Retro68/gcc/gcc/tree-ssa-dce.c
2017-10-07 02:16:47 +02:00

1732 lines
51 KiB
C

/* Dead code elimination pass for the GNU compiler.
Copyright (C) 2002-2017 Free Software Foundation, Inc.
Contributed by Ben Elliston <bje@redhat.com>
and Andrew MacLeod <amacleod@redhat.com>
Adapted to use control dependence by Steven Bosscher, SUSE Labs.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* Dead code elimination.
References:
Building an Optimizing Compiler,
Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
Advanced Compiler Design and Implementation,
Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.
Dead-code elimination is the removal of statements which have no
impact on the program's output. "Dead statements" have no impact
on the program's output, while "necessary statements" may have
impact on the output.
The algorithm consists of three phases:
1. Marking as necessary all statements known to be necessary,
e.g. most function calls, writing a value to memory, etc;
2. Propagating necessary statements, e.g., the statements
giving values to operands in necessary statements; and
3. Removing dead statements. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "cfghooks.h"
#include "tree-pass.h"
#include "ssa.h"
#include "gimple-pretty-print.h"
#include "fold-const.h"
#include "calls.h"
#include "cfganal.h"
#include "tree-eh.h"
#include "gimplify.h"
#include "gimple-iterator.h"
#include "tree-cfg.h"
#include "tree-ssa-loop-niter.h"
#include "tree-into-ssa.h"
#include "tree-dfa.h"
#include "cfgloop.h"
#include "tree-scalar-evolution.h"
#include "tree-chkp.h"
#include "tree-ssa-propagate.h"
#include "gimple-fold.h"
static struct stmt_stats
{
int total;
int total_phis;
int removed;
int removed_phis;
} stats;
#define STMT_NECESSARY GF_PLF_1
static vec<gimple *> worklist;
/* Vector indicating an SSA name has already been processed and marked
as necessary. */
static sbitmap processed;
/* Vector indicating that the last statement of a basic block has already
been marked as necessary. */
static sbitmap last_stmt_necessary;
/* Vector indicating that BB contains statements that are live. */
static sbitmap bb_contains_live_stmts;
/* Before we can determine whether a control branch is dead, we need to
compute which blocks are control dependent on which edges.
We expect each block to be control dependent on very few edges so we
use a bitmap for each block recording its edges. An array holds the
bitmap. The Ith bit in the bitmap is set if that block is dependent
on the Ith edge. */
static control_dependences *cd;
/* Vector indicating that a basic block has already had all the edges
processed that it is control dependent on. */
static sbitmap visited_control_parents;
/* TRUE if this pass alters the CFG (by removing control statements).
FALSE otherwise.
If this pass alters the CFG, then it will arrange for the dominators
to be recomputed. */
static bool cfg_altered;
/* When non-NULL holds map from basic block index into the postorder. */
static int *bb_postorder;
/* If STMT is not already marked necessary, mark it, and add it to the
worklist if ADD_TO_WORKLIST is true. */
static inline void
mark_stmt_necessary (gimple *stmt, bool add_to_worklist)
{
gcc_assert (stmt);
if (gimple_plf (stmt, STMT_NECESSARY))
return;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Marking useful stmt: ");
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
fprintf (dump_file, "\n");
}
gimple_set_plf (stmt, STMT_NECESSARY, true);
if (add_to_worklist)
worklist.safe_push (stmt);
if (add_to_worklist && bb_contains_live_stmts && !is_gimple_debug (stmt))
bitmap_set_bit (bb_contains_live_stmts, gimple_bb (stmt)->index);
}
/* Mark the statement defining operand OP as necessary. */
static inline void
mark_operand_necessary (tree op)
{
gimple *stmt;
int ver;
gcc_assert (op);
ver = SSA_NAME_VERSION (op);
if (bitmap_bit_p (processed, ver))
{
stmt = SSA_NAME_DEF_STMT (op);
gcc_assert (gimple_nop_p (stmt)
|| gimple_plf (stmt, STMT_NECESSARY));
return;
}
bitmap_set_bit (processed, ver);
stmt = SSA_NAME_DEF_STMT (op);
gcc_assert (stmt);
if (gimple_plf (stmt, STMT_NECESSARY) || gimple_nop_p (stmt))
return;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "marking necessary through ");
print_generic_expr (dump_file, op, 0);
fprintf (dump_file, " stmt ");
print_gimple_stmt (dump_file, stmt, 0, 0);
}
gimple_set_plf (stmt, STMT_NECESSARY, true);
if (bb_contains_live_stmts)
bitmap_set_bit (bb_contains_live_stmts, gimple_bb (stmt)->index);
worklist.safe_push (stmt);
}
/* Mark STMT as necessary if it obviously is. Add it to the worklist if
it can make other statements necessary.
If AGGRESSIVE is false, control statements are conservatively marked as
necessary. */
static void
mark_stmt_if_obviously_necessary (gimple *stmt, bool aggressive)
{
/* With non-call exceptions, we have to assume that all statements could
throw. If a statement could throw, it can be deemed necessary. */
if (cfun->can_throw_non_call_exceptions
&& !cfun->can_delete_dead_exceptions
&& stmt_could_throw_p (stmt))
{
mark_stmt_necessary (stmt, true);
return;
}
/* Statements that are implicitly live. Most function calls, asm
and return statements are required. Labels and GIMPLE_BIND nodes
are kept because they are control flow, and we have no way of
knowing whether they can be removed. DCE can eliminate all the
other statements in a block, and CFG can then remove the block
and labels. */
switch (gimple_code (stmt))
{
case GIMPLE_PREDICT:
case GIMPLE_LABEL:
mark_stmt_necessary (stmt, false);
return;
case GIMPLE_ASM:
case GIMPLE_RESX:
case GIMPLE_RETURN:
mark_stmt_necessary (stmt, true);
return;
case GIMPLE_CALL:
{
tree callee = gimple_call_fndecl (stmt);
if (callee != NULL_TREE
&& DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL)
switch (DECL_FUNCTION_CODE (callee))
{
case BUILT_IN_MALLOC:
case BUILT_IN_ALIGNED_ALLOC:
case BUILT_IN_CALLOC:
case BUILT_IN_ALLOCA:
case BUILT_IN_ALLOCA_WITH_ALIGN:
return;
default:;
}
/* Most, but not all function calls are required. Function calls that
produce no result and have no side effects (i.e. const pure
functions) are unnecessary. */
if (gimple_has_side_effects (stmt))
{
mark_stmt_necessary (stmt, true);
return;
}
if (!gimple_call_lhs (stmt))
return;
break;
}
case GIMPLE_DEBUG:
/* Debug temps without a value are not useful. ??? If we could
easily locate the debug temp bind stmt for a use thereof,
would could refrain from marking all debug temps here, and
mark them only if they're used. */
if (!gimple_debug_bind_p (stmt)
|| gimple_debug_bind_has_value_p (stmt)
|| TREE_CODE (gimple_debug_bind_get_var (stmt)) != DEBUG_EXPR_DECL)
mark_stmt_necessary (stmt, false);
return;
case GIMPLE_GOTO:
gcc_assert (!simple_goto_p (stmt));
mark_stmt_necessary (stmt, true);
return;
case GIMPLE_COND:
gcc_assert (EDGE_COUNT (gimple_bb (stmt)->succs) == 2);
/* Fall through. */
case GIMPLE_SWITCH:
if (! aggressive)
mark_stmt_necessary (stmt, true);
break;
case GIMPLE_ASSIGN:
if (gimple_clobber_p (stmt))
return;
break;
default:
break;
}
/* If the statement has volatile operands, it needs to be preserved.
