Fix PCI config r/w of byte and word and unaligned.

dingusppc could not read bytes from offset 1,2,3 or words from offset 2.
dingusppc did not read words from offset 1,3 and longs from offset 1,2,3 in the same way as a real Power Mac 8600 or B&W G3.
This commit fixes those issues.

- Added pci_cfg_rev_read. It takes a 32 bit value from offset 0 and returns a value of the specified size using bytes starting from the specified offset. Offsets 4,5, & 6 wrap around to 0,1, & 2 respectively. The result bytes are in flipped order as required by the read method (so a value of 0x12345678 is returned as 0x78563412)
A real Power Mac 8600 might return a random byte for offset 4, 5, 6 for vci0 but usually not for pci1. A B&W G3 seems to always wrap around correctly. We won't read random bytes, and we won't read a default such as 00 or FF. We'll do the wrap around which makes the most sense because writing 0x12345678 to any offset and reading from the same offset should produce the value that was written.

- Added pci_cfg_rev_write. It takes a 32 bit value from offset 0, and modifies a specified number of bytes starting at a specified offset with the offset wrapping around to 0 if it exceeds 3. The modified bytes take their new values from the flipped bytes passed to pci_cfg_write. When size is 4, the original value is not used since all bytes will be modified.

Basically, those two functions handle all the sizes and all the offsets and replace calls to BYTESWAP_32, read_mem or read_mem_rev, and write_mem or write_mem_rev.
read_mem_rev, as it was used by pcidevice and some other places, could read beyond offset 3 if it were ever passed a reg_offs value that did not have offset as 0. Since the offset was always zero, it would always read the wrong byte or word if they were not at offset 0. Same for read_mem as used by mpc106.
write_mem_rev, as it was used by pcidevice and some other places, could write beyond offset 3 if it were ever passed a reg_offs value that did not have offset as 0. Since the offset was always zero, it would always write the wrong byte or word if they were not at offset 0. Same for write_mem as used by mpc106.

pcidevice:
- The logging macros should be used to handle all config register access logging.
- Unaligned PCI config register accesses will be output as ERROR instead of WARNING.
- The logging macros include the offset and size. They also include the value for named registers or for writes.
- Added MMIODevice read and write methods so that PCIDevice is not abstract if a PCIDevice doesn't override the read and write method since some PCIDevices don't have MMIO.

pcihost:
- Added pci_find_device stub for handling PCI bridges in future commit.

bandit and mpc106:
- PCI host controllers will handle all PCI config access alignment and sizing. A PCIDevice will always access config registers as 32 bits on a 4 byte boundary. The AccessDetails passed to a PCIDevice config read or write method is there only for logging purposes.

bandit:
- Common MMIO code is moved to new BanditHost class so both Bandit and Chaos can use it. PCI related code is moved to new BanditPCI class.
- Simplify IDSEL to/from PCI device number conversion by removing the shift or subtract.
- Remove BANDIT_ID_SEL check. The IDSEL conversion to PCI device number can find the bandit PCI device.
- For logging, make best guess of PCI device number from invalid IDSEL - the result is always reasonable for device 0x00 to 0x0A when accessing config register 0x00 (as one would do when scanning for PCI devices like lspci does).

mpc106:
- Common config space code is put in cfg_setup. It handles extracting the offset.
- Added code to log access to unimplemented config registers of grackle.
- Don't call setup_ram when writing to config registers that setup_ram doesn't use.
- pci_cfg_read calls READ_DWORD_LE_A and pci_cfg_write calls WRITE_DWORD_LE_A. When reading or writing memory that is organized as little endian dwords, such as my_pci_cfg_hdr of mpc106, the function should explicitly state that it's little endian so that the emulator may be ported one day to a CPU architecture that is not little endian.

atirage:
- The changes correctly place user_cfg at byte 0x40 instead of 0x43 and writes the correct byte depending on size and offset.
This commit is contained in:
joevt 2022-09-02 03:32:28 -07:00
parent 136aeca8f2
commit 4100a80f96
10 changed files with 414 additions and 437 deletions

