mirror of
https://github.com/autc04/Retro68.git
synced 2024-12-11 03:52:59 +00:00
674 lines
20 KiB
Go
674 lines
20 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Package draw provides image composition functions.
|
|
//
|
|
// See "The Go image/draw package" for an introduction to this package:
|
|
// http://golang.org/doc/articles/image_draw.html
|
|
package draw
|
|
|
|
import (
|
|
"image"
|
|
"image/color"
|
|
)
|
|
|
|
// m is the maximum color value returned by image.Color.RGBA.
|
|
const m = 1<<16 - 1
|
|
|
|
// Image is an image.Image with a Set method to change a single pixel.
|
|
type Image interface {
|
|
image.Image
|
|
Set(x, y int, c color.Color)
|
|
}
|
|
|
|
// Quantizer produces a palette for an image.
|
|
type Quantizer interface {
|
|
// Quantize appends up to cap(p) - len(p) colors to p and returns the
|
|
// updated palette suitable for converting m to a paletted image.
|
|
Quantize(p color.Palette, m image.Image) color.Palette
|
|
}
|
|
|
|
// Op is a Porter-Duff compositing operator.
|
|
type Op int
|
|
|
|
const (
|
|
// Over specifies ``(src in mask) over dst''.
|
|
Over Op = iota
|
|
// Src specifies ``src in mask''.
|
|
Src
|
|
)
|
|
|
|
// Draw implements the Drawer interface by calling the Draw function with this
|
|
// Op.
|
|
func (op Op) Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point) {
|
|
DrawMask(dst, r, src, sp, nil, image.Point{}, op)
|
|
}
|
|
|
|
// Drawer contains the Draw method.
|
|
type Drawer interface {
|
|
// Draw aligns r.Min in dst with sp in src and then replaces the
|
|
// rectangle r in dst with the result of drawing src on dst.
|
|
Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point)
|
|
}
|
|
|
|
// FloydSteinberg is a Drawer that is the Src Op with Floyd-Steinberg error
|
|
// diffusion.
|
|
var FloydSteinberg Drawer = floydSteinberg{}
|
|
|
|
type floydSteinberg struct{}
|
|
|
|
func (floydSteinberg) Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point) {
|
|
clip(dst, &r, src, &sp, nil, nil)
|
|
if r.Empty() {
|
|
return
|
|
}
|
|
drawPaletted(dst, r, src, sp, true)
|
|
}
|
|
|
|
// clip clips r against each image's bounds (after translating into the
|
|
// destination image's co-ordinate space) and shifts the points sp and mp by
|
|
// the same amount as the change in r.Min.
|
|
func clip(dst Image, r *image.Rectangle, src image.Image, sp *image.Point, mask image.Image, mp *image.Point) {
|
|
orig := r.Min
|
|
*r = r.Intersect(dst.Bounds())
|
|
*r = r.Intersect(src.Bounds().Add(orig.Sub(*sp)))
|
|
if mask != nil {
|
|
*r = r.Intersect(mask.Bounds().Add(orig.Sub(*mp)))
|
|
}
|
|
dx := r.Min.X - orig.X
|
|
dy := r.Min.Y - orig.Y
|
|
if dx == 0 && dy == 0 {
|
|
return
|
|
}
|
|
(*sp).X += dx
|
|
(*sp).Y += dy
|
|
(*mp).X += dx
|
|
(*mp).Y += dy
|
|
}
|
|
|
|
func processBackward(dst Image, r image.Rectangle, src image.Image, sp image.Point) bool {
|
|
return image.Image(dst) == src &&
|
|
r.Overlaps(r.Add(sp.Sub(r.Min))) &&
|
|
(sp.Y < r.Min.Y || (sp.Y == r.Min.Y && sp.X < r.Min.X))
|
|
}
|
|
|
|
// Draw calls DrawMask with a nil mask.
|
|
func Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point, op Op) {
|
|
DrawMask(dst, r, src, sp, nil, image.Point{}, op)
|
|
}
|
|
|
|
// DrawMask aligns r.Min in dst with sp in src and mp in mask and then replaces the rectangle r
|
|
// in dst with the result of a Porter-Duff composition. A nil mask is treated as opaque.
