/* DingusPPC - The Experimental PowerPC Macintosh emulator Copyright (C) 2018-24 divingkatae and maximum (theweirdo) spatium (Contact divingkatae#1017 or powermax#2286 on Discord for more info) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include uint16_t NvramAddrHiDev::iodev_read(uint32_t address) { return nvram_addr_hi; } void NvramAddrHiDev::iodev_write(uint32_t address, uint16_t value) { this->nvram_addr_hi = value; } NvramDev::NvramDev(NvramAddrHiDev *addr_hi) { // NVRAM connection this->nvram = dynamic_cast(gMachineObj->get_comp_by_name("NVRAM")); this->addr_hi = addr_hi; } uint16_t NvramDev::iodev_read(uint32_t address) { return this->nvram->read_byte((addr_hi->iodev_read(0) << 5) + address); } void NvramDev::iodev_write(uint32_t address, uint16_t value) { this->nvram->write_byte((addr_hi->iodev_read(0) << 5) + address, value); } GrandCentral::GrandCentral() : PCIDevice("mac-io/grandcentral"), InterruptCtrl() { supports_types(HWCompType::MMIO_DEV | HWCompType::PCI_DEV | HWCompType::INT_CTRL); // populate my PCI config header this->vendor_id = PCI_VENDOR_APPLE; this->device_id = 0x0002; this->class_rev = 0xFF000002; this->cache_ln_sz = 8; this->setup_bars({{0, 0xFFFE0000UL}}); // declare 128Kb of memory-mapped I/O space this->pci_notify_bar_change = [this](int bar_num) { this->notify_bar_change(bar_num); }; // connect Cuda this->viacuda = dynamic_cast(gMachineObj->get_comp_by_name("ViaCuda")); // initialize sound chip and its DMA output channel, then wire them together this->awacs = std::unique_ptr (new AwacsScreamer()); this->snd_out_dma = std::unique_ptr (new DMAChannel("snd_out")); this->snd_out_dma->register_dma_int(this, this->register_dma_int(IntSrc::DMA_DAVBUS_Tx)); this->awacs->set_dma_out(this->snd_out_dma.get()); this->snd_out_dma->set_callbacks( std::bind(&AwacsScreamer::dma_out_start, this->awacs.get()), std::bind(&AwacsScreamer::dma_out_stop, this->awacs.get()) ); this->snd_in_dma = std::unique_ptr (new DMAChannel("snd_in")); this->snd_in_dma->register_dma_int(this, this->register_dma_int(IntSrc::DMA_DAVBUS_Rx)); this->awacs->set_dma_in(this->snd_in_dma.get()); this->snd_in_dma->set_callbacks( std::bind(&AwacsScreamer::dma_in_start, this->awacs.get()), std::bind(&AwacsScreamer::dma_in_stop, this->awacs.get()) ); // connect serial HW this->escc = dynamic_cast(gMachineObj->get_comp_by_name("Escc")); this->escc_a_tx_dma = std::unique_ptr (new DMAChannel("Escc_a_tx")); this->escc_a_rx_dma = std::unique_ptr (new DMAChannel("Escc_a_rx")); this->escc_b_tx_dma = std::unique_ptr (new DMAChannel("Escc_b_tx")); this->escc_b_rx_dma = std::unique_ptr (new DMAChannel("Escc_b_rx")); this->escc_a_tx_dma->register_dma_int(this, this->register_dma_int(IntSrc::DMA_SCCA_Tx)); this->escc_a_rx_dma->register_dma_int(this, this->register_dma_int(IntSrc::DMA_SCCA_Rx)); this->escc_b_tx_dma->register_dma_int(this, this->register_dma_int(IntSrc::DMA_SCCB_Tx)); this->escc_b_rx_dma->register_dma_int(this, this->register_dma_int(IntSrc::DMA_SCCB_Rx)); this->escc->set_dma_channel(0, this->escc_a_tx_dma.get()); this->escc->set_dma_channel(1, this->escc_a_rx_dma.get()); this->escc->set_dma_channel(2, this->escc_b_tx_dma.get()); this->escc->set_dma_channel(3, this->escc_b_rx_dma.get()); // connect MESH (internal SCSI) this->mesh = dynamic_cast(gMachineObj->get_comp_by_name_optional("MeshTnt")); if (this->mesh == nullptr) { LOG_F(WARNING, "%s: Mesh not found, using MeshStub instead", this->name.c_str()); this->mesh_stub = std::unique_ptr(new MeshStub()); this->mesh = dynamic_cast(this->mesh_stub.get()); } else { this->mesh_dma = std::unique_ptr (new DMAChannel("mesh_scsi")); this->mesh_dma->register_dma_int(this, this->register_dma_int(IntSrc::DMA_SCSI_MESH)); this->mesh->set_dma_channel(this->mesh_dma.get()); } // connect external SCSI controller (Curio) to its DMA channel this->curio = dynamic_cast(gMachineObj->get_comp_by_name("Sc53C94")); this->curio_dma = std::unique_ptr (new DMAChannel("curio_scsi")); this->curio_dma->register_dma_int(this, this->register_dma_int(IntSrc::DMA_SCSI_CURIO)); this->curio->set_dma_channel(this->curio_dma.get()); // connect Ethernet HW this->mace = dynamic_cast(gMachineObj->get_comp_by_name("Mace")); // connect floppy disk HW this->swim3 = dynamic_cast(gMachineObj->get_comp_by_name("Swim3")); this->floppy_dma = std::unique_ptr (new DMAChannel("floppy")); this->swim3->set_dma_channel(this->floppy_dma.get()); this->floppy_dma->register_dma_int(this, this->register_dma_int(IntSrc::DMA_SWIM3)); // attach IOBus Device #4 0xF301D000 ; NVRAM High Address this->nvram_addr_hi_dev = std::unique_ptr(new NvramAddrHiDev()); attach_iodevice(3, this->nvram_addr_hi_dev.get()); // attach IOBus Device #6 0xF301F000 ; NVRAM Data this->nvram_dev = std::unique_ptr(new NvramDev(nvram_addr_hi_dev.get())); attach_iodevice(5, this->nvram_dev.get()); } void GrandCentral::notify_bar_change(int bar_num) { if (bar_num) // only BAR0 is supported return; if (this->base_addr != (this->bars[bar_num] & 0xFFFFFFF0UL)) { if (this->base_addr) { LOG_F(WARNING, "%s: deallocating I/O memory not implemented", this->name.c_str()); } this->base_addr = this->bars[0] & 0xFFFFFFF0UL; this->host_instance->pci_register_mmio_region(this->base_addr, 0x20000, this); LOG_F(INFO, "%s: base address set to 0x%X", this->pci_name.c_str(), this->base_addr); } } static uint8_t ENET_ROM[] = { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77 }; uint32_t GrandCentral::read(uint32_t rgn_start, uint32_t offset, int size) { if (offset & 0x10000) { // Device register space unsigned subdev_num = (offset >> 12) & 0xF; switch (subdev_num) { case 0: // Curio SCSI return this->curio->read((offset >> 4) & 0xF); case 1: // MACE return this->mace->read((offset >> 4) & 0x1F); case 2: // ESCC compatible addressing if ((offset & 0xFF) < 16) { return this->escc->read(compat_to_macrisc[(offset >> 1) & 0xF]); } // fallthrough case 3: // ESCC MacRISC addressing return this->escc->read((offset >> 4) & 0xF); case 4: // AWACS return this->awacs->snd_ctrl_read(offset & 0xFF, size); case 5: // SWIM3 return this->swim3->read((offset >> 4) & 0xF); case 6: case 7: // VIA-CUDA return this->viacuda->read((offset >> 9) & 0xF); case 8: // MESH SCSI if (this->mesh) return this->mesh->read((offset >> 4) & 0xF); else if (this->mesh_stub) return this->mesh_stub->read((offset >> 4) & 0xF); case 9: // ENET-ROM return ENET_ROM[(offset >> 4) & 0x7]; case 0xA: // IOBus device #1 ; Board register 1 and bandit1 PRSNT bits case 0xB: // IOBus device #2 ; RaDACal/DACula case 0xC: // IOBus device #3 ; chaos or bandit2 PRSNT bits ; sixty6 case 0xD: // IOBus device #4 ; NVRAM High Address case 0xE: // IOBus device #5 ; sixty6 composite/s-video (not for fatman) case 0xF: // IOBus device #6 ; NVRAM Data if (this->iobus_devs[subdev_num - 10] != nullptr) { uint64_t value = this->iobus_devs[subdev_num - 10]->iodev_read((offset >> 4) & 0x1F); value |= value << 32; int