View File

@ -41,9 +41,11 @@ const int MultiplyDeBruijnBitPosition2[] =
#define WHAT_BIT_SET(val) (MultiplyDeBruijnBitPosition2[(uint32_t)(val * 0x077CB531U) >> 27])
Bandit::Bandit(int bridge_num, std::string name, int dev_id, int rev)
: PCIHost(), PCIDevice(name)
: BanditHost()
{
supports_types(HWCompType::PCI_HOST | HWCompType::PCI_DEV);
this->name = name;
supports_types(HWCompType::PCI_HOST);
this->base_addr = 0xF0000000 + ((bridge_num & 3) << 25);
@ -58,6 +60,15 @@ Bandit::Bandit(int bridge_num, std::string name, int dev_id, int rev)
// base_addr + 0x1000000 --> pass-through memory space (not included below)
mem_ctrl->add_mmio_region(base_addr, 0x01000000, this);
std::string banditpcitname = "Bandit1PCI";
attach_pci_device(banditpcitname, 1);
}
BanditPCI::BanditPCI(int bridge_num, std::string name)
: PCIDevice(name)
{
supports_types(HWCompType::PCI_DEV);
// prepare the PCI config header
this->vendor_id = PCI_VENDOR_APPLE;
this->device_id = 0x0001;
@ -80,195 +91,149 @@ Bandit::Bandit(int bridge_num, std::string name, int dev_id, int rev)
this->rd_hold_off_cnt = 8;
}
uint32_t Bandit::pci_cfg_read(uint32_t reg_offs, uint32_t size)
uint32_t BanditPCI::pci_cfg_read(uint32_t reg_offs, AccessDetails &details)
{
if (reg_offs < 64) {
return PCIDevice::pci_cfg_read(reg_offs, size);
return PCIDevice::pci_cfg_read(reg_offs, details);
}
switch (reg_offs) {
case BANDIT_ADDR_MASK:
return BYTESWAP_32(this->addr_mask);
return this->addr_mask;
case BANDIT_MODE_SELECT:
return BYTESWAP_32(this->mode_ctrl);
return this->mode_ctrl;
case BANDIT_ARBUS_RD_HOLD_OFF:
return BYTESWAP_32(this->rd_hold_off_cnt);
default:
LOG_F(WARNING, "%s: reading from unimplemented config register at 0x%X",
this->pci_name.c_str(), reg_offs);
return this->rd_hold_off_cnt;
}
LOG_READ_UNIMPLEMENTED_CONFIG_REGISTER();
return 0;
}
void Bandit::pci_cfg_write(uint32_t reg_offs, uint32_t value, uint32_t size)
void BanditPCI::pci_cfg_write(uint32_t reg_offs, uint32_t value, AccessDetails &details)
{
if (reg_offs < 64) {
PCIDevice::pci_cfg_write(reg_offs, value, size);
PCIDevice::pci_cfg_write(reg_offs, value, details);
return;
}
if (size == 4) {
value = BYTESWAP_32(value);
} else {
LOG_F(WARNING, "%s: non-DWORD writes to the control registers not supported",
this->pci_name.c_str());
}
switch (reg_offs) {
case BANDIT_ADDR_MASK:
this->addr_mask = value;
this->verbose_address_space();
break;
return;
case BANDIT_MODE_SELECT:
this->mode_ctrl = value;
break;
return;
case BANDIT_ARBUS_RD_HOLD_OFF:
this->rd_hold_off_cnt = value & 0x1F;
break;
default:
LOG_F(WARNING, "%s: writing to unimplemented config register at 0x%X",
this->pci_name.c_str(), reg_offs);
this->rd_hold_off_cnt = value & 0x1F;
return;
}
LOG_WRITE_UNIMPLEMENTED_CONFIG_REGISTER();
}
void BanditHost::cfg_setup(uint32_t offset, int size, int &bus_num, int &dev_num, int &fun_num, uint8_t &reg_offs, AccessDetails &details, PCIDevice *&device)
{
device = NULL;
details.size = size;
details.offset = offset & 3;
fun_num = (this->config_addr >> 8) & 7;
reg_offs = this->config_addr & 0xFCU;
if (this->config_addr & BANDIT_CAR_TYPE) { // type 1 configuration command
details.flags = PCI_CONFIG_TYPE_1;
bus_num = (this->config_addr >> 16) & 255;
dev_num = (this->config_addr >> 11) & 31;
device = pci_find_device(bus_num, dev_num, fun_num);
return;
}
details.flags = PCI_CONFIG_TYPE_0;
bus_num = 0; // bus number is meaningless for type 0 configuration command; a type 1 configuration command cannot reach devices attached directly to the host
uint32_t idsel = this->config_addr & 0xFFFFF800U;
if (!SINGLE_BIT_SET(idsel)) {
for (dev_num = -1, idsel = this->config_addr; idsel; idsel >>= 1, dev_num++) {}
LOG_F(ERROR, "%s: config_addr 0x%08x does not contain valid IDSEL", this->name.c_str(), (uint32_t)this->config_addr);
return;
}
dev_num = WHAT_BIT_SET(idsel);
if (this->dev_map.count(idsel >> 11)) {
device = this->dev_map[idsel >> 11];
}
}
uint32_t Bandit::read(uint32_t rgn_start, uint32_t offset, int size)
uint32_t BanditHost::read(uint32_t rgn_start, uint32_t offset, int size)
{
int bus_num, dev_num, fun_num;
uint8_t reg_offs;
uint32_t result, idsel;
switch (offset >> 22) {
if (offset & BANDIT_CONFIG_SPACE) {
if (offset & 0x00400000) {
fun_num = (this->config_addr >> 8) & 7;
reg_offs = this->config_addr & 0xFCU;
// access to the CONFIG_DATA pseudo-register causes a Config Cycle
if (this->config_addr & BANDIT_CAR_TYPE) {
bus_num = (this->config_addr >> 16) & 255;
dev_num = (this->config_addr >> 11) & 31;
LOG_F(
WARNING, "%s: read config cycle type 1 not supported yet %02x:%02x.%x @%02x.%c",
this->name.c_str(), bus_num, dev_num, fun_num, reg_offs + (offset & 3),
size == 4 ? 'l' : size == 2 ? 'w' : size == 1 ? 'b' : '0' + size
);
return 0xFFFFFFFFUL; // PCI spec §6.1
case 3: // 0xC00000 // CONFIG_DATA
int bus_num, dev_num, fun_num;
uint8_t reg_offs;
AccessDetails details;
PCIDevice *device;
cfg_setup(offset, size, bus_num, dev_num, fun_num, reg_offs, details, device);
details.flags |= PCI_CONFIG_READ;
if (device) {
return pci_cfg_rev_read(device->pci_cfg_read(reg_offs, details), details);
}
LOG_READ_NON_EXISTENT_PCI_DEVICE();
return 0xFFFFFFFFUL; // PCI spec §6.1
idsel = (this->config_addr >> 11) & 0x1FFFFFU;
case 2: // 0x800000 // CONFIG_ADDR
return this->config_addr;
if (!SINGLE_BIT_SET(idsel)) {
LOG_F(
ERROR, "%s: read invalid IDSEL=0x%X config:0x%X ??:??.%x? @%02x?.%c",
this->name.c_str(), idsel, this->config_addr,
fun_num, reg_offs + (offset & 3),
size == 4 ? 'l' : size == 2 ? 'w' : size == 1 ? 'b' : '0' + size
);
return 0xFFFFFFFFUL; // PCI spec §6.1
}
if (idsel == BANDIT_ID_SEL) { // access to myself
result = this->pci_cfg_read(reg_offs, size);
} else {
if (this->dev_map.count(idsel)) {
result = this->dev_map[idsel]->pci_cfg_read(reg_offs, size);
} else {
dev_num = WHAT_BIT_SET(idsel) + 11;
LOG_F(
ERROR, "%s err: read attempt from non-existing PCI device ??:%02x.%x @%02x.%c",
this->name.c_str(), dev_num, fun_num, reg_offs + (offset & 3),
size == 4 ? 'l' : size == 2 ? 'w' : size == 1 ? 'b' : '0' + size
);
return 0xFFFFFFFFUL; // PCI spec §6.1
default: // 0x000000 // I/O space
{
uint32_t result;
// broadcast I/O request to devices that support I/O space
// until a device returns true that means "request accepted"
for (auto& dev : this->io_space_devs) {
if (dev->pci_io_read(offset, size, &result)) {
return result;
}
}
} else {
result = this->config_addr;
LOG_F(ERROR, "%s: attempt to read from unmapped PCI I/O space, offset=0x%X",
this->name.c_str(), offset);
return 0;
}
} else { // I/O space access
// broadcast I/O request to devices that support I/O space
// until a device returns true that means "request accepted"
for (auto& dev : this->io_space_devs) {
if (dev->pci_io_read(offset, size, &result)) {
return result;
}
}
LOG_F(ERROR, "%s: attempt to read from unmapped PCI I/O space, offset=0x%X",
this->name.c_str(), offset);
}
return result;
}
void Bandit::write(uint32_t rgn_start, uint32_t offset, uint32_t value, int size)
void BanditHost::write(uint32_t rgn_start, uint32_t offset, uint32_t value, int size)
{
int bus_num, dev_num, fun_num;
uint8_t reg_offs;
uint32_t idsel;
switch (offset >> 22) {