|
|
func DrawMask(dst Image, r image.Rectangle, src image.Image, sp image.Point, mask image.Image, mp image.Point, op Op) {
|
|
clip(dst, &r, src, &sp, mask, &mp)
|
|
if r.Empty() {
|
|
return
|
|
}
|
|
|
|
// Fast paths for special cases. If none of them apply, then we fall back to a general but slow implementation.
|
|
switch dst0 := dst.(type) {
|
|
case *image.RGBA:
|
|
if op == Over {
|
|
if mask == nil {
|
|
switch src0 := src.(type) {
|
|
case *image.Uniform:
|
|
drawFillOver(dst0, r, src0)
|
|
return
|
|
case *image.RGBA:
|
|
drawCopyOver(dst0, r, src0, sp)
|
|
return
|
|
case *image.NRGBA:
|
|
drawNRGBAOver(dst0, r, src0, sp)
|
|
return
|
|
case *image.YCbCr:
|
|
if drawYCbCr(dst0, r, src0, sp) {
|
|
return
|
|
}
|
|
}
|
|
} else if mask0, ok := mask.(*image.Alpha); ok {
|
|
switch src0 := src.(type) {
|
|
case *image.Uniform:
|
|
drawGlyphOver(dst0, r, src0, mask0, mp)
|
|
return
|
|
}
|
|
}
|
|
} else {
|
|
if mask == nil {
|
|
switch src0 := src.(type) {
|
|
case *image.Uniform:
|
|
drawFillSrc(dst0, r, src0)
|
|
return
|
|
case *image.RGBA:
|
|
drawCopySrc(dst0, r, src0, sp)
|
|
return
|
|
case *image.NRGBA:
|
|
drawNRGBASrc(dst0, r, src0, sp)
|
|
return
|
|
case *image.YCbCr:
|
|
if drawYCbCr(dst0, r, src0, sp) {
|
|
return
|
|
}
|
|
}
|
|
}
|
|
}
|
|
drawRGBA(dst0, r, src, sp, mask, mp, op)
|
|
return
|
|
case *image.Paletted:
|
|
if op == Src && mask == nil && !processBackward(dst, r, src, sp) {
|
|
drawPaletted(dst0, r, src, sp, false)
|
|
}
|
|
}
|
|
|
|
x0, x1, dx := r.Min.X, r.Max.X, 1
|
|
y0, y1, dy := r.Min.Y, r.Max.Y, 1
|
|
if processBackward(dst, r, src, sp) {
|
|
x0, x1, dx = x1-1, x0-1, -1
|
|
y0, y1, dy = y1-1, y0-1, -1
|
|
}
|
|
|
|
var out color.RGBA64
|
|
sy := sp.Y + y0 - r.Min.Y
|
|
my := mp.Y + y0 - r.Min.Y
|
|
for y := y0; y != y1; y, sy, my = y+dy, sy+dy, my+dy {
|
|
sx := sp.X + x0 - r.Min.X
|
|
mx := mp.X + x0 - r.Min.X
|
|
for x := x0; x != x1; x, sx, mx = x+dx, sx+dx, mx+dx {
|
|
ma := uint32(m)
|
|
if mask != nil {
|
|
_, _, _, ma = mask.At(mx, my).RGBA()
|
|
}
|
|
switch {
|
|
case ma == 0:
|
|
if op == Over {
|
|
// No-op.
|
|
} else {
|
|
dst.Set(x, y, color.Transparent)
|
|
}
|
|
case ma == m && op == Src:
|
|
dst.Set(x, y, src.At(sx, sy))
|
|
default:
|
|
sr, sg, sb, sa := src.At(sx, sy).RGBA()
|
|
if op == Over {
|
|
dr, dg, db, da := dst.At(x, y).RGBA()
|
|
a := m - (sa * ma / m)
|
|
out.R = uint16((dr*a + sr*ma) / m)
|
|
out.G = uint16((dg*a + sg*ma) / m)
|
|
out.B = uint16((db*a + sb*ma) / m)
|
|
out.A = uint16((da*a + sa*ma) / m)
|
|
} else {
|
|
out.R = uint16(sr * ma / m)
|
|
out.G = uint16(sg * ma / m)
|
|
out.B = uint16(sb * ma / m)
|
|
out.A = uint16(sa * ma / m)
|
|
}
|
|
// The third argument is &out instead of out (and out is
|
|
// declared outside of the inner loop) to avoid the implicit
|
|
// conversion to color.Color here allocating memory in the
|
|
// inner loop if sizeof(color.RGBA64) > sizeof(uintptr).
