ppcmmu: Add 64-bit accesses to I/O.

Also add an exception for unaligned 64 bit. 64 bit accesses require dword alignment.
This commit is contained in:
joevt 2023-06-14 21:10:34 -07:00 committed by Maxim Poliakovski
parent acdb14a10a
commit 67146028bf

View File

@ -1022,9 +1022,10 @@ void mmu_print_regs()
}
// Forward declarations.
static uint32_t read_unaligned(uint32_t guest_va, uint8_t *host_va, uint32_t size);
static void write_unaligned(uint32_t guest_va, uint8_t *host_va, uint32_t value,
uint32_t size);
template <class T>
static T read_unaligned(uint32_t guest_va, uint8_t *host_va);
template <class T>
static void write_unaligned(uint32_t guest_va, uint8_t *host_va, T value);
template <class T>
inline T mmu_read_vmem(uint32_t guest_va)
@ -1069,11 +1070,28 @@ inline T mmu_read_vmem(uint32_t guest_va)
#ifdef MMU_PROFILING
iomem_reads_total++;
#endif
return (
tlb2_entry->rgn_desc->devobj->read(tlb2_entry->rgn_desc->start,
guest_va - tlb2_entry->dev_base_va,
sizeof(T))
);
if (sizeof(T) == 8) {
if (guest_va & 3) {
ppc_exception_handler(Except_Type::EXC_ALIGNMENT, 0x0);
}
{
return (
((T)tlb2_entry->rgn_desc->devobj->read(tlb2_entry->rgn_desc->start,
guest_va - tlb2_entry->dev_base_va,
4) << 32) |
tlb2_entry->rgn_desc->devobj->read(tlb2_entry->rgn_desc->start,
guest_va + 4 - tlb2_entry->dev_base_va,
4)
);
}
}
else {
return (
tlb2_entry->rgn_desc->devobj->read(tlb2_entry->rgn_desc->start,
guest_va - tlb2_entry->dev_base_va,
sizeof(T))
);
}
}
}
@ -1083,7 +1101,7 @@ inline T mmu_read_vmem(uint32_t guest_va)
// handle unaligned memory accesses
if (sizeof(T) > 1 && (guest_va & (sizeof(T) - 1))) {
return read_unaligned(guest_va, host_va, sizeof(T));
return read_unaligned<T>(guest_va, host_va);
}
// handle aligned memory accesses
@ -1178,9 +1196,24 @@ inline void mmu_write_vmem(uint32_t guest_va, T value)
#ifdef MMU_PROFILING
iomem_writes_total++;
#endif
tlb2_entry->rgn_desc->devobj->write(tlb2_entry->rgn_desc->start,
guest_va - tlb2_entry->dev_base_va,
value, sizeof(T));
if (sizeof(T) == 8) {
if (guest_va & 3) {
ppc_exception_handler(Except_Type::EXC_ALIGNMENT, 0x0);
}
{
tlb2_entry->rgn_desc->devobj->write(tlb2_entry->rgn_desc->start,
guest_va - tlb2_entry->dev_base_va,
value >> 32, 4);
tlb2_entry->rgn_desc->devobj->write(tlb2_entry->rgn_desc->start,
guest_va + 4 - tlb2_entry->dev_base_va,
(uint32_t)value, 4);
}
}
else {
tlb2_entry->rgn_desc->devobj->write(tlb2_entry->rgn_desc->start,
guest_va - tlb2_entry->dev_base_va,
value, sizeof(T));
}
return;
}
}
@ -1191,7 +1224,7 @@ inline void mmu_write_vmem(uint32_t guest_va, T value)
// handle unaligned memory accesses
if (sizeof(T) > 1 && (guest_va & (sizeof(T) - 1))) {
write_unaligned(guest_va, host_va, value, sizeof(T));
write_unaligned<T>(guest_va, host_va, value);
return;
}
@ -1218,42 +1251,53 @@ template void mmu_write_vmem<uint16_t>(uint32_t guest_va, uint16_t value);
template void mmu_write_vmem<uint32_t>(uint32_t guest_va, uint32_t value);
template void mmu_write_vmem<uint64_t>(uint32_t guest_va, uint64_t value);
static uint32_t read_unaligned(uint32_t guest_va, uint8_t *host_va, uint32_t size)
template <class T>
static T read_unaligned(uint32_t guest_va, uint8_t *host_va)