if (offset & BANDIT_CONFIG_SPACE) {
if (offset & 0x00400000) {
fun_num = (this->config_addr >> 8) & 7;
reg_offs = this->config_addr & 0xFCU;
// access to the CONFIG_DATA pseudo-register causes a Config Cycle
if (this->config_addr & BANDIT_CAR_TYPE) {
bus_num = (this->config_addr >> 16) & 255;
dev_num = (this->config_addr >> 11) & 31;
LOG_F(
WARNING, "%s: write config cycle type 1 not supported yet %02x:%02x.%x @%02x.%c = %0*x",
this->name.c_str(), bus_num, dev_num, fun_num, reg_offs + (offset & 3),
size == 4 ? 'l' : size == 2 ? 'w' : size == 1 ? 'b' : '0' + size,
size * 2, BYTESWAP_SIZED(value, size)
);
case 3: // 0xC00000 // CONFIG_DATA
int bus_num, dev_num, fun_num;
uint8_t reg_offs;
AccessDetails details;
PCIDevice *device;
cfg_setup(offset, size, bus_num, dev_num, fun_num, reg_offs, details, device);
details.flags |= PCI_CONFIG_WRITE;
if (device) {
uint32_t oldvalue = details.size == 4 ? 0 : device->pci_cfg_read(reg_offs, details);
value = pci_cfg_rev_write(oldvalue, details, value);
device->pci_cfg_write(reg_offs, value, details);
return;
}
LOG_WRITE_NON_EXISTENT_PCI_DEVICE();
break;
idsel = (this->config_addr >> 11) & 0x1FFFFFU;
if (!SINGLE_BIT_SET(idsel)) {
LOG_F(
ERROR, "%s: write invalid IDSEL=0x%X config:0x%X ??:??.%x? @%02x?.%c = %0*x",
this->name.c_str(), idsel, this->config_addr,
fun_num, reg_offs + (offset & 3),
size == 4 ? 'l' : size == 2 ? 'w' : size == 1 ? 'b' : '0' + size,
size * 2, BYTESWAP_SIZED(value, size)
);
return;
}
if (idsel == BANDIT_ID_SEL) { // access to myself
this->pci_cfg_write(reg_offs, value, size);
return;
}
if (this->dev_map.count(idsel)) {
this->dev_map[idsel]->pci_cfg_write(reg_offs, value, size);
} else {
dev_num = WHAT_BIT_SET(idsel) + 11;
LOG_F(
ERROR, "%s err: write attempt to non-existing PCI device ??:%02x.%x @%02x.%c = %0*x",
this->name.c_str(), dev_num, fun_num, reg_offs + (offset & 3),
size == 4 ? 'l' : size == 2 ? 'w' : size == 1 ? 'b' : '0' + size,
size * 2, BYTESWAP_SIZED(value, size)
);
}
} else {
case 2: // 0x800000 // CONFIG_ADDR
this->config_addr = BYTESWAP_32(value);
}
} else { // I/O space access
// broadcast I/O request to devices that support I/O space
// until a device returns true that means "request accepted"
for (auto& dev : this->io_space_devs) {
if (dev->pci_io_write(offset, value, size)) {
return;
break;
default: // 0x000000 // I/O space
// broadcast I/O request to devices that support I/O space
// until a device returns true that means "request accepted"
for (auto& dev : this->io_space_devs) {
if (dev->pci_io_write(offset, value, size)) {
return;
}
}
}
LOG_F(ERROR, "%s: attempt to write to unmapped PCI I/O space, offset=0x%X",
this->name.c_str(), offset);
LOG_F(ERROR, "%s: attempt to write to unmapped PCI I/O space, offset=0x%X",
this->name.c_str(), offset);
}
}
void Bandit::verbose_address_space()
void BanditPCI::verbose_address_space()
{
uint32_t mask;
int bit_pos;
@ -296,7 +261,7 @@ void Bandit::verbose_address_space()
}
}
Chaos::Chaos(std::string name) : PCIHost()
Chaos::Chaos(std::string name) : BanditHost()
{
this->name = name;
@ -312,118 +277,6 @@ Chaos::Chaos(std::string name) : PCIHost()
mem_ctrl->add_mmio_region(0xF0000000UL, 0x01000000, this);
}
uint32_t Chaos::read(uint32_t rgn_start, uint32_t offset, int size)
{
int bus_num, dev_num, fun_num;
uint8_t reg_offs;
uint32_t result, idsel;
if (offset & BANDIT_CONFIG_SPACE) {
if (offset & 0x00400000) {
fun_num = (this->config_addr >> 8) & 7;
reg_offs = this->config_addr & 0xFCU;
// access to the CONFIG_DATA pseudo-register causes a Config Cycle
if (this->config_addr & BANDIT_CAR_TYPE) {
bus_num = (this->config_addr >> 16) & 255;
dev_num = (this->config_addr >> 11) & 31;
LOG_F(
WARNING, "%s: read config cycle type 1 not supported yet %02x:%02x.%x @%02x.%c",
this->name.c_str(), bus_num, dev_num, fun_num, reg_offs + (offset & 3),
size == 4 ? 'l' : size == 2 ? 'w' : size == 1 ? 'b' : '0' + size
);
return 0xFFFFFFFFUL; // PCI spec §6.1
}
idsel = (this->config_addr >> 11) & 0x1FFFFFU;
if (!SINGLE_BIT_SET(idsel)) {
LOG_F(
ERROR, "%s: read invalid IDSEL=0x%X config:0x%X ??:??.%x? @%02x?.%c",
this->name.c_str(), idsel, this->config_addr,
fun_num, reg_offs + (offset & 3),
size == 4 ? 'l' : size == 2 ? 'w' : size == 1 ? 'b' : '0' + size
);
return 0xFFFFFFFFUL; // PCI spec §6.1
}
if (this->dev_map.count(idsel)) {
result = this->dev_map[idsel]->pci_cfg_read(reg_offs, size);
} else {
dev_num = WHAT_BIT_SET(idsel) + 11;
LOG_F(
ERROR, "%s err: read attempt from non-existing VCI device ??:%02x.%x @%02x.%c",
this->name.c_str(), dev_num, fun_num, reg_offs + (offset & 3),
size == 4 ? 'l' : size == 2 ? 'w' : size == 1 ? 'b' : '0' + size
);
return 0xFFFFFFFFUL; // PCI spec §6.1
}
} else {
result = this->config_addr;
}
} else { // I/O space access
LOG_F(ERROR, "%s: I/O space not supported", this->name.c_str());
return 0;
}
return result;
}
void Chaos::write(uint32_t rgn_start, uint32_t offset, uint32_t value, int size)
{
int bus_num, dev_num, fun_num;
uint8_t reg_offs;
uint32_t idsel;
if (offset & BANDIT_CONFIG_SPACE) {
if (offset & 0x00400000) {
fun_num = (this->config_addr >> 8) & 7;
reg_offs = this->config_addr & 0xFCU;
// access to the CONFIG_DATA pseudo-register causes a Config Cycle
if (this->config_addr & BANDIT_CAR_TYPE) {
bus_num = (this->config_addr >> 16) & 255;
dev_num = (this->config_addr >> 11) & 31;
LOG_F(
WARNING, "%s: write config cycle type 1 not supported yet %02x:%02x.%x @%02x.%c = %0*x",
this->name.c_str(), bus_num, dev_num, fun_num, reg_offs + (offset & 3),
size == 4 ? 'l' : size == 2 ? 'w' : size == 1 ? 'b' : '0' + size,
size * 2, BYTESWAP_SIZED(value, size)
);
return;
}
idsel = (this->config_addr >> 11) & 0x1FFFFFU;
if (!SINGLE_BIT_SET(idsel)) {
LOG_F(
ERROR, "%s: write invalid IDSEL=0x%X config:0x%X ??:??.%x? @%02x?.%c = %0*x",
this->name.c_str(), idsel, this->config_addr,
fun_num, reg_offs + (offset & 3),
size == 4 ? 'l' : size == 2 ? 'w' : size == 1 ? 'b' : '0' + size,
size * 2, BYTESWAP_SIZED(value, size)
);
return;
}
if (this->dev_map.count(idsel)) {
this->dev_map[idsel]->pci_cfg_write(reg_offs, value, size);
} else {
dev_num = WHAT_BIT_SET(idsel) + 11;
LOG_F(
ERROR, "%s err: write attempt to non-existing VCI device ??:%02x.%x @%02x.%c = %0*x",
this->name.c_str(), dev_num, fun_num, reg_offs + (offset & 3),
size == 4 ? 'l' : size == 2 ? 'w' : size == 1 ? 'b' : '0' + size,
size * 2, BYTESWAP_SIZED(value, size)
);
}
} else {
this->config_addr = BYTESWAP_32(value);
}
} else { // I/O space access
LOG_F(ERROR, "%s: I/O space not supported", this->name.c_str());
}
}
static const DeviceDescription Bandit1_Descriptor = {
Bandit::create_first, {}, {}
};
@ -436,6 +289,11 @@ static const DeviceDescription Chaos_Descriptor = {
Chaos::create, {}, {}
};
REGISTER_DEVICE(Bandit1, Bandit1_Descriptor);
REGISTER_DEVICE(PsxPci1, PsxPci1_Descriptor);
REGISTER_DEVICE(Chaos, Chaos_Descriptor);
static const DeviceDescription Bandit1PCI_Descriptor = {
BanditPCI::create_first, {}, {}
};
REGISTER_DEVICE(Bandit1 , Bandit1_Descriptor);
REGISTER_DEVICE(Bandit1PCI, Bandit1PCI_Descriptor);
REGISTER_DEVICE(PsxPci1 , PsxPci1_Descriptor);
REGISTER_DEVICE(Chaos , Chaos_Descriptor);