shift = (offset & 3) * 8; switch (size) { case 1: return (uint8_t)(value >> shift); case 2: return BYTESWAP_16((uint16_t)(value >> shift)); case 4: return BYTESWAP_32((uint32_t)(value >> shift)); } } else { LOG_F(ERROR, "%s: IOBus device #%d (unknown) read 0x%x", this->name.c_str(), subdev_num - 9, (offset >> 4) & 0x1F); return 0; } break; } } else if (offset & 0x8000) { // DMA register space unsigned dma_channel = (offset >> 8) & 0xF; switch (dma_channel) { case MIO_GC_DMA_SCSI_CURIO: return this->curio_dma->reg_read(offset & 0xFF, size); case MIO_GC_DMA_FLOPPY: return this->floppy_dma->reg_read(offset & 0xFF, size); case MIO_GC_DMA_ESCC_A_XMIT: return this->escc_a_tx_dma->reg_read(offset & 0xFF, size); case MIO_GC_DMA_ESCC_A_RCV: return this->escc_a_rx_dma->reg_read(offset & 0xFF, size); case MIO_GC_DMA_ESCC_B_XMIT: return this->escc_b_tx_dma->reg_read(offset & 0xFF, size); case MIO_GC_DMA_ESCC_B_RCV: return this->escc_b_rx_dma->reg_read(offset & 0xFF, size); case MIO_GC_DMA_AUDIO_OUT: return this->snd_out_dma->reg_read(offset & 0xFF, size); case MIO_GC_DMA_AUDIO_IN: //LOG_F(WARNING, "%s: Unsupported DMA channel DMA_AUDIO_IN read @%02x.%c", this->name.c_str(), offset & 0xFF, SIZE_ARG(size)); return 0; // this->snd_in_dma->reg_read(offset & 0xFF, size); case MIO_GC_DMA_SCSI_MESH: if (this->mesh_dma) { return this->mesh_dma->reg_read(offset & 0xFF, size); break; } // fallthrough default: LOG_F(WARNING, "%s: unimplemented DMA register at 0x%X", this->name.c_str(), this->base_addr + offset); } } else { // Interrupt related registers switch (offset) { case MIO_INT_EVENTS1: return BYTESWAP_32(this->int_events); case MIO_INT_MASK1: return BYTESWAP_32(this->int_mask); case MIO_INT_CLEAR1: // some Mac OS drivers reads from this write-only register // so we return zero here as real HW does return 0; case MIO_INT_LEVELS1: return BYTESWAP_32(this->int_levels); } } LOG_F(WARNING, "%s: reading from unmapped I/O memory 0x%X", this->name.c_str(), this->base_addr + offset); return 0; } void GrandCentral::write(uint32_t rgn_start, uint32_t offset, uint32_t value, int size) { if (offset & 0x10000) { // Device register space unsigned subdev_num = (offset >> 12) & 0xF; switch (subdev_num) { case 0: // Curio SCSI this->curio->write((offset >> 4) & 0xF, value); break; case 1: // MACE registers this->mace->write((offset >> 4) & 0x1F, value); break; case 2: // ESCC compatible addressing if ((offset & 0xFF) < 16) { this->escc->write(compat_to_macrisc[(offset >> 1) & 0xF], value); break; } // fallthrough case 3: // ESCC MacRISC addressing this->escc->write((offset >> 4) & 0xF, value); break; case 4: // AWACS this->awacs->snd_ctrl_write(offset & 0xFF, value, size); break; case 5: this->swim3->write((offset >> 4) & 0xF, value); break; case 6: case 7: // VIA-CUDA this->viacuda->write((offset >> 9) & 0xF, value); break; case 8: // MESH SCSI if (this->mesh) this->mesh->write((offset >> 4) & 0xF, value); else if (this->mesh_stub) this->mesh_stub->write((offset >> 4) & 0xF, value); break; case 0xA: // IOBus device #1 ; Board register 1 and bandit1 PRSNT bits case 0xB: // IOBus device #2 ; RaDACal/DACula case 0xC: // IOBus device #3 ; chaos or bandit2 PRSNT bits case 0xD: // IOBus device #4 ; NVRAM High Address case 0xE: // IOBus device #5 ; sixty6 composite/s-video (not for fatman) case 0xF: // IOBus device #6 ; NVRAM Data uint16_t val; switch (size) { case 1: val = (uint8_t)value; break; case 2: val = BYTESWAP_16(value); break; case 