Same for statements that can alter control flow in unpredictable
ways. */
if (gimple_has_volatile_ops (stmt) || is_ctrl_altering_stmt (stmt))
{
mark_stmt_necessary (stmt, true);
return;
}
if (stmt_may_clobber_global_p (stmt))
{
mark_stmt_necessary (stmt, true);
return;
}
return;
}
/* Mark the last statement of BB as necessary. */
static void
mark_last_stmt_necessary (basic_block bb)
{
gimple *stmt = last_stmt (bb);
bitmap_set_bit (last_stmt_necessary, bb->index);
bitmap_set_bit (bb_contains_live_stmts, bb->index);
/* We actually mark the statement only if it is a control statement. */
if (stmt && is_ctrl_stmt (stmt))
mark_stmt_necessary (stmt, true);
}
/* Mark control dependent edges of BB as necessary. We have to do this only
once for each basic block so we set the appropriate bit after we're done.
When IGNORE_SELF is true, ignore BB in the list of control dependences. */
static void
mark_control_dependent_edges_necessary (basic_block bb, bool ignore_self)
{
bitmap_iterator bi;
unsigned edge_number;
bool skipped = false;
gcc_assert (bb != EXIT_BLOCK_PTR_FOR_FN (cfun));
if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
return;
EXECUTE_IF_SET_IN_BITMAP (cd->get_edges_dependent_on (bb->index),
0, edge_number, bi)
{
basic_block cd_bb = cd->get_edge_src (edge_number);
if (ignore_self && cd_bb == bb)
{
skipped = true;
continue;
}
if (!bitmap_bit_p (last_stmt_necessary, cd_bb->index))
mark_last_stmt_necessary (cd_bb);
}
if (!skipped)
bitmap_set_bit (visited_control_parents, bb->index);
}
/* Find obviously necessary statements. These are things like most function
calls, and stores to file level variables.
If EL is NULL, control statements are conservatively marked as
necessary. Otherwise it contains the list of edges used by control
dependence analysis. */
static void
find_obviously_necessary_stmts (bool aggressive)
{
basic_block bb;
gimple_stmt_iterator gsi;
edge e;
gimple *phi, *stmt;
int flags;
FOR_EACH_BB_FN (bb, cfun)
{
/* PHI nodes are never inherently necessary. */
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
phi = gsi_stmt (gsi);
gimple_set_plf (phi, STMT_NECESSARY, false);
}
/* Check all statements in the block. */
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
stmt = gsi_stmt (gsi);
gimple_set_plf (stmt, STMT_NECESSARY, false);
mark_stmt_if_obviously_necessary (stmt, aggressive);
}
}
/* Pure and const functions are finite and thus have no infinite loops in
them. */
flags = flags_from_decl_or_type (current_function_decl);
if ((flags & (ECF_CONST|ECF_PURE)) && !(flags & ECF_LOOPING_CONST_OR_PURE))
return;
/* Prevent the empty possibly infinite loops from being removed. */
if (aggressive)
{
struct loop *loop;
if (mark_irreducible_loops ())
FOR_EACH_BB_FN (bb, cfun)
{
edge_iterator ei;
FOR_EACH_EDGE (e, ei, bb->succs)
if ((e->flags & EDGE_DFS_BACK)
&& (e->flags & EDGE_IRREDUCIBLE_LOOP))
{
if (dump_file)
fprintf (dump_file, "Marking back edge of irreducible loop %i->%i\n",
e->src->index, e->dest->index);
mark_control_dependent_edges_necessary (e->dest, false);
}
}
FOR_EACH_LOOP (loop, 0)
if (!finite_loop_p (loop))
{
if (dump_file)
fprintf (dump_file, "can not prove finiteness of loop %i\n", loop->num);
mark_control_dependent_edges_necessary (loop->latch, false);
}
}
}
/* Return true if REF is based on an aliased base, otherwise false. */
static bool
ref_may_be_aliased (tree ref)
{
gcc_assert (TREE_CODE (ref) != WITH_SIZE_EXPR);
while (handled_component_p (ref))
ref = TREE_OPERAND (ref, 0);
if (TREE_CODE (ref) == MEM_REF
&& TREE_CODE (TREE_OPERAND (ref, 0)) == ADDR_EXPR)
ref = TREE_OPERAND (TREE_OPERAND (ref, 0), 0);
return !(DECL_P (ref)
&& !may_be_aliased (ref));
}
static bitmap visited = NULL;
static unsigned int longest_chain = 0;
static unsigned int total_chain = 0;
static unsigned int nr_walks = 0;
static bool chain_ovfl = false;
/* Worker for the walker that marks reaching definitions of REF,
which is based on a non-aliased decl, necessary. It returns
true whenever the defining statement of the current VDEF is
a kill for REF, as no dominating may-defs are necessary for REF
anymore. DATA points to the basic-block that contains the
stmt that refers to REF. */
static bool
mark_aliased_reaching_defs_necessary_1 (ao_ref *ref, tree vdef, void *data)
{
gimple *def_stmt = SSA_NAME_DEF_STMT (vdef);
/* All stmts we visit are necessary. */
if (! gimple_clobber_p (def_stmt))
mark_operand_necessary (vdef);
/* If the stmt lhs kills ref, then we can stop walking. */
if (gimple_has_lhs (def_stmt)
&& TREE_CODE (gimple_get_lhs (def_stmt)) != SSA_NAME
/* The assignment is not necessarily carried out if it can throw
and we can catch it in the current function where we could inspect
the previous value.