View File

@ -38,7 +38,7 @@ along with this program. If not, see <https://www.gnu.org/licenses/>.
#include <string>
#include <unordered_map>
#define BANDIT_ID_SEL (1 << 0) // Bandit's own IDSEL
#define BANDIT_DEV (11) // Bandit's own device number
#define BANDIT_CAR_TYPE (1 << 0) // Bandit config address type bit
#define BANDIT_CONFIG_SPACE 0x00800000 // Bandit Config Space bit
@ -52,7 +52,19 @@ enum {
/** checks if one bit is set at time, return 0 if not */
#define SINGLE_BIT_SET(val) ((val) && !((val) & ((val)-1)))
class Bandit : public PCIHost, public PCIDevice {
class BanditHost : public PCIHost, public MMIODevice {
public:
void cfg_setup(uint32_t offset, int size, int &bus_num, int &dev_num, int &fun_num, uint8_t &reg_offs, AccessDetails &details, PCIDevice *&device);
// MMIODevice methods
uint32_t read(uint32_t rgn_start, uint32_t offset, int size);
void write(uint32_t rgn_start, uint32_t offset, uint32_t value, int size);
protected:
uint32_t config_addr;
};
class Bandit : public BanditHost {
public:
Bandit(int bridge_num, std::string name, int dev_id=1, int rev=3);
~Bandit() = default;
@ -65,19 +77,27 @@ public:
return std::unique_ptr<Bandit>(new Bandit(1, "PSX-PCI1", 8, 0));
};
uint32_t pci_cfg_read(uint32_t reg_offs, uint32_t size);
void pci_cfg_write(uint32_t reg_offs, uint32_t value, uint32_t size);
private:
uint32_t base_addr;
};
// MMIODevice methods
uint32_t read(uint32_t rgn_start, uint32_t offset, int size);
void write(uint32_t rgn_start, uint32_t offset, uint32_t value, int size);
class BanditPCI : public PCIDevice {
public:
BanditPCI(int bridge_num, std::string name);
~BanditPCI() = default;
static std::unique_ptr<HWComponent> create_first() {
return std::unique_ptr<BanditPCI>(new BanditPCI(1, "BanditPCI"));
};
// PCIDevice methods
uint32_t pci_cfg_read(uint32_t reg_offs, AccessDetails &details);
void pci_cfg_write(uint32_t reg_offs, uint32_t value, AccessDetails &details);
protected:
void verbose_address_space();
private:
uint32_t base_addr;
uint32_t config_addr;
uint32_t addr_mask;
uint32_t mode_ctrl; // controls various chip modes/features
uint32_t rd_hold_off_cnt;
@ -88,7 +108,7 @@ private:
frequency as the CPU bus (40-50 MHz) and provides an interface
between video input/output devices and the CPU bus.
*/
class Chaos : public PCIHost, public MMIODevice {
class Chaos : public BanditHost {
public:
Chaos(std::string name);
~Chaos() = default;
@ -96,13 +116,6 @@ public:
static std::unique_ptr<HWComponent> create() {
return std::unique_ptr<Chaos>(new Chaos("VCI0"));
};
// MMIODevice methods
uint32_t read(uint32_t rgn_start, uint32_t offset, int size);
void write(uint32_t rgn_start, uint32_t offset, uint32_t value, int size);
private:
uint32_t config_addr;
};
#endif // BANDIT_PCI_H