|
|
dst.Set(x, y, &out)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
func drawFillOver(dst *image.RGBA, r image.Rectangle, src *image.Uniform) {
|
|
sr, sg, sb, sa := src.RGBA()
|
|
// The 0x101 is here for the same reason as in drawRGBA.
|
|
a := (m - sa) * 0x101
|
|
i0 := dst.PixOffset(r.Min.X, r.Min.Y)
|
|
i1 := i0 + r.Dx()*4
|
|
for y := r.Min.Y; y != r.Max.Y; y++ {
|
|
for i := i0; i < i1; i += 4 {
|
|
dr := uint32(dst.Pix[i+0])
|
|
dg := uint32(dst.Pix[i+1])
|
|
db := uint32(dst.Pix[i+2])
|
|
da := uint32(dst.Pix[i+3])
|
|
|
|
dst.Pix[i+0] = uint8((dr*a/m + sr) >> 8)
|
|
dst.Pix[i+1] = uint8((dg*a/m + sg) >> 8)
|
|
dst.Pix[i+2] = uint8((db*a/m + sb) >> 8)
|
|
dst.Pix[i+3] = uint8((da*a/m + sa) >> 8)
|
|
}
|
|
i0 += dst.Stride
|
|
i1 += dst.Stride
|
|
}
|
|
}
|
|
|
|
func drawFillSrc(dst *image.RGBA, r image.Rectangle, src *image.Uniform) {
|
|
sr, sg, sb, sa := src.RGBA()
|
|
// The built-in copy function is faster than a straightforward for loop to fill the destination with
|
|
// the color, but copy requires a slice source. We therefore use a for loop to fill the first row, and
|
|
// then use the first row as the slice source for the remaining rows.
|
|
i0 := dst.PixOffset(r.Min.X, r.Min.Y)
|
|
i1 := i0 + r.Dx()*4
|
|
for i := i0; i < i1; i += 4 {
|
|
dst.Pix[i+0] = uint8(sr >> 8)
|
|
dst.Pix[i+1] = uint8(sg >> 8)
|
|
dst.Pix[i+2] = uint8(sb >> 8)
|
|
dst.Pix[i+3] = uint8(sa >> 8)
|
|
}
|
|
firstRow := dst.Pix[i0:i1]
|
|
for y := r.Min.Y + 1; y < r.Max.Y; y++ {
|
|
i0 += dst.Stride
|
|
i1 += dst.Stride
|
|
copy(dst.Pix[i0:i1], firstRow)
|
|
}
|
|
}
|
|
|
|
func drawCopyOver(dst *image.RGBA, r image.Rectangle, src *image.RGBA, sp image.Point) {
|
|
dx, dy := r.Dx(), r.Dy()
|
|
d0 := dst.PixOffset(r.Min.X, r.Min.Y)
|
|
s0 := src.PixOffset(sp.X, sp.Y)
|
|
var (
|
|
ddelta, sdelta int
|
|
i0, i1, idelta int
|
|
)
|
|
if r.Min.Y < sp.Y || r.Min.Y == sp.Y && r.Min.X <= sp.X {
|
|
ddelta = dst.Stride
|
|
sdelta = src.Stride
|
|
i0, i1, idelta = 0, dx*4, +4
|
|
} else {
|
|
// If the source start point is higher than the destination start point, or equal height but to the left,
|
|
// then we compose the rows in right-to-left, bottom-up order instead of left-to-right, top-down.
|
|
d0 += (dy - 1) * dst.Stride
|
|
s0 += (dy - 1) * src.Stride
|
|
ddelta = -dst.Stride
|
|
sdelta = -src.Stride
|
|
i0, i1, idelta = (dx-1)*4, -4, -4
|
|
}
|
|
for ; dy > 0; dy-- {
|
|
dpix := dst.Pix[d0:]
|
|
spix := src.Pix[s0:]
|
|
for i := i0; i != i1; i += idelta {
|
|
sr := uint32(spix[i+0]) * 0x101
|
|
sg := uint32(spix[i+1]) * 0x101
|
|
sb := uint32(spix[i+2]) * 0x101
|
|
sa := uint32(spix[i+3]) * 0x101
|
|
|
|
dr := uint32(dpix[i+0])
|
|
dg := uint32(dpix[i+1])
|
|
db := uint32(dpix[i+2])
|
|
da := uint32(dpix[i+3])
|
|
|
|
// The 0x101 is here for the same reason as in drawRGBA.