??? We only need to care about the RHS throwing. For aggregate
assignments or similar calls and non-call exceptions the LHS
might throw as well. */
&& !stmt_can_throw_internal (def_stmt))
{
tree base, lhs = gimple_get_lhs (def_stmt);
HOST_WIDE_INT size, offset, max_size;
bool reverse;
ao_ref_base (ref);
base
= get_ref_base_and_extent (lhs, &offset, &size, &max_size, &reverse);
/* We can get MEM[symbol: sZ, index: D.8862_1] here,
so base == refd->base does not always hold. */
if (base == ref->base)
{
/* For a must-alias check we need to be able to constrain
the accesses properly. */
if (size != -1 && size == max_size
&& ref->max_size != -1)
{
if (offset <= ref->offset
&& offset + size >= ref->offset + ref->max_size)
return true;
}
/* Or they need to be exactly the same. */
else if (ref->ref
/* Make sure there is no induction variable involved
in the references (gcc.c-torture/execute/pr42142.c).
The simplest way is to check if the kill dominates
the use. */
/* But when both are in the same block we cannot
easily tell whether we came from a backedge
unless we decide to compute stmt UIDs
(see PR58246). */
&& (basic_block) data != gimple_bb (def_stmt)
&& dominated_by_p (CDI_DOMINATORS, (basic_block) data,
gimple_bb (def_stmt))
&& operand_equal_p (ref->ref, lhs, 0))
return true;
}
}
/* Otherwise keep walking. */
return false;
}
static void
mark_aliased_reaching_defs_necessary (gimple *stmt, tree ref)
{
unsigned int chain;
ao_ref refd;
gcc_assert (!chain_ovfl);
ao_ref_init (&refd, ref);
chain = walk_aliased_vdefs (&refd, gimple_vuse (stmt),
mark_aliased_reaching_defs_necessary_1,
gimple_bb (stmt), NULL);
if (chain > longest_chain)
longest_chain = chain;
total_chain += chain;
nr_walks++;
}
/* Worker for the walker that marks reaching definitions of REF, which
is not based on a non-aliased decl. For simplicity we need to end
up marking all may-defs necessary that are not based on a non-aliased
decl. The only job of this walker is to skip may-defs based on
a non-aliased decl. */
static bool
mark_all_reaching_defs_necessary_1 (ao_ref *ref ATTRIBUTE_UNUSED,
tree vdef, void *data ATTRIBUTE_UNUSED)
{
gimple *def_stmt = SSA_NAME_DEF_STMT (vdef);
/* We have to skip already visited (and thus necessary) statements
to make the chaining work after we dropped back to simple mode. */
if (chain_ovfl
&& bitmap_bit_p (processed, SSA_NAME_VERSION (vdef)))
{
gcc_assert (gimple_nop_p (def_stmt)
|| gimple_plf (def_stmt, STMT_NECESSARY));
return false;
}
/* We want to skip stores to non-aliased variables. */
if (!chain_ovfl
&& gimple_assign_single_p (def_stmt))
{
tree lhs = gimple_assign_lhs (def_stmt);
if (!ref_may_be_aliased (lhs))
return false;
}
/* We want to skip statments that do not constitute stores but have
a virtual definition. */
if (is_gimple_call (def_stmt))
{
tree callee = gimple_call_fndecl (def_stmt);
if (callee != NULL_TREE
&& DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL)
switch (DECL_FUNCTION_CODE (callee))
{
case BUILT_IN_MALLOC:
case BUILT_IN_ALIGNED_ALLOC:
case BUILT_IN_CALLOC:
case BUILT_IN_ALLOCA:
case BUILT_IN_ALLOCA_WITH_ALIGN:
case BUILT_IN_FREE:
return false;
default:;
}
}
if (! gimple_clobber_p (def_stmt))
mark_operand_necessary (vdef);
return false;
}
static void
mark_all_reaching_defs_necessary (gimple *stmt)
{
walk_aliased_vdefs (NULL, gimple_vuse (stmt),
mark_all_reaching_defs_necessary_1, NULL, &visited);
}
/* Return true for PHI nodes with one or identical arguments
can be removed. */
static bool
degenerate_phi_p (gimple *phi)
{
unsigned int i;
tree op = gimple_phi_arg_def (phi, 0);
for (i = 1; i < gimple_phi_num_args (phi); i++)
if (gimple_phi_arg_def (phi, i) != op)
return false;
return true;
}
/* Propagate necessity using the operands of necessary statements.
Process the uses on each statement in the worklist, and add all
feeding statements which contribute to the calculation of this
value to the worklist.
In conservative mode, EL is NULL. */
static void
propagate_necessity (bool aggressive)
{
gimple *stmt;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "\nProcessing worklist:\n");
while (worklist.length () > 0)
{
/* Take STMT from worklist. */
stmt = worklist.pop ();
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "processing: ");
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
fprintf (dump_file, "\n");
}
if (aggressive)
{
/* Mark the last statement of the basic blocks on which the block
containing STMT is control dependent, but only if we haven't
already done so. */
basic_block bb = gimple_bb (stmt);
if (bb != ENTRY_BLOCK_PTR_FOR_FN (cfun)
&& !bitmap_bit_p (visited_control_parents, bb->index))
mark_control_dependent_edges_necessary (bb, false);
}
if (gimple_code (stmt) == GIMPLE_PHI
/* We do not process virtual PHI nodes nor do we track their
necessity. */
&& !virtual_operand_p (gimple_phi_result (stmt)))
{
/* PHI nodes are somewhat special in that each PHI alternative has
data and control dependencies. All the statements feeding the
PHI node's arguments are always necessary. In aggressive mode,
we also consider the control dependent edges leading to the
predecessor block associated with each PHI alternative as
necessary. */
gphi *phi = as_a <gphi *> (stmt);
size_t k;
for (k = 0; k < gimple_phi_num_args (stmt); k++)
{
tree arg = PHI_ARG_DEF (stmt, k);
if (TREE_CODE (arg) == SSA_NAME)
mark_operand_necessary (arg);
}
/* For PHI operands it matters from where the control flow arrives
to the BB. Consider the following example:
a=exp1;
b=exp2;
if (test)
;
else
;
c=PHI(a,b)
We need to mark control dependence of the empty basic blocks, since they
contains computation of PHI operands.