View File

@ -50,81 +50,49 @@ PCIDevice::PCIDevice(std::string name)
this->pci_notify_bar_change = [](int bar_num) {};
};
uint32_t PCIDevice::pci_cfg_read(uint32_t reg_offs, uint32_t size)
uint32_t PCIDevice::pci_cfg_read(uint32_t reg_offs, AccessDetails &details)
{
uint32_t result;
switch (reg_offs) {
case PCI_CFG_DEV_ID:
result = (this->device_id << 16) | (this->vendor_id);
break;
return (this->device_id << 16) | (this->vendor_id);
case PCI_CFG_STAT_CMD:
result = (this->pci_rd_stat() << 16) | (this->pci_rd_cmd());
break;
return (this->pci_rd_stat() << 16) | (this->pci_rd_cmd());
case PCI_CFG_CLASS_REV:
result = this->class_rev;
break;
return this->class_rev;
case PCI_CFG_DWORD_3:
result = (pci_rd_bist() << 24) | (this->hdr_type << 16) |
(pci_rd_lat_timer() << 8) | pci_rd_cache_lnsz();
break;
return (pci_rd_bist() << 24) | (this->hdr_type << 16) |
(pci_rd_lat_timer() << 8) | pci_rd_cache_lnsz();
case PCI_CFG_BAR0:
case PCI_CFG_BAR1:
case PCI_CFG_BAR2:
case PCI_CFG_BAR3:
case PCI_CFG_BAR4:
case PCI_CFG_BAR5:
result = this->bars[(reg_offs - 0x10) >> 2];
break;
return this->bars[(reg_offs - 0x10) >> 2];
case PCI_CFG_SUBSYS_ID:
result = (this->subsys_id << 16) | (this->subsys_vndr);
break;
return (this->subsys_id << 16) | (this->subsys_vndr);
case PCI_CFG_ROM_BAR:
result = this->exp_rom_bar;
break;
return this->exp_rom_bar;
case PCI_CFG_DWORD_15:
result = (max_lat << 24) | (min_gnt << 16) | (irq_pin << 8) | irq_line;
break;
return (max_lat << 24) | (min_gnt << 16) | (irq_pin << 8) | irq_line;
case PCI_CFG_CAP_PTR:
result = cap_ptr;
break;
default:
LOG_F(
WARNING, "%s: attempt to read from reserved/unimplemented register @%02x.%c",
this->pci_name.c_str(), reg_offs,
size == 4 ? 'l' : size == 2 ? 'w' : size == 1 ? 'b' : '0' + size
);
return 0;
}
if (size == 4) {
return BYTESWAP_32(result);
} else {
return read_mem_rev(((uint8_t *)&result) + (reg_offs & 3), size);
return cap_ptr;
}
LOG_READ_UNIMPLEMENTED_CONFIG_REGISTER();
return 0;
}
void PCIDevice::pci_cfg_write(uint32_t reg_offs, uint32_t value, uint32_t size)
void PCIDevice::pci_cfg_write(uint32_t reg_offs, uint32_t value, AccessDetails &details)
{
uint32_t data;
if (size == 4) {
data = BYTESWAP_32(value);
} else {
// get current register content as DWORD and update it partially
data = BYTESWAP_32(this->pci_cfg_read(reg_offs, 4));
write_mem_rev(((uint8_t *)&data) + (reg_offs & 3), value, size);
}
switch (reg_offs) {
case PCI_CFG_STAT_CMD:
this->pci_wr_stat(data >> 16);
this->pci_wr_cmd(data & 0xFFFFU);
this->pci_wr_stat(value >> 16);
this->pci_wr_cmd(value & 0xFFFFU);
break;
case PCI_CFG_DWORD_3:
this->pci_wr_bist(data >> 24);
this->pci_wr_lat_timer((data >> 8) & 0xFF);
this->pci_wr_cache_lnsz(data & 0xFF);
this->pci_wr_bist(value >> 24);
this->pci_wr_lat_timer((value >> 8) & 0xFF);
this->pci_wr_cache_lnsz(value & 0xFF);
break;
case PCI_CFG_BAR0:
case PCI_CFG_BAR1:
@ -132,17 +100,17 @@ void PCIDevice::pci_cfg_write(uint32_t reg_offs, uint32_t value, uint32_t size)
case PCI_CFG_BAR3:
case PCI_CFG_BAR4:
case PCI_CFG_BAR5:
if (data == 0xFFFFFFFFUL) {
if (value == 0xFFFFFFFFUL) {
this->do_bar_sizing((reg_offs - 0x10) >> 2);
} else {
this->set_bar_value((reg_offs - 0x10) >> 2, data);
this->set_bar_value((reg_offs - 0x10) >> 2, value);
}
break;
case PCI_CFG_ROM_BAR:
if ((data & this->exp_bar_cfg) == this->exp_bar_cfg) {
this->exp_rom_bar = (data & (this->exp_bar_cfg | 1));
if ((value & this->exp_bar_cfg) == this->exp_bar_cfg) {
this->exp_rom_bar = (value & (this->exp_bar_cfg | 1));
} else {
this->exp_rom_bar = (data & (this->exp_bar_cfg | 1));
this->exp_rom_bar = (value & (this->exp_bar_cfg | 1));
if (this->exp_rom_bar & 1) {
this->map_exp_rom_mem();
} else {
@ -152,15 +120,10 @@ void PCIDevice::pci_cfg_write(uint32_t reg_offs, uint32_t value, uint32_t size)
}
break;
case PCI_CFG_DWORD_15:
this->irq_line = data >> 24;
this->irq_line = value >> 24;
break;
default:
LOG_F(
WARNING, "%s: attempt to write to reserved/unimplemented register @%02x.%c = %0*x",
this->pci_name.c_str(), reg_offs,
size == 4 ? 'l' : size == 2 ? 'w' : size == 1 ? 'b' : '0' + size,
size * 2, BYTESWAP_SIZED(value, size)
);
LOG_WRITE_UNIMPLEMENTED_CONFIG_REGISTER();
}
}