|
|
a := (m - sa) * 0x101
|
|
|
|
dpix[i+0] = uint8((dr*a/m + sr) >> 8)
|
|
dpix[i+1] = uint8((dg*a/m + sg) >> 8)
|
|
dpix[i+2] = uint8((db*a/m + sb) >> 8)
|
|
dpix[i+3] = uint8((da*a/m + sa) >> 8)
|
|
}
|
|
d0 += ddelta
|
|
s0 += sdelta
|
|
}
|
|
}
|
|
|
|
func drawCopySrc(dst *image.RGBA, r image.Rectangle, src *image.RGBA, sp image.Point) {
|
|
n, dy := 4*r.Dx(), r.Dy()
|
|
d0 := dst.PixOffset(r.Min.X, r.Min.Y)
|
|
s0 := src.PixOffset(sp.X, sp.Y)
|
|
var ddelta, sdelta int
|
|
if r.Min.Y <= sp.Y {
|
|
ddelta = dst.Stride
|
|
sdelta = src.Stride
|
|
} else {
|
|
// If the source start point is higher than the destination start point, then we compose the rows
|
|
// in bottom-up order instead of top-down. Unlike the drawCopyOver function, we don't have to
|
|
// check the x co-ordinates because the built-in copy function can handle overlapping slices.
|
|
d0 += (dy - 1) * dst.Stride
|
|
s0 += (dy - 1) * src.Stride
|
|
ddelta = -dst.Stride
|
|
sdelta = -src.Stride
|
|
}
|
|
for ; dy > 0; dy-- {
|
|
copy(dst.Pix[d0:d0+n], src.Pix[s0:s0+n])
|
|
d0 += ddelta
|
|
s0 += sdelta
|
|
}
|
|
}
|
|
|
|
func drawNRGBAOver(dst *image.RGBA, r image.Rectangle, src *image.NRGBA, sp image.Point) {
|
|
i0 := (r.Min.X - dst.Rect.Min.X) * 4
|
|
i1 := (r.Max.X - dst.Rect.Min.X) * 4
|
|
si0 := (sp.X - src.Rect.Min.X) * 4
|
|
yMax := r.Max.Y - dst.Rect.Min.Y
|
|
|
|
y := r.Min.Y - dst.Rect.Min.Y
|
|
sy := sp.Y - src.Rect.Min.Y
|
|
for ; y != yMax; y, sy = y+1, sy+1 {
|
|
dpix := dst.Pix[y*dst.Stride:]
|
|
spix := src.Pix[sy*src.Stride:]
|
|
|
|
for i, si := i0, si0; i < i1; i, si = i+4, si+4 {
|
|
// Convert from non-premultiplied color to pre-multiplied color.
|
|
sa := uint32(spix[si+3]) * 0x101
|
|
sr := uint32(spix[si+0]) * sa / 0xff
|
|
sg := uint32(spix[si+1]) * sa / 0xff
|
|
sb := uint32(spix[si+2]) * sa / 0xff
|
|
|
|
dr := uint32(dpix[i+0])
|
|
dg := uint32(dpix[i+1])
|
|
db := uint32(dpix[i+2])
|
|
da := uint32(dpix[i+3])
|
|
|
|
// The 0x101 is here for the same reason as in drawRGBA.