Doing so is too restrictive in the case the predecestor block is in
the loop. Consider:
if (b)
{
int i;
for (i = 0; i<1000; ++i)
;
j = 0;
}
return j;
There is PHI for J in the BB containing return statement.
In this case the control dependence of predecestor block (that is
within the empty loop) also contains the block determining number
of iterations of the block that would prevent removing of empty
loop in this case.
This scenario can be avoided by splitting critical edges.
To save the critical edge splitting pass we identify how the control
dependence would look like if the edge was split.
Consider the modified CFG created from current CFG by splitting
edge B->C. In the postdominance tree of modified CFG, C' is
always child of C. There are two cases how chlids of C' can look
like:
1) C' is leaf
In this case the only basic block C' is control dependent on is B.
2) C' has single child that is B
In this case control dependence of C' is same as control
dependence of B in original CFG except for block B itself.
(since C' postdominate B in modified CFG)
Now how to decide what case happens? There are two basic options:
a) C postdominate B. Then C immediately postdominate B and
case 2 happens iff there is no other way from B to C except
the edge B->C.
There is other way from B to C iff there is succesor of B that
is not postdominated by B. Testing this condition is somewhat
expensive, because we need to iterate all succesors of B.
We are safe to assume that this does not happen: we will mark B
as needed when processing the other path from B to C that is
conrol dependent on B and marking control dependencies of B
itself is harmless because they will be processed anyway after
processing control statement in B.
b) C does not postdominate B. Always case 1 happens since there is
path from C to exit that does not go through B and thus also C'. */
if (aggressive && !degenerate_phi_p (stmt))
{
for (k = 0; k < gimple_phi_num_args (stmt); k++)
{
basic_block arg_bb = gimple_phi_arg_edge (phi, k)->src;
if (gimple_bb (stmt)
!= get_immediate_dominator (CDI_POST_DOMINATORS, arg_bb))
{
if (!bitmap_bit_p (last_stmt_necessary, arg_bb->index))
mark_last_stmt_necessary (arg_bb);
}
else if (arg_bb != ENTRY_BLOCK_PTR_FOR_FN (cfun)
&& !bitmap_bit_p (visited_control_parents,
arg_bb->index))
mark_control_dependent_edges_necessary (arg_bb, true);
}
}
}
else
{
/* Propagate through the operands. Examine all the USE, VUSE and
VDEF operands in this statement. Mark all the statements
which feed this statement's uses as necessary. */
ssa_op_iter iter;
tree use;
/* If this is a call to free which is directly fed by an
allocation function do not mark that necessary through
processing the argument. */
if (gimple_call_builtin_p (stmt, BUILT_IN_FREE))
{
tree ptr = gimple_call_arg (stmt, 0);
gimple *def_stmt;
tree def_callee;
/* If the pointer we free is defined by an allocation
function do not add the call to the worklist. */
if (TREE_CODE (ptr) == SSA_NAME
&& is_gimple_call (def_stmt = SSA_NAME_DEF_STMT (ptr))
&& (def_callee = gimple_call_fndecl (def_stmt))
&& DECL_BUILT_IN_CLASS (def_callee) == BUILT_IN_NORMAL
&& (DECL_FUNCTION_CODE (def_callee) == BUILT_IN_ALIGNED_ALLOC
|| DECL_FUNCTION_CODE (def_callee) == BUILT_IN_MALLOC
|| DECL_FUNCTION_CODE (def_callee) == BUILT_IN_CALLOC))
{
gimple *bounds_def_stmt;
tree bounds;
/* For instrumented calls we should also check used
bounds are returned by the same allocation call. */
if (!gimple_call_with_bounds_p (stmt)
|| ((bounds = gimple_call_arg (stmt, 1))
&& TREE_CODE (bounds) == SSA_NAME
&& (bounds_def_stmt = SSA_NAME_DEF_STMT (bounds))
&& chkp_gimple_call_builtin_p (bounds_def_stmt,
BUILT_IN_CHKP_BNDRET)
&& gimple_call_arg (bounds_def_stmt, 0) == ptr))
continue;
}
}
FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
mark_operand_necessary (use);
use = gimple_vuse (stmt);
if (!use)
continue;
/* If we dropped to simple mode make all immediately
reachable definitions necessary. */
if (chain_ovfl)
{
mark_all_reaching_defs_necessary (stmt);
continue;
}
/* For statements that may load from memory (have a VUSE) we
have to mark all reaching (may-)definitions as necessary.
We partition this task into two cases:
1) explicit loads based on decls that are not aliased
2) implicit loads (like calls) and explicit loads not
based on decls that are not aliased (like indirect
references or loads from globals)
For 1) we mark all reaching may-defs as necessary, stopping
at dominating kills. For 2) we want to mark all dominating
references necessary, but non-aliased ones which we handle
in 1). By keeping a global visited bitmap for references
we walk for 2) we avoid quadratic behavior for those. */
if (is_gimple_call (stmt))
{
tree callee = gimple_call_fndecl (stmt);
unsigned i;
/* Calls to functions that are merely acting as barriers
or that only store to memory do not make any previous
stores necessary. */
if (callee != NULL_TREE
&& DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
&& (DECL_FUNCTION_CODE (callee) == BUILT_IN_MEMSET
|| DECL_FUNCTION_CODE (callee) == BUILT_IN_MEMSET_CHK
|| DECL_FUNCTION_CODE (callee) == BUILT_IN_MALLOC
|| DECL_FUNCTION_CODE (callee) == BUILT_IN_ALIGNED_ALLOC
|| DECL_FUNCTION_CODE (callee) == BUILT_IN_CALLOC
|| DECL_FUNCTION_CODE (callee) == BUILT_IN_FREE
|| DECL_FUNCTION_CODE (callee) == BUILT_IN_VA_END
|| DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA
|| (DECL_FUNCTION_CODE (callee)
== BUILT_IN_ALLOCA_WITH_ALIGN)
|| DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_SAVE
|| DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_RESTORE
