroups syscall will be disabled for the child process.
|
|
// This parameter is no-op if GidMappings == nil. Otherwise for unprivileged
|
|
// users this should be set to false for mappings work.
|
|
GidMappingsEnableSetgroups bool
|
|
AmbientCaps []uintptr // Ambient capabilities (Linux only)
|
|
}
|
|
|
|
var (
|
|
none = [...]byte{'n', 'o', 'n', 'e', 0}
|
|
slash = [...]byte{'/', 0}
|
|
)
|
|
|
|
// Implemented in runtime package.
|
|
func runtime_BeforeFork()
|
|
func runtime_AfterFork()
|
|
func runtime_AfterForkInChild()
|
|
|
|
// Implemented in clone_linux.c
|
|
func rawClone(flags _C_ulong, child_stack *byte, ptid *Pid_t, ctid *Pid_t, regs unsafe.Pointer) _C_long
|
|
|
|
// Fork, dup fd onto 0..len(fd), and exec(argv0, argvv, envv) in child.
|
|
// If a dup or exec fails, write the errno error to pipe.
|
|
// (Pipe is close-on-exec so if exec succeeds, it will be closed.)
|
|
// In the child, this function must not acquire any locks, because
|
|
// they might have been locked at the time of the fork. This means
|
|
// no rescheduling, no malloc calls, and no new stack segments.
|
|
// For the same reason compiler does not race instrument it.
|
|
// The calls to RawSyscall are okay because they are assembly
|
|
// functions that do not grow the stack.
|
|
//go:norace
|
|
func forkAndExecInChild(argv0 *byte, argv, envv []*byte, chroot, dir *byte, attr *ProcAttr, sys *SysProcAttr, pipe int) (pid int, err Errno) {
|
|
// Set up and fork. This returns immediately in the parent or
|
|
// if there's an error.
|
|
r1, err1, p, locked := forkAndExecInChild1(argv0, argv, envv, chroot, dir, attr, sys, pipe)
|
|
if locked {
|
|
runtime_AfterFork()
|
|
}
|
|
if err1 != 0 {
|
|
return 0, err1
|
|
}
|
|
|
|
// parent; return PID
|
|
pid = int(r1)
|
|
|
|
if sys.UidMappings != nil || sys.GidMappings != nil {
|
|
Close(p[0])
|
|
err := writeUidGidMappings(pid, sys)
|
|
var err2 Errno
|
|
if err != nil {
|
|
err2 = err.(Errno)
|
|
}
|
|
RawSyscall(SYS_WRITE, uintptr(p[1]), uintptr(unsafe.Pointer(&err2)), unsafe.Sizeof(err2))
|
|
Close(p[1])
|
|
}
|
|
|
|
return pid, 0
|
|
}
|
|
|
|
// forkAndExecInChild1 implements the body of forkAndExecInChild up to
|
|
// the parent's post-fork path. This is a separate function so we can
|
|
// separate the child's and parent's stack frames if we're using
|
|
// vfork.
|
|
//
|
|
// This is go:noinline because the point is to keep the stack frames
|
|
// of this and forkAndExecInChild separate.
|
|
//
|
|
//go:noinline
|
|
//go:norace
|
|
func forkAndExecInChild1(argv0 *byte, argv, envv []*byte, chroot, dir *byte, attr *ProcAttr, sys *SysProcAttr, pipe int) (r1 uintptr, err1 Errno, p [2]int, locked bool) {
|
|
// Defined in linux/prctl.h starting with Linux 4.3.
|
|
const (
|
|
PR_CAP_AMBIENT = 0x2f
|
|
PR_CAP_AMBIENT_RAISE = 0x2
|
|
)
|
|
|
|
// vfork requires that the child not touch any of the parent's
|
|
// active stack frames. Hence, the child does all post-fork
|
|
// processing in this stack frame and never returns, while the
|
|
// parent returns immediately from this frame and does all
|
|
// post-fork processing in the outer frame.
|
|
// Declare all variables at top in case any
|
|
// declarations require heap allocation (e.g., err1).
|
|
var (
|
|
err2 Errno
|
|
nextfd int
|
|
i int
|
|
r2 int
|
|
)
|
|
|
|
// Record parent PID so child can test if it has died.
|
|
ppid := raw_getpid()
|
|
|
|
// Guard against side effects of shuffling fds below.
|
|
// Make sure that nextfd is beyond any currently open files so
|
|
// that we can't run the risk of overwriting any of them.