View File

@ -78,8 +78,8 @@ public:
};
// configuration space access methods
virtual uint32_t pci_cfg_read(uint32_t reg_offs, uint32_t size);
virtual void pci_cfg_write(uint32_t reg_offs, uint32_t value, uint32_t size);
virtual uint32_t pci_cfg_read(uint32_t reg_offs, AccessDetails &details);
virtual void pci_cfg_write(uint32_t reg_offs, uint32_t value, AccessDetails &details);
// plugin interface for using in the derived classes
std::function<uint16_t()> pci_rd_stat;
@ -101,6 +101,10 @@ public:
this->host_instance = host_instance;
};
// MMIODevice methods
virtual uint32_t read(uint32_t rgn_start, uint32_t offset, int size) { return 0; }
virtual void write(uint32_t rgn_start, uint32_t offset, uint32_t value, int size) { }
protected:
void do_bar_sizing(int bar_num);
void set_bar_value(int bar_num, uint32_t value);
@ -137,4 +141,124 @@ protected:
std::unique_ptr<uint8_t[]> exp_rom_data;
};
/* value is dword from PCI config. MSB..LSB of value is stored in PCI config as 0:LSB..3:MSB.
result is part of value at byte offset from LSB with size bytes (with wrap around) and flipped as required for pci_cfg_read result. */
inline uint32_t pci_cfg_rev_read(uint32_t value, AccessDetails &details) {
switch (details.size << 2 | details.offset) {
case 0x04: return value & 0xff; // 0
case 0x05: return (value >> 8) & 0xff; // 1
case 0x06: return (value >> 16) & 0xff; // 2
case 0x07: return (value >> 24) & 0xff; // 3
case 0x08: return ((value & 0xff) << 8) | ((value >> 8) & 0xff); // 0 1
case 0x09: return ( value & 0xff00) | ((value >> 16) & 0xff); // 1 2
case 0x0a: return ((value >> 8) & 0xff00) | ((value >> 24) & 0xff); // 2 3
case 0x0b: return ((value >> 16) & 0xff00) | ( value & 0xff); // 3 0
case 0x10: return ((value & 0xff) << 24) | ((value & 0xff00) << 8) | ((value >> 8) & 0xff00) | ((value >> 24) & 0xff); // 0 1 2 3
case 0x11: return ((value & 0xff00) << 16) | ( value & 0xff0000) | ((value >> 16) & 0xff00) | ( value & 0xff); // 1 2 3 0
case 0x12: return ((value & 0xff0000) << 8) | ((value >> 8) & 0xff0000) | ((value & 0xff) << 8) | ((value >> 8) & 0xff); // 2 3 0 1
case 0x13: return ( value & 0xff000000) | ((value & 0xff) << 16) | ( value & 0xff00) | ((value >> 16) & 0xff); // 3 0 1 2
default: return 0xffffffff;
}
}
/* value is dword from PCI config. MSB..LSB of value (3.2.1.0) is stored in PCI config as 0:LSB..3:MSB.
newvalue is flipped bytes (d0.d1.d2.d3, as passed to pci_cfg_write) to be merged into value.
result is part of value at byte offset from LSB with size bytes (with wrap around) modified by newvalue. */
inline uint32_t pci_cfg_rev_write(uint32_t value, AccessDetails &details, uint32_t newvalue) {
switch (details.size << 2 | details.offset) {
case 0x04: return (value & 0xffffff00) | (newvalue & 0xff); // 3 2 1 d0
case 0x05: return (value & 0xffff00ff) | ((newvalue & 0xff) << 8); // 3 2 d0 0
case 0x06: return (value & 0xff00ffff) | ((newvalue & 0xff) << 16); // 3 d0 1 0
case 0x07: return (value & 0x00ffffff) | ((newvalue & 0xff) << 24); // d0 2 1 0
case 0x08: return (value & 0xffff0000) | ((newvalue >> 8) & 0xff) | ((newvalue & 0xff) << 8); // 3 2 d1 d0
case 0x09: return (value & 0xff0000ff) | (newvalue & 0xff00) | ((newvalue & 0xff) << 16); // 3 d1 d0 0
case 0x0a: return (value & 0x0000ffff) | ((newvalue & 0xff00) << 8) | ((newvalue & 0xff) << 24); // d1 d0 1 0
case 0x0b: return (value & 0x00ffff00) | ((newvalue & 0xff00) << 16) | (newvalue & 0xff); // d0 2 1 d1
case 0x10: return ((newvalue & 0xff) << 24) | ((newvalue & 0xff00) << 8) | ((newvalue >> 8) & 0xff00) | ((newvalue >> 24) & 0xff); // d3 d2 d1 d0
case 0x11: return ((newvalue & 0xff00) << 16) | ( newvalue & 0xff0000) | ((newvalue >> 16) & 0xff00) | ( newvalue & 0xff); // d2 d1 d0 d3
case 0x12: return ((newvalue & 0xff0000) << 8) | ((newvalue >> 8) & 0xff0000) | ((newvalue & 0xff) << 8) | ((newvalue >> 8) & 0xff); // d1 d0 d3 d2
case 0x13: return ( newvalue & 0xff000000) | ((newvalue & 0xff) << 16) | ( newvalue & 0xff00) | ((newvalue >> 16) & 0xff); // d0 d3 d2 d1
default: return 0xffffffff;
}
}
inline uint32_t pci_cfg_log(uint32_t value, AccessDetails &details) {
switch (details.size << 2 | details.offset) {
case 0x04: return (uint8_t) value;
case 0x05: return (uint8_t)(value >> 8);
case 0x06: return (uint8_t)(value >> 16);
case 0x07: return (uint8_t)(value >> 24);
case 0x08: return (uint16_t) value;
case 0x09: return (uint16_t) (value >> 8);
case 0x0a: return (uint16_t) (value >> 16);
case 0x0b: return (uint16_t)((value >> 24) | (value << 8));
case 0x10: return value;
case 0x11: return (value >> 8) | (value << 24);
case 0x12: return (value >> 16) | (value << 16);
case 0x13: return (value >> 24) | (value << 8);
default: return 0xffffffff;
}
}
#define SIZE_ARGS details.size == 4 ? 'l' : details.size == 2 ? 'w' : details.size == 1 ? 'b' : '0' + details.size
#define LOG_READ_UNIMPLEMENTED_CONFIG_REGISTER() \
do { if ((details.flags & PCI_CONFIG_DIRECTION) == PCI_CONFIG_READ) { \
VLOG_F( \
(~-details.size & details.offset) ? loguru::Verbosity_ERROR : loguru::Verbosity_WARNING, \
"%s: read unimplemented config register @%02x.%c", \
this->name.c_str(), reg_offs + details.offset, \
SIZE_ARGS \
); \
} } while(0)
#define LOG_NAMED_CONFIG_REGISTER(reg_verb, reg_name) \
VLOG_F( \
(~-details.size & details.offset) ? loguru::Verbosity_ERROR : loguru::Verbosity_WARNING, \
"%s: %s %s register @%02x.%c = %0*x", \
this->name.c_str(), reg_verb, reg_name, reg_offs + details.offset, \
SIZE_ARGS, \
details.size * 2, pci_cfg_log(value, details) \
)
#define LOG_READ_NAMED_CONFIG_REGISTER(reg_name) \
do { if ((details.flags & PCI_CONFIG_DIRECTION) == PCI_CONFIG_READ) { \
LOG_NAMED_CONFIG_REGISTER("read ", reg_name); \
} } while(0)
#define LOG_WRITE_NAMED_CONFIG_REGISTER(reg_name) \
LOG_NAMED_CONFIG_REGISTER("write", reg_name)
#define LOG_READ_UNIMPLEMENTED_CONFIG_REGISTER_WITH_VALUE() \
LOG_READ_NAMED_CONFIG_REGISTER("unimplemented config")
#define LOG_WRITE_UNIMPLEMENTED_CONFIG_REGISTER() \
LOG_WRITE_NAMED_CONFIG_REGISTER("unimplemented config")
#define LOG_READ_NON_EXISTENT_PCI_DEVICE() \
LOG_F( \
ERROR, \
"%s err: read attempt from non-existent PCI device %02x:%02x.%x @%02x.%c", \
this->name.c_str(), bus_num, dev_num, fun_num, reg_offs + details.offset, \
SIZE_ARGS \
)
#define LOG_WRITE_NON_EXISTENT_PCI_DEVICE() \
LOG_F( \
ERROR, \
"%s err: write attempt to non-existent PCI device %02x:%02x.%x @%02x.%c = %0*x", \
this->name.c_str(), bus_num, dev_num, fun_num, reg_offs + details.offset, \
SIZE_ARGS, \
details.size * 2, BYTESWAP_SIZED(value, details.size) \
)
#endif /* PCI_DEVICE_H */