|| DECL_FUNCTION_CODE (callee) == BUILT_IN_ASSUME_ALIGNED))
continue;
/* Calls implicitly load from memory, their arguments
in addition may explicitly perform memory loads. */
mark_all_reaching_defs_necessary (stmt);
for (i = 0; i < gimple_call_num_args (stmt); ++i)
{
tree arg = gimple_call_arg (stmt, i);
if (TREE_CODE (arg) == SSA_NAME
|| is_gimple_min_invariant (arg))
continue;
if (TREE_CODE (arg) == WITH_SIZE_EXPR)
arg = TREE_OPERAND (arg, 0);
if (!ref_may_be_aliased (arg))
mark_aliased_reaching_defs_necessary (stmt, arg);
}
}
else if (gimple_assign_single_p (stmt))
{
tree rhs;
/* If this is a load mark things necessary. */
rhs = gimple_assign_rhs1 (stmt);
if (TREE_CODE (rhs) != SSA_NAME
&& !is_gimple_min_invariant (rhs)
&& TREE_CODE (rhs) != CONSTRUCTOR)
{
if (!ref_may_be_aliased (rhs))
mark_aliased_reaching_defs_necessary (stmt, rhs);
else
mark_all_reaching_defs_necessary (stmt);
}
}
else if (greturn *return_stmt = dyn_cast <greturn *> (stmt))
{
tree rhs = gimple_return_retval (return_stmt);
/* A return statement may perform a load. */
if (rhs
&& TREE_CODE (rhs) != SSA_NAME
&& !is_gimple_min_invariant (rhs)
&& TREE_CODE (rhs) != CONSTRUCTOR)
{
if (!ref_may_be_aliased (rhs))
mark_aliased_reaching_defs_necessary (stmt, rhs);
else
mark_all_reaching_defs_necessary (stmt);
}
}
else if (gasm *asm_stmt = dyn_cast <gasm *> (stmt))
{
unsigned i;
mark_all_reaching_defs_necessary (stmt);
/* Inputs may perform loads. */
for (i = 0; i < gimple_asm_ninputs (asm_stmt); ++i)
{
tree op = TREE_VALUE (gimple_asm_input_op (asm_stmt, i));
if (TREE_CODE (op) != SSA_NAME
&& !is_gimple_min_invariant (op)
&& TREE_CODE (op) != CONSTRUCTOR
&& !ref_may_be_aliased (op))
mark_aliased_reaching_defs_necessary (stmt, op);
}
}
else if (gimple_code (stmt) == GIMPLE_TRANSACTION)
{
/* The beginning of a transaction is a memory barrier. */
/* ??? If we were really cool, we'd only be a barrier
for the memories touched within the transaction. */
mark_all_reaching_defs_necessary (stmt);
}
else
gcc_unreachable ();
/* If we over-used our alias oracle budget drop to simple
mode. The cost metric allows quadratic behavior
(number of uses times number of may-defs queries) up to
a constant maximal number of queries and after that falls back to
super-linear complexity. */
if (/* Constant but quadratic for small functions. */
total_chain > 128 * 128
/* Linear in the number of may-defs. */
&& total_chain > 32 * longest_chain
/* Linear in the number of uses. */
&& total_chain > nr_walks * 32)
{
chain_ovfl = true;
if (visited)
bitmap_clear (visited);
}
}
}
}
/* Remove dead PHI nodes from block BB. */
static bool
remove_dead_phis (basic_block bb)
{
bool something_changed = false;
gphi *phi;
gphi_iterator gsi;
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi);)
{
stats.total_phis++;
phi = gsi.phi ();
/* We do not track necessity of virtual PHI nodes. Instead do
very simple dead PHI removal here. */
if (virtual_operand_p (gimple_phi_result (phi)))
{
/* Virtual PHI nodes with one or identical arguments
can be removed. */
if (degenerate_phi_p (phi))
{
tree vdef = gimple_phi_result (phi);
tree vuse = gimple_phi_arg_def (phi, 0);
use_operand_p use_p;
imm_use_iterator iter;
gimple *use_stmt;
FOR_EACH_IMM_USE_STMT (use_stmt, iter, vdef)
FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
SET_USE (use_p, vuse);
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vdef)
&& TREE_CODE (vuse) == SSA_NAME)
SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse) = 1;
}
else
gimple_set_plf (phi, STMT_NECESSARY, true);
}
if (!gimple_plf (phi, STMT_NECESSARY))
{
something_changed = true;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Deleting : ");
print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
fprintf (dump_file, "\n");
}
remove_phi_node (&gsi, true);
stats.removed_phis++;
continue;
}
gsi_next (&gsi);
}
return something_changed;
}
/* Remove dead statement pointed to by iterator I. Receives the basic block BB
containing I so that we don't have to look it up. */
static void
remove_dead_stmt (gimple_stmt_iterator *i, basic_block bb)
{
gimple *stmt = gsi_stmt (*i);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Deleting : ");
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
fprintf (dump_file, "\n");
}
stats.removed++;
/* If we have determined that a conditional branch statement contributes
nothing to the program, then we not only remove it, but we need to update
the CFG. We can chose any of edges out of BB as long as we are sure to not
close infinite loops. This is done by always choosing the edge closer to
exit in inverted_post_order_compute order. */
if (is_ctrl_stmt (stmt))
{
edge_iterator ei;
edge e = NULL, e2;
/* See if there is only one non-abnormal edge. */
if (single_succ_p (bb))
e = single_succ_edge (bb);
/* Otherwise chose one that is closer to bb with live statement in it.
To be able to chose one, we compute inverted post order starting from
all BBs with live statements. */
if (!e)
{
if (!bb_postorder)
{
int *postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
int postorder_num
= inverted_post_order_compute (postorder,
&bb_contains_live_stmts);
bb_postorder = XNEWVEC (int, last_basic_block_for_fn (cfun));
for (int i = 0; i < postorder_num; ++i)
bb_postorder[postorder[i]] = i;
free (postorder);
}
FOR_EACH_EDGE (e2, ei, bb->succs)
if (!e || e2->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
|| bb_postorder [e->dest->index]
< bb_postorder [e2->dest->index])
e = e2;
}
gcc_assert (e);
e->probability = REG_BR_PROB_BASE;
e->count = bb->count;
/* The edge is no longer associated with a conditional, so it does
not have TRUE/FALSE flags.