|
|
fd := make([]int, len(attr.Files))
|
|
nextfd = len(attr.Files)
|
|
for i, ufd := range attr.Files {
|
|
if nextfd < int(ufd) {
|
|
nextfd = int(ufd)
|
|
}
|
|
fd[i] = int(ufd)
|
|
}
|
|
nextfd++
|
|
|
|
// Allocate another pipe for parent to child communication for
|
|
// synchronizing writing of User ID/Group ID mappings.
|
|
if sys.UidMappings != nil || sys.GidMappings != nil {
|
|
if err := forkExecPipe(p[:]); err != nil {
|
|
err1 = err.(Errno)
|
|
return
|
|
}
|
|
}
|
|
|
|
// About to call fork.
|
|
// No more allocation or calls of non-assembly functions.
|
|
runtime_BeforeFork()
|
|
locked = true
|
|
r2 = int(rawClone(_C_ulong(uintptr(SIGCHLD)|sys.Cloneflags), nil, nil, nil, unsafe.Pointer(nil)))
|
|
if r2 < 0 {
|
|
err1 = GetErrno()
|
|
}
|
|
if r2 != 0 {
|
|
// If we're in the parent, we must return immediately
|
|
// so we're not in the same stack frame as the child.
|
|
// This can at most use the return PC, which the child
|
|
// will not modify, and the results of
|
|
// rawVforkSyscall, which must have been written after
|
|
// the child was replaced.
|
|
r1 = uintptr(r2)
|
|
return
|
|
}
|
|
|
|
// Fork succeeded, now in child.
|
|
|
|
runtime_AfterForkInChild()
|
|
|
|
// Enable the "keep capabilities" flag to set ambient capabilities later.
|
|
if len(sys.AmbientCaps) > 0 {
|
|
_, _, err1 = RawSyscall6(SYS_PRCTL, PR_SET_KEEPCAPS, 1, 0, 0, 0, 0)
|
|
if err1 != 0 {
|
|
goto childerror
|
|
}
|
|
}
|
|
|
|
// Wait for User ID/Group ID mappings to be written.
|
|
if sys.UidMappings != nil || sys.GidMappings != nil {
|
|
if _, _, err1 = RawSyscall(SYS_CLOSE, uintptr(p[1]), 0, 0); err1 != 0 {
|
|
goto childerror
|
|
}
|
|
r1, _, err1 = RawSyscall(SYS_READ, uintptr(p[0]), uintptr(unsafe.Pointer(&err2)), unsafe.Sizeof(err2))
|
|
if err1 != 0 {
|
|
goto childerror
|
|
}
|
|
if r1 != unsafe.Sizeof(err2) {
|
|
err1 = EINVAL
|
|
goto childerror
|
|
}
|
|
if err2 != 0 {
|
|
err1 = err2
|
|
goto childerror
|
|
}
|
|
}
|
|
|
|
// Session ID
|
|
if sys.Setsid {
|
|
err1 = raw_setsid()
|
|
if err1 != 0 {
|
|
goto childerror
|
|
}
|
|
}
|
|
|
|
// Set process group
|
|
if sys.Setpgid || sys.Foreground {
|
|
// Place child in process group.
|
|
err1 = raw_setpgid(0, sys.Pgid)
|
|
if err1 != 0 {
|
|
goto childerror
|
|
}
|
|
}
|
|
|
|
if sys.Foreground {
|
|
pgrp := Pid_t(sys.Pgid)
|
|
if pgrp == 0 {
|
|
pgrp = raw_getpid()
|
|
}
|
|
|
|
// Place process group in foreground.
|
|
_, err1 = raw_ioctl_ptr(sys.Ctty, TIOCSPGRP, unsafe.Pointer(&pgrp))
|
|
if err1 != 0 {
|
|
goto childerror
|
|
}
|
|
}
|
|
|
|
// Unshare
|
|
if sys.Unshareflags != 0 {
|
|
err1 = rawUnshare(int(sys.Unshareflags))
|
|
if err1 != 0 {
|
|
goto childerror
|
|
}
|
|
// The unshare system call in Linux doesn't unshare mount points
|
|
// mounted with --shared. Systemd mounts / with --shared. For a
|
|
// long discussion of the pros and cons of this see debian bug 739593.
|
|
// The Go model of unsharing is more like Plan 9, where you ask
|
|
// to unshare and the namespaces are unconditionally unshared.
|
|
// To make this model work we must further mark / as MS_PRIVATE.
|
|
// This is what the standard unshare command does.