View File

@ -83,3 +83,8 @@ void PCIHost::attach_pci_device(std::string& dev_name, int slot_id)
this->pci_register_device(
slot_id, dynamic_cast<PCIDevice*>(gMachineObj->get_comp_by_name(dev_name)));
}
PCIDevice *PCIHost::pci_find_device(uint8_t bus_num, uint8_t dev_num, uint8_t fun_num)
{
return NULL;
}

View File

@ -29,6 +29,23 @@ along with this program. If not, see <https://www.gnu.org/licenses/>.
#include <unordered_map>
#include <vector>
enum {
PCI_CONFIG_DIRECTION = 1,
PCI_CONFIG_READ = 0,
PCI_CONFIG_WRITE = 1,
PCI_CONFIG_TYPE = 4,
PCI_CONFIG_TYPE_0 = 0,
PCI_CONFIG_TYPE_1 = 4,
};
/** PCI config space access details */
typedef struct AccessDetails {
uint8_t size;
uint8_t offset;
uint8_t flags;
} AccessDetails;
class PCIDevice; // forward declaration to prevent errors
class PCIHost {
@ -46,6 +63,8 @@ public:
virtual void attach_pci_device(std::string& dev_name, int slot_id);
virtual PCIDevice *pci_find_device(uint8_t bus_num, uint8_t dev_num, uint8_t fun_num);
protected:
std::unordered_map<int, PCIDevice*> dev_map;
std::vector<PCIDevice*> io_space_devs;

View File

@ -72,6 +72,32 @@ int MPC106::device_postinit()
return 0;
}
void MPC106::cfg_setup(uint32_t offset, int size, int &bus_num, int &dev_num, int &fun_num, uint8_t &reg_offs, AccessDetails &details, PCIDevice *&device)
{
device = NULL;
details.size = size;
details.offset = offset & 3;
bus_num = (this->config_addr >> 8) & 0xFF;
dev_num = (this->config_addr >> 19) & 0x1F;
fun_num = (this->config_addr >> 16) & 0x07;
reg_offs = (this->config_addr >> 24) & 0xFC;
if (bus_num) {
details.flags = PCI_CONFIG_TYPE_1;
device = pci_find_device(bus_num, dev_num, fun_num);
}
else {
details.flags = PCI_CONFIG_TYPE_0;
if (dev_num == 0 && fun_num == 0) {
device = this; // dev_num 0 is assigned to myself
}
else if (this->dev_map.count(dev_num)) {
device = this->dev_map[dev_num];
}
}
}
uint32_t MPC106::read(uint32_t rgn_start, uint32_t offset, int size) {
uint32_t result;
@ -87,7 +113,7 @@ uint32_t MPC106::read(uint32_t rgn_start, uint32_t offset, int size) {
} else {
if (offset >= 0x200000) {
if (this->config_addr & 0x80) // process only if bit E (enable) is set
return pci_read(size);
return pci_read(offset, size);
}
}
@ -111,116 +137,83 @@ void MPC106::write(uint32_t rgn_start, uint32_t offset, uint32_t value, int size
this->config_addr = value;
} else {
if (this->config_addr & 0x80) // process only if bit E (enable) is set
return pci_write(value, size);
return pci_write(offset, value, size);
}
}
}
uint32_t MPC106::pci_read(uint32_t size) {
int bus_num, dev_num, fun_num, reg_offs;
bus_num = (this->config_addr >> 8) & 0xFF;
dev_num = (this->config_addr >> 19) & 0x1F;
fun_num = (this->config_addr >> 16) & 0x07;
reg_offs = (this->config_addr >> 24) & 0xFC;
if (bus_num) {
LOG_F(
ERROR,
"%s err: read attempt from non-local PCI bus, config_addr = %x %02x:%02x.%x @%02x.%c",
this->name.c_str(), this->config_addr, bus_num, dev_num, fun_num, reg_offs,
size == 4 ? 'l' : size == 2 ? 'w' : size == 1 ? 'b' : '0' + size
);
return 0xFFFFFFFFUL; // PCI spec §6.1
uint32_t MPC106::pci_read(uint32_t offset, uint32_t size) {
int bus_num, dev_num, fun_num;
uint8_t reg_offs;
AccessDetails details;
PCIDevice *device;
cfg_setup(offset, size, bus_num, dev_num, fun_num, reg_offs, details, device);
details.flags |= PCI_CONFIG_READ;
if (device) {
return pci_cfg_rev_read(device->pci_cfg_read(reg_offs, details), details);
}
if (dev_num == 0 && fun_num == 0) { // dev_num 0 is assigned to myself
return this->pci_cfg_read(reg_offs, size);
} else {
if (this->dev_map.count(dev_num)) {
return this->dev_map[dev_num]->pci_cfg_read(reg_offs, size);
} else {
LOG_F(
ERROR,
"%s err: read attempt from non-existing PCI device %02x:%02x.%x @%02x.%c",
this->name.c_str(), bus_num, dev_num, fun_num, reg_offs,
size == 4 ? 'l' : size == 2 ? 'w' : size == 1 ? 'b' : '0' + size
);
return 0xFFFFFFFFUL; // PCI spec §6.1
}
}
return 0;
LOG_READ_NON_EXISTENT_PCI_DEVICE();
return 0xFFFFFFFFUL; // PCI spec §6.1
}
void MPC106::pci_write(uint32_t value, uint32_t size) {
int bus_num, dev_num, fun_num, reg_offs;
bus_num = (this->config_addr >> 8) & 0xFF;
dev_num = (this->config_addr >> 19) & 0x1F;
fun_num = (this->config_addr >> 16) & 0x07;
reg_offs = (this->config_addr >> 24) & 0xFC;
if (bus_num) {
LOG_F(
ERROR,
"%s err: write attempt to non-local PCI bus, config_addr = %x %02x:%02x.%x @%02x.%c = %0*x",
this->name.c_str(), this->config_addr, bus_num, dev_num, fun_num, reg_offs,
size == 4 ? 'l' : size == 2 ? 'w' : size == 1 ? 'b' : '0' + size,
size * 2, BYTESWAP_SIZED(value, size)
);
void MPC106::pci_write(uint32_t offset, uint32_t value, uint32_t size) {
int bus_num, dev_num, fun_num;
uint8_t reg_offs;
AccessDetails details;
PCIDevice *device;
cfg_setup(offset, size, bus_num, dev_num, fun_num, reg_offs, details, device);
details.flags |= PCI_CONFIG_WRITE;
if (device) {
uint32_t oldvalue = details.size == 4 ? 0 : device->pci_cfg_read(reg_offs, details);
value = pci_cfg_rev_write(oldvalue, details, value);
device->pci_cfg_write(reg_offs, value, details);
return;
}
if (dev_num == 0 && fun_num == 0) { // dev_num 0 is assigned to myself
this->pci_cfg_write(reg_offs, value, size);
} else {
if (this->dev_map.count(dev_num)) {
this->dev_map[dev_num]->pci_cfg_write(reg_offs, value, size);
} else {
LOG_F(
ERROR,
"%s err: write attempt to non-existing PCI device %02x:%02x.%x @%02x.%c = %0*x",
this->name.c_str(), bus_num, dev_num, fun_num, reg_offs,
size == 4 ? 'l' : size == 2 ? 'w' : size == 1 ? 'b' : '0' + size,
size * 2, BYTESWAP_SIZED(value, size)
);
}
}
LOG_WRITE_NON_EXISTENT_PCI_DEVICE();
}
uint32_t MPC106::pci_cfg_read(uint32_t reg_offs, uint32_t size) {
uint32_t MPC106::pci_cfg_read(uint32_t reg_offs, AccessDetails &details) {
#ifdef MPC106_DEBUG
LOG_F(9, "read from Grackle register %08X", reg_offs);
#endif
if (reg_offs < 64) {
return PCIDevice::pci_cfg_read(reg_offs, size);
return PCIDevice::pci_cfg_read(reg_offs, details);
}
return read_mem(&this->my_pci_cfg_hdr[reg_offs], size);
uint32_t value = READ_DWORD_LE_A(&this->my_pci_cfg_hdr[reg_offs]);
if ((reg_offs >= 0x80 && reg_offs <= 0xA0) || reg_offs == 0xF0) {
return value;
}
LOG_READ_UNIMPLEMENTED_CONFIG_REGISTER_WITH_VALUE();
return value;
}
void MPC106::pci_cfg_write(uint32_t reg_offs, uint32_t value, uint32_t size) {
void MPC106::pci_cfg_write(uint32_t reg_offs, uint32_t value, AccessDetails &details) {
#ifdef MPC106_DEBUG
LOG_F(9, "write %08X to Grackle register %08X", value, reg_offs);
#endif
if (reg_offs < 64) {
PCIDevice::pci_cfg_write(reg_offs, value, size);
PCIDevice::pci_cfg_write(reg_offs, value, details);
return;
}
// FIXME: implement write-protection for read-only registers
write_mem(&this->my_pci_cfg_hdr[reg_offs], value, size);
uint32_t *addr = (uint32_t *)&this->my_pci_cfg_hdr[reg_offs];
WRITE_DWORD_LE_A(addr, value);
if (this->my_pci_cfg_hdr[0xF2] & 8) {
if ((reg_offs >= 0x80 && reg_offs <= 0xA0) || reg_offs == 0xF0) {
if (this->my_pci_cfg_hdr[0xF2] & 8) {
#ifdef MPC106_DEBUG
LOG_F(9, "MPC106: MCCR1[MEMGO] was set!");
LOG_F(9, "MPC106: MCCR1[MEMGO] was set!");
#endif
setup_ram();
setup_ram();
}
return;
}
LOG_WRITE_UNIMPLEMENTED_CONFIG_REGISTER();
}
void MPC106::setup_ram() {