We are also safe to drop EH/ABNORMAL flags and turn them into
normal control flow, because we know that all the destinations (including
those odd edges) are equivalent for program execution. */
e->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE | EDGE_EH | EDGE_ABNORMAL);
/* The lone outgoing edge from BB will be a fallthru edge. */
e->flags |= EDGE_FALLTHRU;
/* Remove the remaining outgoing edges. */
for (ei = ei_start (bb->succs); (e2 = ei_safe_edge (ei)); )
if (e != e2)
{
cfg_altered = true;
/* If we made a BB unconditionally exit a loop or removed
an entry into an irreducible region, then this transform
alters the set of BBs in the loop. Schedule a fixup. */
if (loop_exit_edge_p (bb->loop_father, e)
|| (e2->dest->flags & BB_IRREDUCIBLE_LOOP))
loops_state_set (LOOPS_NEED_FIXUP);
remove_edge (e2);
}
else
ei_next (&ei);
}
/* If this is a store into a variable that is being optimized away,
add a debug bind stmt if possible. */
if (MAY_HAVE_DEBUG_STMTS
&& gimple_assign_single_p (stmt)
&& is_gimple_val (gimple_assign_rhs1 (stmt)))
{
tree lhs = gimple_assign_lhs (stmt);
if ((VAR_P (lhs) || TREE_CODE (lhs) == PARM_DECL)
&& !DECL_IGNORED_P (lhs)
&& is_gimple_reg_type (TREE_TYPE (lhs))
&& !is_global_var (lhs)
&& !DECL_HAS_VALUE_EXPR_P (lhs))
{
tree rhs = gimple_assign_rhs1 (stmt);
gdebug *note
= gimple_build_debug_bind (lhs, unshare_expr (rhs), stmt);
gsi_insert_after (i, note, GSI_SAME_STMT);
}
}
unlink_stmt_vdef (stmt);
gsi_remove (i, true);
release_defs (stmt);
}
/* Helper for maybe_optimize_arith_overflow. Find in *TP if there are any
uses of data (SSA_NAME) other than REALPART_EXPR referencing it. */
static tree
find_non_realpart_uses (tree *tp, int *walk_subtrees, void *data)
{
if (TYPE_P (*tp) || TREE_CODE (*tp) == REALPART_EXPR)
*walk_subtrees = 0;
if (*tp == (tree) data)
return *tp;
return NULL_TREE;
}
/* If the IMAGPART_EXPR of the {ADD,SUB,MUL}_OVERFLOW result is never used,
but REALPART_EXPR is, optimize the {ADD,SUB,MUL}_OVERFLOW internal calls
into plain unsigned {PLUS,MINUS,MULT}_EXPR, and if needed reset debug
uses. */
static void
maybe_optimize_arith_overflow (gimple_stmt_iterator *gsi,
enum tree_code subcode)
{
gimple *stmt = gsi_stmt (*gsi);
tree lhs = gimple_call_lhs (stmt);
if (lhs == NULL || TREE_CODE (lhs) != SSA_NAME)
return;
imm_use_iterator imm_iter;
use_operand_p use_p;
bool has_debug_uses = false;
bool has_realpart_uses = false;
bool has_other_uses = false;
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
{
gimple *use_stmt = USE_STMT (use_p);
if (is_gimple_debug (use_stmt))
has_debug_uses = true;
else if (is_gimple_assign (use_stmt)
&& gimple_assign_rhs_code (use_stmt) == REALPART_EXPR
&& TREE_OPERAND (gimple_assign_rhs1 (use_stmt), 0) == lhs)
has_realpart_uses = true;
else
{
has_other_uses = true;
break;
}
}
if (!has_realpart_uses || has_other_uses)
return;
tree arg0 = gimple_call_arg (stmt, 0);
tree arg1 = gimple_call_arg (stmt, 1);
location_t loc = gimple_location (stmt);
tree type = TREE_TYPE (TREE_TYPE (lhs));
tree utype = type;
if (!TYPE_UNSIGNED (type))
utype = build_nonstandard_integer_type (TYPE_PRECISION (type), 1);
tree result = fold_build2_loc (loc, subcode, utype,
fold_convert_loc (loc, utype, arg0),
fold_convert_loc (loc, utype, arg1));
result = fold_convert_loc (loc, type, result);
if (has_debug_uses)
{
gimple *use_stmt;
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, lhs)
{
if (!gimple_debug_bind_p (use_stmt))
continue;
tree v = gimple_debug_bind_get_value (use_stmt);
if (walk_tree (&v, find_non_realpart_uses, lhs, NULL))
{
gimple_debug_bind_reset_value (use_stmt);
update_stmt (use_stmt);
}
}
}
if (TREE_CODE (result) == INTEGER_CST && TREE_OVERFLOW (result))
result = drop_tree_overflow (result);
tree overflow = build_zero_cst (type);
tree ctype = build_complex_type (type);
if (TREE_CODE (result) == INTEGER_CST)
result = build_complex (ctype, result, overflow);
else
result = build2_loc (gimple_location (stmt), COMPLEX_EXPR,
ctype, result, overflow);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Transforming call: ");
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
fprintf (dump_file, "because the overflow result is never used into: ");
print_generic_stmt (dump_file, result, TDF_SLIM);
fprintf (dump_file, "\n");
}
if (!update_call_from_tree (gsi, result))
gimplify_and_update_call_from_tree (gsi, result);
}
/* Eliminate unnecessary statements. Any instruction not marked as necessary
contributes nothing to the program, and can be deleted. */
static bool
eliminate_unnecessary_stmts (void)
{
bool something_changed = false;
basic_block bb;
gimple_stmt_iterator gsi, psi;
gimple *stmt;
tree call;
vec<basic_block> h;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "\nEliminating unnecessary statements:\n");
clear_special_calls ();
/* Walking basic blocks and statements in reverse order avoids
releasing SSA names before any other DEFs that refer to them are
released. This helps avoid loss of debug information, as we get
a chance to propagate all RHSs of removed SSAs into debug uses,
rather than only the latest ones. E.g., consider:
x_3 = y_1 + z_2;
a_5 = x_3 - b_4;
# DEBUG a => a_5
If we were to release x_3 before a_5, when we reached a_5 and
tried to substitute it into the debug stmt, we'd see x_3 there,
but x_3's DEF, type, etc would have already been disconnected.