|
|
if sys.Unshareflags&CLONE_NEWNS == CLONE_NEWNS {
|
|
err1 = rawMount(&none[0], &slash[0], nil, MS_REC|MS_PRIVATE, nil)
|
|
if err1 != 0 {
|
|
goto childerror
|
|
}
|
|
}
|
|
}
|
|
|
|
// Chroot
|
|
if chroot != nil {
|
|
err1 = raw_chroot(chroot)
|
|
if err1 != 0 {
|
|
goto childerror
|
|
}
|
|
}
|
|
|
|
// User and groups
|
|
if cred := sys.Credential; cred != nil {
|
|
ngroups := len(cred.Groups)
|
|
var groups unsafe.Pointer
|
|
if ngroups > 0 {
|
|
groups = unsafe.Pointer(&cred.Groups[0])
|
|
}
|
|
if !(sys.GidMappings != nil && !sys.GidMappingsEnableSetgroups && ngroups == 0) && !cred.NoSetGroups {
|
|
err1 = raw_setgroups(ngroups, groups)
|
|
if err1 != 0 {
|
|
goto childerror
|
|
}
|
|
}
|
|
_, _, err1 = RawSyscall(sys_SETGID, uintptr(cred.Gid), 0, 0)
|
|
if err1 != 0 {
|
|
goto childerror
|
|
}
|
|
_, _, err1 = RawSyscall(sys_SETUID, uintptr(cred.Uid), 0, 0)
|
|
if err1 != 0 {
|
|
goto childerror
|
|
}
|
|
}
|
|
|
|
for _, c := range sys.AmbientCaps {
|
|
_, _, err1 = RawSyscall6(SYS_PRCTL, PR_CAP_AMBIENT, uintptr(PR_CAP_AMBIENT_RAISE), c, 0, 0, 0)
|
|
if err1 != 0 {
|
|
goto childerror
|
|
}
|
|
}
|
|
|
|
// Chdir
|
|
if dir != nil {
|
|
err1 = raw_chdir(dir)
|
|
if err1 != 0 {
|
|
goto childerror
|
|
}
|
|
}
|
|
|
|
// Parent death signal
|
|
if sys.Pdeathsig != 0 {
|
|
_, err1 = raw_prctl(PR_SET_PDEATHSIG, int(sys.Pdeathsig), 0, 0, 0)
|
|
if err1 != 0 {
|
|
goto childerror
|
|
}
|
|
|
|
// Signal self if parent is already dead. This might cause a
|
|
// duplicate signal in rare cases, but it won't matter when
|
|
// using SIGKILL.
|
|
r1 := raw_getppid()
|
|
if r1 != ppid {
|
|
pid := raw_getpid()
|
|
err1 = raw_kill(pid, sys.Pdeathsig)
|
|
if err1 != 0 {
|
|
goto childerror
|
|
}
|
|
}
|
|
}
|
|
|
|
// Pass 1: look for fd[i] < i and move those up above len(fd)
|
|
// so that pass 2 won't stomp on an fd it needs later.
|
|
if pipe < nextfd {
|
|
err1 = raw_dup2(pipe, nextfd)
|
|
if err1 != 0 {
|
|
goto childerror
|
|
}
|
|
raw_fcntl(nextfd, F_SETFD, FD_CLOEXEC)
|
|
pipe = nextfd
|
|
nextfd++
|
|
}
|
|
for i = 0; i < len(fd); i++ {
|
|
if fd[i] >= 0 && fd[i] < int(i) {
|
|
if nextfd == pipe { // don't stomp on pipe
|
|
nextfd++
|
|
}
|
|
err1 = raw_dup2(fd[i], nextfd)
|
|
if err1 != 0 {
|
|
goto childerror
|
|
}
|
|
raw_fcntl(nextfd, F_SETFD, FD_CLOEXEC)
|
|
fd[i] = nextfd
|
|
nextfd++
|
|
}
|
|
}
|
|
|
|
// Pass 2: dup fd[i] down onto i.
|
|
for i = 0; i < len(fd); i++ {
|
|
if fd[i] == -1 {
|
|
raw_close(i)
|
|
continue
|
|
}
|
|
if fd[i] == int(i) {
|
|
// dup2(i, i) won't clear close-on-exec flag on Linux,
|
|
// probably not elsewhere either.
|
|
_, err1 = raw_fcntl(fd[i], F_SETFD, 0)
|
|
if err1 != 0 {
|
|
goto childerror
|
|
}
|
|
continue
|
|
}
|
|
// The new fd is created NOT close-on-exec,
|
|
// which is exactly what we want.
|
|
err1 = raw_dup2(fd[i], i)
|
|
if err1 != 0 {
|
|
goto childerror
|
|
}
|
|
}
|
|
|
|
// By convention, we don't close-on-exec the fds we are
|
|
// started with, so if len(fd) < 3, close 0, 1, 2 as needed.
|
|
// Programs that know they inherit fds >= 3 will need
|
|
// to set them close-on-exec.