View File

@ -59,12 +59,13 @@ public:
protected:
/* PCI access */
uint32_t pci_read(uint32_t size);
void pci_write(uint32_t value, uint32_t size);
uint32_t pci_read(uint32_t offset, uint32_t size);
void pci_write(uint32_t offset, uint32_t value, uint32_t size);
void cfg_setup(uint32_t offset, int size, int &bus_num, int &dev_num, int &fun_num, uint8_t &reg_offs, AccessDetails &details, PCIDevice *&device);
/* my own PCI configuration registers access */
uint32_t pci_cfg_read(uint32_t reg_offs, uint32_t size);
void pci_cfg_write(uint32_t reg_offs, uint32_t value, uint32_t size);
uint32_t pci_cfg_read(uint32_t reg_offs, AccessDetails &details);
void pci_cfg_write(uint32_t reg_offs, uint32_t value, AccessDetails &details);
bool supports_io_space(void) {
return true;

View File

@ -161,34 +161,35 @@ void ATIRage::notify_bar_change(int bar_num)
}
}
uint32_t ATIRage::pci_cfg_read(uint32_t reg_offs, uint32_t size)
uint32_t ATIRage::pci_cfg_read(uint32_t reg_offs, AccessDetails &details)
{
if (reg_offs < 64) {
return PCIDevice::pci_cfg_read(reg_offs, size);
return PCIDevice::pci_cfg_read(reg_offs, details);
}
switch (reg_offs) {
case 0x40:
return this->user_cfg;
default:
LOG_F(WARNING, "ATIRage: reading from unimplemented config register at 0x%X", reg_offs);
LOG_READ_UNIMPLEMENTED_CONFIG_REGISTER();
}
return 0;
}
void ATIRage::pci_cfg_write(uint32_t reg_offs, uint32_t value, uint32_t size)
void ATIRage::pci_cfg_write(uint32_t reg_offs, uint32_t value, AccessDetails &details)
{
if (reg_offs < 64) {
PCIDevice::pci_cfg_write(reg_offs, value, size);
} else {
switch (reg_offs) {
case 0x40:
this->user_cfg = value;
break;
default:
LOG_F(WARNING, "ATIRage: writing to unimplemented config register at 0x%X", reg_offs);
}
PCIDevice::pci_cfg_write(reg_offs, value, details);
return;
}
switch (reg_offs) {
case 0x40:
this->user_cfg = value;
break;
default:
LOG_WRITE_UNIMPLEMENTED_CONFIG_REGISTER();
}
}

View File

@ -64,8 +64,8 @@ public:
return true;
};
uint32_t pci_cfg_read(uint32_t reg_offs, uint32_t size);
void pci_cfg_write(uint32_t reg_offs, uint32_t value, uint32_t size);
uint32_t pci_cfg_read(uint32_t reg_offs, AccessDetails &details);
void pci_cfg_write(uint32_t reg_offs, uint32_t value, AccessDetails &details);
/* I/O space access methods */
bool pci_io_read(uint32_t offset, uint32_t size, uint32_t* res);