By going backwards, the debug stmt first changes to:
# DEBUG a => x_3 - b_4
and then to:
# DEBUG a => y_1 + z_2 - b_4
as desired. */
gcc_assert (dom_info_available_p (CDI_DOMINATORS));
h = get_all_dominated_blocks (CDI_DOMINATORS,
single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
while (h.length ())
{
bb = h.pop ();
/* Remove dead statements. */
for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi = psi)
{
stmt = gsi_stmt (gsi);
psi = gsi;
gsi_prev (&psi);
stats.total++;
/* We can mark a call to free as not necessary if the
defining statement of its argument is not necessary
(and thus is getting removed). */
if (gimple_plf (stmt, STMT_NECESSARY)
&& gimple_call_builtin_p (stmt, BUILT_IN_FREE))
{
tree ptr = gimple_call_arg (stmt, 0);
if (TREE_CODE (ptr) == SSA_NAME)
{
gimple *def_stmt = SSA_NAME_DEF_STMT (ptr);
if (!gimple_nop_p (def_stmt)
&& !gimple_plf (def_stmt, STMT_NECESSARY))
gimple_set_plf (stmt, STMT_NECESSARY, false);
}
/* We did not propagate necessity for free calls fed
by allocation function to allow unnecessary
alloc-free sequence elimination. For instrumented
calls it also means we did not mark bounds producer
as necessary and it is time to do it in case free
call is not removed. */
if (gimple_call_with_bounds_p (stmt))
{
gimple *bounds_def_stmt;
tree bounds = gimple_call_arg (stmt, 1);
gcc_assert (TREE_CODE (bounds) == SSA_NAME);
bounds_def_stmt = SSA_NAME_DEF_STMT (bounds);
if (bounds_def_stmt
&& !gimple_plf (bounds_def_stmt, STMT_NECESSARY))
gimple_set_plf (bounds_def_stmt, STMT_NECESSARY,
gimple_plf (stmt, STMT_NECESSARY));
}
}
/* If GSI is not necessary then remove it. */
if (!gimple_plf (stmt, STMT_NECESSARY))
{
/* Keep clobbers that we can keep live live. */
if (gimple_clobber_p (stmt))
{
ssa_op_iter iter;
use_operand_p use_p;
bool dead = false;
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
{
tree name = USE_FROM_PTR (use_p);
if (!SSA_NAME_IS_DEFAULT_DEF (name)
&& !bitmap_bit_p (processed, SSA_NAME_VERSION (name)))
{
dead = true;
break;
}
}
if (!dead)
continue;
}
if (!is_gimple_debug (stmt))
something_changed = true;
remove_dead_stmt (&gsi, bb);
}
else if (is_gimple_call (stmt))
{
tree name = gimple_call_lhs (stmt);
notice_special_calls (as_a <gcall *> (stmt));
/* When LHS of var = call (); is dead, simplify it into
call (); saving one operand. */
if (name
&& TREE_CODE (name) == SSA_NAME
&& !bitmap_bit_p (processed, SSA_NAME_VERSION (name))
/* Avoid doing so for allocation calls which we
did not mark as necessary, it will confuse the
special logic we apply to malloc/free pair removal. */
&& (!(call = gimple_call_fndecl (stmt))
|| DECL_BUILT_IN_CLASS (call) != BUILT_IN_NORMAL
|| (DECL_FUNCTION_CODE (call) != BUILT_IN_ALIGNED_ALLOC
&& DECL_FUNCTION_CODE (call) != BUILT_IN_MALLOC
&& DECL_FUNCTION_CODE (call) != BUILT_IN_CALLOC
&& DECL_FUNCTION_CODE (call) != BUILT_IN_ALLOCA
&& (DECL_FUNCTION_CODE (call)
!= BUILT_IN_ALLOCA_WITH_ALIGN)))
/* Avoid doing so for bndret calls for the same reason. */
&& !chkp_gimple_call_builtin_p (stmt, BUILT_IN_CHKP_BNDRET))
{
something_changed = true;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Deleting LHS of call: ");
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
fprintf (dump_file, "\n");
}
gimple_call_set_lhs (stmt, NULL_TREE);
maybe_clean_or_replace_eh_stmt (stmt, stmt);
update_stmt (stmt);
release_ssa_name (name);
/* GOMP_SIMD_LANE or ASAN_POISON without lhs is not
needed. */
if (gimple_call_internal_p (stmt))
switch (gimple_call_internal_fn (stmt))
{
case IFN_GOMP_SIMD_LANE:
case IFN_ASAN_POISON:
remove_dead_stmt (&gsi, bb);
break;
default:
break;
}
}
else if (gimple_call_internal_p (stmt))
switch (gimple_call_internal_fn (stmt))
{
case IFN_ADD_OVERFLOW:
maybe_optimize_arith_overflow (&gsi, PLUS_EXPR);
break;
case IFN_SUB_OVERFLOW:
maybe_optimize_arith_overflow (&gsi, MINUS_EXPR);
break;
case IFN_MUL_OVERFLOW:
maybe_optimize_arith_overflow (&gsi, MULT_EXPR);
break;
default:
break;
}
}
}
}
h.release ();
/* Since we don't track liveness of virtual PHI nodes, it is possible that we
rendered some PHI nodes unreachable while they are still in use.
Mark them for renaming. */
if (cfg_altered)
{
basic_block prev_bb;
find_unreachable_blocks ();
/* Delete all unreachable basic blocks in reverse dominator order. */
for (bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
bb != ENTRY_BLOCK_PTR_FOR_FN (cfun); bb = prev_bb)
{
prev_bb = bb->prev_bb;
if (!bitmap_bit_p (bb_contains_live_stmts, bb->index)
|| !(bb->flags & BB_REACHABLE))
{
for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
gsi_next (&gsi))
if (virtual_operand_p (gimple_phi_result (gsi.phi ())))
{
bool found = false;
imm_use_iterator iter;
FOR_EACH_IMM_USE_STMT (stmt, iter,
gimple_phi_result (gsi.phi ()))
{
if (!(gimple_bb (stmt)->flags & BB_REACHABLE))
continue;
if (gimple_code (stmt) == GIMPLE_PHI
|| gimple_plf (stmt, STMT_NECESSARY))
{
found = true;
BREAK_FROM_IMM_USE_STMT (iter);
}
}
if (found)
mark_virtual_phi_result_for_renaming (gsi.phi ());
}
if (!(bb->flags & BB_REACHABLE))
{
/* Speed up the removal of blocks that don't
dominate others. Walking backwards, this should
be the common case. ??? Do we need to recompute
dominators because of cfg_altered? */
if (!MAY_HAVE_DEBUG_STMTS
|| !first_dom_son (CDI_DOMINATORS, bb))
delete_basic_block (bb);
else
{
h = get_all_dominated_blocks (CDI_DOMINATORS, bb);
while (h.length ())
{
bb = h.pop ();
prev_bb = bb->prev_bb;
/* Rearrangements to the CFG may have failed
to update the dominators tree, so that
formerly-dominated blocks are now
otherwise reachable. */
if (!!(bb->flags & BB_REACHABLE))
continue;
delete_basic_block (bb);
}
h.release ();
}
}
}
}
}
FOR_EACH_BB_FN (bb, cfun)
{
/* Remove dead PHI nodes. */
something_changed |= remove_dead_phis (bb);
}
if (bb_postorder)
free (bb_postorder);
bb_postorder = NULL;
return something_changed;
}
/* Print out removed statement statistics. */
static void
print_stats (void)
{
float percg;
percg = ((float) stats.removed / (float) stats.total) * 100;
fprintf (dump_file, "Removed %d of %d statements (%d%%)\n",
stats.removed, stats.total, (int) percg);
if (stats.total_phis == 0)
percg = 0;
else
percg = ((float) stats.removed_phis / (float) stats.total_phis) * 100;
fprintf (dump_file, "Removed %d of %d PHI nodes (%d%%)\n",
stats.removed_phis, stats.total_phis, (int) percg);
}
/* Initialization for this pass. Set up the used data structures. */
static void
tree_dce_init (bool aggressive)
{
memset ((void *) &stats, 0, sizeof (stats));
if (aggressive)
{
last_stmt_necessary = sbitmap_alloc (last_basic_block_for_fn (cfun));
bitmap_clear (last_stmt_necessary);
bb_contains_live_stmts = sbitmap_alloc (last_basic_block_for_fn (cfun));
bitmap_clear (bb_contains_live_stmts);
}
processed = sbitmap_alloc (num_ssa_names + 1);
bitmap_clear (processed);
worklist.create (64);
cfg_altered = false;
}
/* Cleanup after this pass. */
static void
tree_dce_done (bool aggressive)
{
if (aggressive)
{
delete cd;
sbitmap_free (visited_control_parents);
sbitmap_free (last_stmt_necessary);
sbitmap_free (bb_contains_live_stmts);
bb_contains_live_stmts = NULL;
}
sbitmap_free (processed);
worklist.release ();
}
/* Main routine to eliminate dead code.