4: val = (uint16_t)BYTESWAP_32(value); break; default: val = 0; break; } if (offset & 15) { LOG_F(ERROR, "%s: Unexpected offset (0x%x) or size (%d) write (0x%x) to IOBus device #%d", this->name.c_str(), offset, size, value, subdev_num - 9); } if (this->iobus_devs[subdev_num - 10] != nullptr) { this->iobus_devs[subdev_num - 10]->iodev_write((offset >> 4) & 0x1F, val); } else { LOG_F(ERROR, "%s: IOBus device #%d (unknown) write 0x%x = %04x", this->name.c_str(), subdev_num - 9, (offset >> 4) & 0x1F, value); } break; default: LOG_F(WARNING, "%s: writing to unmapped I/O memory 0x%X", this->name.c_str(), this->base_addr + offset); } } else if (offset & 0x8000) { // DMA register space unsigned dma_channel = (offset >> 8) & 0xF; switch (dma_channel) { case MIO_GC_DMA_SCSI_CURIO: this->curio_dma->reg_write(offset & 0xFF, value, size); break; case MIO_GC_DMA_FLOPPY: this->floppy_dma->reg_write(offset & 0xFF, value, size); break; case MIO_GC_DMA_ESCC_A_XMIT: this->escc_a_tx_dma->reg_write(offset & 0xFF, value, size); break; case MIO_GC_DMA_ESCC_A_RCV: this->escc_a_rx_dma->reg_write(offset & 0xFF, value, size); break; case MIO_GC_DMA_ESCC_B_XMIT: this->escc_b_tx_dma->reg_write(offset & 0xFF, value, size); break; case MIO_GC_DMA_ESCC_B_RCV: this->escc_b_rx_dma->reg_write(offset & 0xFF, value, size); break; case MIO_GC_DMA_AUDIO_OUT: this->snd_out_dma->reg_write(offset & 0xFF, value, size); break; case MIO_GC_DMA_AUDIO_IN: LOG_F(WARNING, "%s: Unsupported DMA channel DMA_AUDIO_IN write @%02x.%c = %0*x", this->name.c_str(), offset & 0xFF, SIZE_ARG(size), size * 2, value); //this->snd_in_dma->reg_write(offset & 0xFF, value, size); break; case MIO_GC_DMA_SCSI_MESH: if (this->mesh_dma) { this->mesh_dma->reg_write(offset & 0xFF, value, size); break; } // fallthrough default: LOG_F(WARNING, "%s: unimplemented DMA register at 0x%X", this->name.c_str(), this->base_addr + offset); } } else { // Interrupt related registers switch (offset) { case MIO_INT_MASK1: this->int_mask = BYTESWAP_32(value); break; case MIO_INT_CLEAR1: if ((this->int_mask & MACIO_INT_MODE) && (value & MACIO_INT_CLR)) this->int_events = 0; else this->int_events &= ~(BYTESWAP_32(value) & 0x7FFFFFFFUL); clear_cpu_int(); break; case MIO_INT_LEVELS1: break; // ignore writes to this read-only register default: LOG_F(WARNING, "%s: writing to unmapped I/O memory 0x%X", this->name.c_str(), this->base_addr + offset); } } } void GrandCentral::attach_iodevice(int dev_num, IobusDevice* dev_obj) { if (dev_num >= 0 && dev_num < 6) { if (this->iobus_devs[dev_num]) LOG_F(ERROR, "%s: Replacing existing IOBus device #%d", this->name.c_str(), dev_num + 1); this->iobus_devs[dev_num] = dev_obj; } } #define INT_TO_IRQ_ID(intx) (1 << intx) uint32_t GrandCentral::register_dev_int(IntSrc src_id) { switch (src_id) { case IntSrc::SCSI_CURIO : return INT_TO_IRQ_ID(0x0C); case IntSrc::SCSI_MESH : return INT_TO_IRQ_ID(0x0D); case IntSrc::ETHERNET : return INT_TO_IRQ_ID(0x0E); case IntSrc::SCCA : return INT_TO_IRQ_ID(0x0F); case IntSrc::SCCB : return INT_TO_IRQ_ID(0x10); case IntSrc::DAVBUS : return INT_TO_IRQ_ID(0x11); case IntSrc::VIA_CUDA : return INT_TO_IRQ_ID(0x12); case IntSrc::SWIM3 : return INT_TO_IRQ_ID(0x13); case IntSrc::NMI : return INT_TO_IRQ_ID(0x14); // EXT0 // nmiSource in AppleGrandCentral/AppleGrandCentral.cpp case IntSrc::EXT1 : return INT_TO_IRQ_ID(0x15); // EXT1 // Iridium case IntSrc::BANDIT1 : return INT_TO_IRQ_ID(0x16); // EXT2 case IntSrc::PCI_A : return INT_TO_IRQ_ID(0x17); // EXT3 case IntSrc::PCI_B : return INT_TO_IRQ_ID(0x18); // EXT4 case IntSrc::PCI_C : return INT_TO_IRQ_ID(0x19); // EXT5 case IntSrc::BANDIT2 : return INT_TO_IRQ_ID(0x1A); // EXT6 case IntSrc::PCI_D : return INT_TO_IRQ_ID(0x1B); // EXT7 case IntSrc::PCI_E : return INT_TO_IRQ_ID(0x1C); // EXT8 case IntSrc::PCI_F : return INT_TO_IRQ_ID(0x1D); // EXT9 case IntSrc::CONTROL : return INT_TO_IRQ_ID(0x1A); // EXT6 case IntSrc::SIXTY6 : return INT_TO_IRQ_ID(0x1B); // EXT7 case IntSrc::PLANB : return INT_TO_IRQ_ID(0x1C); // EXT8 case IntSrc::VCI : return INT_TO_IRQ_ID(0x1D); // EXT9 case IntSrc::PLATINUM : return INT_TO_IRQ_ID(0x1E); // EXT10 default: ABORT_F("%s: unknown interrupt source %d", this->name.c_str(), src_id); } return 0; } #define DMA_INT_TO_IRQ_ID(intx) (1 << intx) uint32_t GrandCentral::register_dma_int(IntSrc src_id) { switch (src_id) { case IntSrc::DMA_SCSI_CURIO : return DMA_INT_TO_IRQ_ID(0x00); case IntSrc::DMA_SWIM3 : return DMA_INT_TO_IRQ_ID(0x01); case IntSrc::DMA_ETHERNET_Tx : return DMA_INT_TO_IRQ_ID(0x02); case IntSrc::DMA_ETHERNET_Rx : return DMA_INT_TO_IRQ_ID(0x03); case IntSrc::DMA_SCCA_Tx : return DMA_INT_TO_IRQ_ID(0x04); case IntSrc::DMA_SCCA_Rx : return DMA_INT_TO_IRQ_ID(0x05); case IntSrc::DMA_SCCB_Tx : return DMA_INT_TO_IRQ_ID(0x06); case IntSrc::DMA_SCCB_Rx : return DMA_INT_TO_IRQ_ID(0x07); case IntSrc::DMA_DAVBUS_Tx : return DMA_INT_TO_IRQ_ID(0x08); case IntSrc::DMA_DAVBUS_Rx : return DMA_INT_TO_IRQ_ID(0x09); case IntSrc::DMA_SCSI_MESH : return DMA_INT_TO_IRQ_ID(0x0A); default: ABORT_F("%s: unknown DMA interrupt source %d", this->name.c_str(), src_id); } return 0; } void GrandCentral::ack_int_common(uint32_t irq_id, uint8_t irq_line_state) { // native mode: set IRQ bits in int_events1 on a 0-to-1 transition // emulated mode: set IRQ bits in int_events1 on all transitions //#if 1 // if (irq_id & ~(INT_TO_IRQ_ID(0x12) | INT_TO_IRQ_ID(0x1A))) // LOG_F(INTERRUPT, "%s: native interrupt mask:%08x events:%08x levels:%08x change:%08x state:%d", // this->name.c_str(), this->int_mask, this->int_events + 0, this->int_levels + 0, irq_id, irq_line_state // ); //#endif if ((this->int_mask & MACIO_INT_MODE) || (irq_line_state && !(this->int_levels & irq_id))) { this->int_events |= irq_id; } else { this->int_events &= ~irq_id; } this->int_events &= this->int_mask; // update IRQ line state if (irq_line_state) { this->int_levels |= irq_id; } else { this->int_levels &= ~irq_id; } this->signal_cpu_int(irq_id); } void GrandCentral::ack_int(uint32_t irq_id, uint8_t irq_line_state) { this->ack_int_common(irq_id, irq_line_state); } void GrandCentral::ack_dma_int(uint32_t irq_id, uint8_t irq_line_state) { this->ack_int_common(irq_id, irq_line_state); } void GrandCentral::signal_cpu_int(uint32_t irq_id) { if (this->int_events) { if (!this->cpu_int_latch) { this->cpu_int_latch = true; ppc_assert_int(); LOG_F(5, "%s: CPU INT asserted, source: %d", this->name.c_str(), irq_id); } else { LOG_F(5, "%s: CPU INT already latched", this->name.c_str()); } } } void GrandCentral::clear_cpu_int() { if (!this->int_events) { this->cpu_int_latch = false; ppc_release_int(); LOG_F(5, "%s: CPU INT latch cleared", this->name.c_str()); } } static const vector GCSubdevices = { "NVRAM", "ViaCuda", "Escc", "ScsiCurio", "Sc53C94", "Mace", "Swim3" }; static const DeviceDescription GC_Descriptor = { GrandCentral::create, GCSubdevices, {} }; REGISTER_DEVICE(GrandCentral, GC_Descriptor);