|
|
a := (m - sa) * 0x101
|
|
|
|
dpix[i+0] = uint8((dr*a/m + sr) >> 8)
|
|
dpix[i+1] = uint8((dg*a/m + sg) >> 8)
|
|
dpix[i+2] = uint8((db*a/m + sb) >> 8)
|
|
dpix[i+3] = uint8((da*a/m + sa) >> 8)
|
|
}
|
|
}
|
|
}
|
|
|
|
func drawNRGBASrc(dst *image.RGBA, r image.Rectangle, src *image.NRGBA, sp image.Point) {
|
|
i0 := (r.Min.X - dst.Rect.Min.X) * 4
|
|
i1 := (r.Max.X - dst.Rect.Min.X) * 4
|
|
si0 := (sp.X - src.Rect.Min.X) * 4
|
|
yMax := r.Max.Y - dst.Rect.Min.Y
|
|
|
|
y := r.Min.Y - dst.Rect.Min.Y
|
|
sy := sp.Y - src.Rect.Min.Y
|
|
for ; y != yMax; y, sy = y+1, sy+1 {
|
|
dpix := dst.Pix[y*dst.Stride:]
|
|
spix := src.Pix[sy*src.Stride:]
|
|
|
|
for i, si := i0, si0; i < i1; i, si = i+4, si+4 {
|
|
// Convert from non-premultiplied color to pre-multiplied color.
|
|
sa := uint32(spix[si+3]) * 0x101
|
|
sr := uint32(spix[si+0]) * sa / 0xff
|
|
sg := uint32(spix[si+1]) * sa / 0xff
|
|
sb := uint32(spix[si+2]) * sa / 0xff
|
|
|
|
dpix[i+0] = uint8(sr >> 8)
|
|
dpix[i+1] = uint8(sg >> 8)
|
|
dpix[i+2] = uint8(sb >> 8)
|
|
dpix[i+3] = uint8(sa >> 8)
|
|
}
|
|
}
|
|
}
|
|
|
|
func drawYCbCr(dst *image.RGBA, r image.Rectangle, src *image.YCbCr, sp image.Point) (ok bool) {
|
|
// An image.YCbCr is always fully opaque, and so if the mask is implicitly nil
|
|
// (i.e. fully opaque) then the op is effectively always Src.
|
|
x0 := (r.Min.X - dst.Rect.Min.X) * 4
|
|
x1 := (r.Max.X - dst.Rect.Min.X) * 4
|
|
y0 := r.Min.Y - dst.Rect.Min.Y
|
|
y1 := r.Max.Y - dst.Rect.Min.Y
|
|
switch src.SubsampleRatio {
|
|
case image.YCbCrSubsampleRatio444:
|
|
for y, sy := y0, sp.Y; y != y1; y, sy = y+1, sy+1 {
|
|
dpix := dst.Pix[y*dst.Stride:]
|
|
yi := (sy-src.Rect.Min.Y)*src.YStride + (sp.X - src.Rect.Min.X)
|
|
ci := (sy-src.Rect.Min.Y)*src.CStride + (sp.X - src.Rect.Min.X)
|
|
for x := x0; x != x1; x, yi, ci = x+4, yi+1, ci+1 {
|
|
rr, gg, bb := color.YCbCrToRGB(src.Y[yi], src.Cb[ci], src.Cr[ci])
|
|
dpix[x+0] = rr
|
|
dpix[x+1] = gg
|
|
dpix[x+2] = bb
|
|
dpix[x+3] = 255
|
|
}
|
|
}
|
|
case image.YCbCrSubsampleRatio422:
|
|
for y, sy := y0, sp.Y; y != y1; y, sy = y+1, sy+1 {
|
|
dpix := dst.Pix[y*dst.Stride:]
|
|
yi := (sy-src.Rect.Min.Y)*src.YStride + (sp.X - src.Rect.Min.X)
|
|
ciBase := (sy-src.Rect.Min.Y)*src.CStride - src.Rect.Min.X/2
|
|
for x, sx := x0, sp.X; x != x1; x, sx, yi = x+4, sx+1, yi+1 {
|
|
ci := ciBase + sx/2
|
|
rr, gg, bb := color.YCbCrToRGB(src.Y[yi], src.Cb[ci], src.Cr[ci])
|
|
dpix[x+0] = rr
|
|
dpix[x+1] = gg
|
|
dpix[x+2] = bb
|
|
dpix[x+3] = 255
|
|
}
|
|
}
|
|
case image.YCbCrSubsampleRatio420:
|
|
for y, sy := y0, sp.Y; y != y1; y, sy = y+1, sy+1 {
|
|
dpix := dst.Pix[y*dst.Stride:]
|
|
yi := (sy-src.Rect.Min.Y)*src.YStride + (sp.X - src.Rect.Min.X)
|
|
ciBase := (sy/2-src.Rect.Min.Y/2)*src.CStride - src.Rect.Min.X/2
|
|
for x, sx := x0, sp.X; x != x1; x, sx, yi = x+4, sx+1, yi+1 {