AGGRESSIVE controls the aggressiveness of the algorithm.
In conservative mode, we ignore control dependence and simply declare
all but the most trivially dead branches necessary. This mode is fast.
In aggressive mode, control dependences are taken into account, which
results in more dead code elimination, but at the cost of some time.
FIXME: Aggressive mode before PRE doesn't work currently because
the dominance info is not invalidated after DCE1. This is
not an issue right now because we only run aggressive DCE
as the last tree SSA pass, but keep this in mind when you
start experimenting with pass ordering. */
static unsigned int
perform_tree_ssa_dce (bool aggressive)
{
bool something_changed = 0;
calculate_dominance_info (CDI_DOMINATORS);
/* Preheaders are needed for SCEV to work.
Simple lateches and recorded exits improve chances that loop will
proved to be finite in testcases such as in loop-15.c and loop-24.c */
bool in_loop_pipeline = scev_initialized_p ();
if (aggressive && ! in_loop_pipeline)
{
scev_initialize ();
loop_optimizer_init (LOOPS_NORMAL
| LOOPS_HAVE_RECORDED_EXITS);
}
tree_dce_init (aggressive);
if (aggressive)
{
/* Compute control dependence. */
calculate_dominance_info (CDI_POST_DOMINATORS);
cd = new control_dependences ();
visited_control_parents =
sbitmap_alloc (last_basic_block_for_fn (cfun));
bitmap_clear (visited_control_parents);
mark_dfs_back_edges ();
}
find_obviously_necessary_stmts (aggressive);
if (aggressive && ! in_loop_pipeline)
{
loop_optimizer_finalize ();
scev_finalize ();
}
longest_chain = 0;
total_chain = 0;
nr_walks = 0;
chain_ovfl = false;
visited = BITMAP_ALLOC (NULL);
propagate_necessity (aggressive);
BITMAP_FREE (visited);
something_changed |= eliminate_unnecessary_stmts ();
something_changed |= cfg_altered;
/* We do not update postdominators, so free them unconditionally. */
free_dominance_info (CDI_POST_DOMINATORS);
/* If we removed paths in the CFG, then we need to update
dominators as well. I haven't investigated the possibility
of incrementally updating dominators. */
if (cfg_altered)
free_dominance_info (CDI_DOMINATORS);
statistics_counter_event (cfun, "Statements deleted", stats.removed);
statistics_counter_event (cfun, "PHI nodes deleted", stats.removed_phis);
/* Debugging dumps. */
if (dump_file && (dump_flags & (TDF_STATS|TDF_DETAILS)))
print_stats ();
tree_dce_done (aggressive);
if (something_changed)
{
free_numbers_of_iterations_estimates (cfun);
if (in_loop_pipeline)
scev_reset ();
return TODO_update_ssa | TODO_cleanup_cfg;
}
return 0;
}
/* Pass entry points. */
static unsigned int
tree_ssa_dce (void)
{
return perform_tree_ssa_dce (/*aggressive=*/false);
}
static unsigned int
tree_ssa_cd_dce (void)
{
return perform_tree_ssa_dce (/*aggressive=*/optimize >= 2);
}
namespace {
const pass_data pass_data_dce =
{
GIMPLE_PASS, /* type */
"dce", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_TREE_DCE, /* tv_id */
( PROP_cfg | PROP_ssa ), /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_dce : public gimple_opt_pass
{
public:
pass_dce (gcc::context *ctxt)
: gimple_opt_pass (pass_data_dce, ctxt)
{}
/* opt_pass methods: */
opt_pass * clone () { return new pass_dce (m_ctxt); }
virtual bool gate (function *) { return flag_tree_dce != 0; }
virtual unsigned int execute (function *) { return tree_ssa_dce (); }
}; // class pass_dce
} // anon namespace
gimple_opt_pass *
make_pass_dce (gcc::context *ctxt)
{
return new pass_dce (ctxt);
}
namespace {
const pass_data pass_data_cd_dce =
{
GIMPLE_PASS, /* type */
"cddce", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_TREE_CD_DCE, /* tv_id */
( PROP_cfg | PROP_ssa ), /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_cd_dce : public gimple_opt_pass
{
public:
pass_cd_dce (gcc::context *ctxt)
: gimple_opt_pass (pass_data_cd_dce, ctxt)
{}
/* opt_pass methods: */
opt_pass * clone () { return new pass_cd_dce (m_ctxt); }
virtual bool gate (function *) { return flag_tree_dce != 0; }
virtual unsigned int execute (function *) { return tree_ssa_cd_dce (); }
}; // class pass_cd_dce
} // anon namespace
gimple_opt_pass *
make_pass_cd_dce (gcc::context *ctxt)
{
return new pass_cd_dce (ctxt);
}