|
|
for i = len(fd); i < 3; i++ {
|
|
raw_close(i)
|
|
}
|
|
|
|
// Detach fd 0 from tty
|
|
if sys.Noctty {
|
|
_, err1 = raw_ioctl(0, TIOCNOTTY, 0)
|
|
if err1 != 0 {
|
|
goto childerror
|
|
}
|
|
}
|
|
|
|
// Set the controlling TTY to Ctty
|
|
if sys.Setctty {
|
|
_, err1 = raw_ioctl(sys.Ctty, TIOCSCTTY, sys.Ctty)
|
|
if err1 != 0 {
|
|
goto childerror
|
|
}
|
|
}
|
|
|
|
// Enable tracing if requested.
|
|
// Do this right before exec so that we don't unnecessarily trace the runtime
|
|
// setting up after the fork. See issue #21428.
|
|
if sys.Ptrace {
|
|
err1 = raw_ptrace(_PTRACE_TRACEME, 0, nil, nil)
|
|
if err1 != 0 {
|
|
goto childerror
|
|
}
|
|
}
|
|
|
|
// Time to exec.
|
|
err1 = raw_execve(argv0, &argv[0], &envv[0])
|
|
|
|
childerror:
|
|
// send error code on pipe
|
|
raw_write(pipe, (*byte)(unsafe.Pointer(&err1)), int(unsafe.Sizeof(err1)))
|
|
for {
|
|
raw_exit(253)
|
|
}
|
|
}
|
|
|
|
// Try to open a pipe with O_CLOEXEC set on both file descriptors.
|
|
func forkExecPipe(p []int) (err error) {
|
|
err = Pipe2(p, O_CLOEXEC)
|
|
// pipe2 was added in 2.6.27 and our minimum requirement is 2.6.23, so it
|
|
// might not be implemented.
|
|
if err == ENOSYS {
|
|
if err = Pipe(p); err != nil {
|
|
return
|
|
}
|
|
if _, err = fcntl(p[0], F_SETFD, FD_CLOEXEC); err != nil {
|
|
return
|
|
}
|
|
_, err = fcntl(p[1], F_SETFD, FD_CLOEXEC)
|
|
}
|
|
return
|
|
}
|
|
|
|
// writeIDMappings writes the user namespace User ID or Group ID mappings to the specified path.
|
|
func writeIDMappings(path string, idMap []SysProcIDMap) error {
|
|
fd, err := Open(path, O_RDWR, 0)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
data := ""
|
|
for _, im := range idMap {
|
|
data = data + itoa(im.ContainerID) + " " + itoa(im.HostID) + " " + itoa(im.Size) + "\n"
|
|
}
|
|
|
|
bytes, err := ByteSliceFromString(data)
|
|
if err != nil {
|
|
Close(fd)
|
|
return err
|
|
}
|
|
|
|
if _, err := Write(fd, bytes); err != nil {
|
|
Close(fd)
|
|
return err
|
|
}
|
|
|
|
if err := Close(fd); err != nil {
|
|
return err
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// writeSetgroups writes to /proc/PID/setgroups "deny" if enable is false
|
|
// and "allow" if enable is true.
|
|
// This is needed since kernel 3.19, because you can't write gid_map without
|
|
// disabling setgroups() system call.
|
|
func writeSetgroups(pid int, enable bool) error {
|
|
sgf := "/proc/" + itoa(pid) + "/setgroups"
|
|
fd, err := Open(sgf, O_RDWR, 0)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
var data []byte
|
|
if enable {
|
|
data = []byte("allow")
|
|
} else {
|
|
data = []byte("deny")
|
|
}
|
|
|
|
if _, err := Write(fd, data); err != nil {
|
|
Close(fd)
|
|
return err
|
|
}
|
|
|
|
return Close(fd)
|
|
}
|
|
|
|
// writeUidGidMappings writes User ID and Group ID mappings for user namespaces
|
|
// for a process and it is called from the parent process.
|
|
func writeUidGidMappings(pid int, sys *SysProcAttr) error {
|
|
if sys.UidMappings != nil {
|
|
uidf := "/proc/" + itoa(pid) + "/uid_map"
|
|
if err := writeIDMappings(uidf, sys.UidMappings); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
if sys.GidMappings != nil {
|
|
// If the kernel is too old to support /proc/PID/setgroups, writeSetGroups will return ENOENT; this is OK.
|
|
if err := writeSetgroups(pid, sys.GidMappingsEnableSetgroups); err != nil && err != ENOENT {
|
|
return err
|
|
}
|
|
gidf := "/proc/" + itoa(pid) + "/gid_map"
|
|
if err := writeIDMappings(gidf, sys.GidMappings); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|