|
|
ci := ciBase + sx/2
|
|
rr, gg, bb := color.YCbCrToRGB(src.Y[yi], src.Cb[ci], src.Cr[ci])
|
|
dpix[x+0] = rr
|
|
dpix[x+1] = gg
|
|
dpix[x+2] = bb
|
|
dpix[x+3] = 255
|
|
}
|
|
}
|
|
case image.YCbCrSubsampleRatio440:
|
|
for y, sy := y0, sp.Y; y != y1; y, sy = y+1, sy+1 {
|
|
dpix := dst.Pix[y*dst.Stride:]
|
|
yi := (sy-src.Rect.Min.Y)*src.YStride + (sp.X - src.Rect.Min.X)
|
|
ci := (sy/2-src.Rect.Min.Y/2)*src.CStride + (sp.X - src.Rect.Min.X)
|
|
for x := x0; x != x1; x, yi, ci = x+4, yi+1, ci+1 {
|
|
rr, gg, bb := color.YCbCrToRGB(src.Y[yi], src.Cb[ci], src.Cr[ci])
|
|
dpix[x+0] = rr
|
|
dpix[x+1] = gg
|
|
dpix[x+2] = bb
|
|
dpix[x+3] = 255
|
|
}
|
|
}
|
|
default:
|
|
return false
|
|
}
|
|
return true
|
|
}
|
|
|
|
func drawGlyphOver(dst *image.RGBA, r image.Rectangle, src *image.Uniform, mask *image.Alpha, mp image.Point) {
|
|
i0 := dst.PixOffset(r.Min.X, r.Min.Y)
|
|
i1 := i0 + r.Dx()*4
|
|
mi0 := mask.PixOffset(mp.X, mp.Y)
|
|
sr, sg, sb, sa := src.RGBA()
|
|
for y, my := r.Min.Y, mp.Y; y != r.Max.Y; y, my = y+1, my+1 {
|
|
for i, mi := i0, mi0; i < i1; i, mi = i+4, mi+1 {
|
|
ma := uint32(mask.Pix[mi])
|
|
if ma == 0 {
|
|
continue
|
|
}
|
|
ma |= ma << 8
|
|
|
|
dr := uint32(dst.Pix[i+0])
|
|
dg := uint32(dst.Pix[i+1])
|
|
db := uint32(dst.Pix[i+2])
|
|
da := uint32(dst.Pix[i+3])
|
|
|
|
// The 0x101 is here for the same reason as in drawRGBA.
|
|
a := (m - (sa * ma / m)) * 0x101
|
|
|
|
dst.Pix[i+0] = uint8((dr*a + sr*ma) / m >> 8)
|
|
dst.Pix[i+1] = uint8((dg*a + sg*ma) / m >> 8)
|
|
dst.Pix[i+2] = uint8((db*a + sb*ma) / m >> 8)
|
|
dst.Pix[i+3] = uint8((da*a + sa*ma) / m >> 8)
|
|
}
|
|
i0 += dst.Stride
|
|
i1 += dst.Stride
|
|
mi0 += mask.Stride
|
|
}
|
|
}
|
|
|
|
func drawRGBA(dst *image.RGBA, r image.Rectangle, src image.Image, sp image.Point, mask image.Image, mp image.Point, op Op) {
|
|
x0, x1, dx := r.Min.X, r.Max.X, 1
|
|
y0, y1, dy := r.Min.Y, r.Max.Y, 1
|
|
if image.Image(dst) == src && r.Overlaps(r.Add(sp.Sub(r.Min))) {
|
|
if sp.Y < r.Min.Y || sp.Y == r.Min.Y && sp.X < r.Min.X {
|
|
x0, x1, dx = x1-1, x0-1, -1
|
|
y0, y1, dy = y1-1, y0-1, -1
|
|
}
|
|
}
|
|
|
|
sy := sp.Y + y0 - r.Min.Y
|
|
my := mp.Y + y0 - r.Min.Y
|
|
sx0 := sp.X + x0 - r.Min.X
|
|
mx0 := mp.X + x0 - r.Min.X
|
|
sx1 := sx0 + (x1 - x0)
|
|
i0 := dst.PixOffset(x0, y0)
|
|
di := dx * 4
|
|
for y := y0; y != y1; y, sy, my = y+dy, sy+dy, my+dy {
|
|
for i, sx, mx := i0, sx0, mx0; sx != sx1; i, sx, mx = i+di, sx+dx, mx+dx {
|
|
ma := uint32(m)
|
|
if mask != nil {
|
|
_, _, _, ma = mask.At(mx, my).RGBA()
|
|
}
|
|
sr, sg, sb, sa := src.At(sx, sy).RGBA()
|
|
if op == Over {
|
|
dr := uint32(dst.Pix[i+0])
|
|
dg := uint32(dst.Pix[i+1])
|
|
db := uint32(dst.Pix[i+2])
|
|
da := uint32(dst.Pix[i+3])
|
|
|
|
// dr, dg, db and da are all 8-bit color at the moment, ranging in [0,255].