{
uint32_t result = 0;
T result = 0;
// is it a misaligned cross-page read?
if (((guest_va & 0xFFF) + size) > 0x1000) {
if (((guest_va & 0xFFF) + sizeof(T)) > 0x1000) {
#ifdef MMU_PROFILING
unaligned_crossp_r++;
#endif
// Break such a memory access into multiple, bytewise accesses.
// Because such accesses suffer a performance penalty, they will be
// presumably very rare so don't waste time optimizing the code below.
for (int i = 0; i < size; guest_va++, i++) {
for (int i = 0; i < sizeof(T); guest_va++, i++) {
result = (result << 8) | mmu_read_vmem<uint8_t>(guest_va);
}
} else {
#ifdef MMU_PROFILING
unaligned_reads++;
#endif
switch(size) {
switch(sizeof(T)) {
case 1:
return *host_va;
case 2:
return READ_WORD_BE_U(host_va);
case 4:
return READ_DWORD_BE_U(host_va);
case 8: // FIXME: should we raise alignment exception here?
case 8:
if (guest_va & 3) {
ppc_exception_handler(Except_Type::EXC_ALIGNMENT, 0x0);
}
return READ_QWORD_BE_U(host_va);
}
}
return result;
}
static void write_unaligned(uint32_t guest_va, uint8_t *host_va, uint32_t value,
uint32_t size)
// explicitely instantiate all required read_unaligned variants
template uint16_t read_unaligned<uint16_t>(uint32_t guest_va, uint8_t *host_va);
template uint32_t read_unaligned<uint32_t>(uint32_t guest_va, uint8_t *host_va);
template uint64_t read_unaligned<uint64_t>(uint32_t guest_va, uint8_t *host_va);
template <class T>
static void write_unaligned(uint32_t guest_va, uint8_t *host_va, T value)
{
// is it a misaligned cross-page write?
if (((guest_va & 0xFFF) + size) > 0x1000) {
if (((guest_va & 0xFFF) + sizeof(T)) > 0x1000) {
#ifdef MMU_PROFILING
unaligned_crossp_w++;
#endif
@ -1261,29 +1305,41 @@ static void write_unaligned(uint32_t guest_va, uint8_t *host_va, uint32_t value,
// Because such accesses suffer a performance penalty, they will be
// presumably very rare so don't waste time optimizing the code below.
uint32_t shift = (size - 1) * 8;
uint32_t shift = (sizeof(T) - 1) * 8;
for (int i = 0; i < size; shift -= 8, guest_va++, i++) {
for (int i = 0; i < sizeof(T); shift -= 8, guest_va++, i++) {
mmu_write_vmem<uint8_t>(guest_va, (value >> shift) & 0xFF);
}
} else {
#ifdef MMU_PROFILING
unaligned_writes++;
#endif
switch(size) {
switch(sizeof(T)) {
case 1:
*host_va = value;
break;
case 2:
WRITE_WORD_BE_U(host_va, value);
break;
case 4:
WRITE_DWORD_BE_U(host_va, value);
break;
case 8: // FIXME: should we raise alignment exception here?
case 8:
if (guest_va & 3) {
ppc_exception_handler(Except_Type::EXC_ALIGNMENT, 0x0);
}
WRITE_QWORD_BE_U(host_va, value);
break;
}
}
}
// explicitely instantiate all required write_unaligned variants
template void write_unaligned<uint16_t>(uint32_t guest_va, uint8_t *host_va, uint16_t value);
template void write_unaligned<uint32_t>(uint32_t guest_va, uint8_t *host_va, uint32_t value);
template void write_unaligned<uint64_t>(uint32_t guest_va, uint8_t *host_va, uint64_t value);
/* MMU profiling. */
#ifdef MMU_PROFILING
@ -1912,7 +1968,7 @@ uint8_t* quickinstruction_translate(uint32_t addr) {
return real_addr;
}
#endif
#endif // Old and slow code
uint64_t mem_read_dbg(uint32_t virt_addr, uint32_t size) {
uint32_t save_dsisr, save_dar;