|
|
// We work in 16-bit color, and so would normally do:
|
|
// dr |= dr << 8
|
|
// and similarly for dg, db and da, but instead we multiply a
|
|
// (which is a 16-bit color, ranging in [0,65535]) by 0x101.
|
|
// This yields the same result, but is fewer arithmetic operations.
|
|
a := (m - (sa * ma / m)) * 0x101
|
|
|
|
dst.Pix[i+0] = uint8((dr*a + sr*ma) / m >> 8)
|
|
dst.Pix[i+1] = uint8((dg*a + sg*ma) / m >> 8)
|
|
dst.Pix[i+2] = uint8((db*a + sb*ma) / m >> 8)
|
|
dst.Pix[i+3] = uint8((da*a + sa*ma) / m >> 8)
|
|
|
|
} else {
|
|
dst.Pix[i+0] = uint8(sr * ma / m >> 8)
|
|
dst.Pix[i+1] = uint8(sg * ma / m >> 8)
|
|
dst.Pix[i+2] = uint8(sb * ma / m >> 8)
|
|
dst.Pix[i+3] = uint8(sa * ma / m >> 8)
|
|
}
|
|
}
|
|
i0 += dy * dst.Stride
|
|
}
|
|
}
|
|
|
|
// clamp clamps i to the interval [0, 0xffff].
|
|
func clamp(i int32) int32 {
|
|
if i < 0 {
|
|
return 0
|
|
}
|
|
if i > 0xffff {
|
|
return 0xffff
|
|
}
|
|
return i
|
|
}
|
|
|
|
func drawPaletted(dst Image, r image.Rectangle, src image.Image, sp image.Point, floydSteinberg bool) {
|
|
// TODO(nigeltao): handle the case where the dst and src overlap.
|
|
// Does it even make sense to try and do Floyd-Steinberg whilst
|
|
// walking the image backward (right-to-left bottom-to-top)?
|
|
|
|
// If dst is an *image.Paletted, we have a fast path for dst.Set and
|
|
// dst.At. The dst.Set equivalent is a batch version of the algorithm
|
|
// used by color.Palette's Index method in image/color/color.go, plus
|
|
// optional Floyd-Steinberg error diffusion.
|
|
palette, pix, stride := [][3]int32(nil), []byte(nil), 0
|
|
if p, ok := dst.(*image.Paletted); ok {
|
|
palette = make([][3]int32, len(p.Palette))
|
|
for i, col := range p.Palette {
|
|
r, g, b, _ := col.RGBA()
|
|
palette[i][0] = int32(r)
|
|
palette[i][1] = int32(g)
|
|
palette[i][2] = int32(b)
|
|
}
|
|
pix, stride = p.Pix[p.PixOffset(r.Min.X, r.Min.Y):], p.Stride
|
|
}
|
|
|
|
// quantErrorCurr and quantErrorNext are the Floyd-Steinberg quantization
|
|
// errors that have been propagated to the pixels in the current and next
|
|
// rows. The +2 simplifies calculation near the edges.
|
|
var quantErrorCurr, quantErrorNext [][3]int32
|
|
if floydSteinberg {
|
|
quantErrorCurr = make([][3]int32, r.Dx()+2)
|
|
quantErrorNext = make([][3]int32, r.Dx()+2)
|
|
}
|
|
|
|
// Loop over each source pixel.
|
|
out := color.RGBA64{A: 0xffff}
|
|
for y := 0; y != r.Dy(); y++ {
|
|
for x := 0; x != r.Dx(); x++ {
|
|
// er, eg and eb are the pixel's R,G,B values plus the
|
|
// optional Floyd-Steinberg error.
|
|
sr, sg, sb, _ := src.At(sp.X+x, sp.Y+y).RGBA()
|
|
er, eg, eb := int32(sr), int32(sg), int32(sb)
|
|
if floydSteinberg {
|
|
er = clamp(er + quantErrorCurr[x+1][0]/16)
|
|
eg = clamp(eg + quantErrorCurr[x+1][1]/16)
|
|
eb = clamp(eb + quantErrorCurr[x+1][2]/16)
|
|
}
|
|
|
|
if palette != nil {
|
|
// Find the closest palette color in Euclidean R,G,B space: the
|
|
// one that minimizes sum-squared-difference. We shift by 1 bit
|
|
// to avoid potential uint32 overflow in sum-squared-difference.
|
|
// TODO(nigeltao): consider smarter algorithms.
|
|
bestIndex, bestSSD := 0, uint32(1<<32-1)
|
|
for index, p := range palette {
|
|
delta := (er - p[0]) >> 1
|
|
ssd := uint32(delta * delta)
|
|
delta = (eg - p[1]) >> 1
|
|
ssd += uint32(delta * delta)
|
|
delta = (eb - p[2]) >> 1
|
|
ssd += uint32(delta * delta)
|
|
if ssd < bestSSD {
|
|
bestIndex, bestSSD = index, ssd
|
|
if ssd == 0 {
|
|
break
|
|
}
|
|
}
|
|
}
|
|
pix[y*stride+x] = byte(bestIndex)
|
|
|
|
if !floydSteinberg {
|
|
continue
|
|
}
|
|
er -= int32(palette[bestIndex][0])
|
|
eg -= int32(palette[bestIndex][1])
|
|
eb -= int32(palette[bestIndex][2])
|
|
|
|
} else {
|
|
out.R = uint16(er)
|
|
out.G = uint16(eg)
|
|
out.B = uint16(eb)
|
|
// The third argument is &out instead of out (and out is
|
|
// declared outside of the inner loop) to avoid the implicit
|
|
// conversion to color.Color here allocating memory in the
|
|
// inner loop if sizeof(color.RGBA64) > sizeof(uintptr).
|
|
dst.Set(r.Min.X+x, r.Min.Y+y, &out)
|
|
|
|
if !floydSteinberg {
|
|
continue
|
|
}
|
|
sr, sg, sb, _ = dst.At(r.Min.X+x, r.Min.Y+y).RGBA()
|
|
er -= int32(sr)
|
|
eg -= int32(sg)
|
|
eb -= int32(sb)
|
|
}
|
|
|
|
// Propagate the Floyd-Steinberg quantization error.
|
|
quantErrorNext[x+0][0] += er * 3
|
|
quantErrorNext[x+0][1] += eg * 3
|
|
quantErrorNext[x+0][2] += eb * 3
|
|
quantErrorNext[x+1][0] += er * 5
|
|
quantErrorNext[x+1][1] += eg * 5
|
|
quantErrorNext[x+1][2] += eb * 5
|
|
quantErrorNext[x+2][0] += er * 1
|
|
quantErrorNext[x+2][1] += eg * 1
|
|
quantErrorNext[x+2][2] += eb * 1
|
|
quantErrorCurr[x+2][0] += er * 7
|
|
quantErrorCurr[x+2][1] += eg * 7
|
|
quantErrorCurr[x+2][2] += eb * 7
|
|
}
|
|
|
|
// Recycle the quantization error buffers.
|
|
if floydSteinberg {
|
|
quantErrorCurr, quantErrorNext = quantErrorNext, quantErrorCurr
|
|
for i := range quantErrorNext {
|
|
quantErrorNext[i] = [3]int32{}
|
|
}
|
|
}
|
|
}
|
|
}
|