/* DingusPPC - The Experimental PowerPC Macintosh emulator Copyright (C) 2018-22 divingkatae and maximum (theweirdo) spatium (Contact divingkatae#1017 or powermax#2286 on Discord for more info) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /** @file Enhanced Serial Communications Controller (ESCC) emulation. */ #include #include #include #include #include #include #include #include #include #include /** Remap the compatible addressing scheme to MacRISC one. */ const uint8_t compat_to_macrisc[6] = { EsccReg::Port_B_Cmd, EsccReg::Port_A_Cmd, EsccReg::Port_B_Data, EsccReg::Port_A_Data, EsccReg::Enh_Reg_B, EsccReg::Enh_Reg_A }; EsccController::EsccController() { // allocate channels this->ch_a = std::unique_ptr (new EsccChannel("ESCC_A")); this->ch_b = std::unique_ptr (new EsccChannel("ESCC_B")); // attach backends std::string backend_name = GET_STR_PROP("serial_backend"); this->ch_a->attach_backend( (backend_name == "stdio") ? CHARIO_BE_STDIO : #ifdef _WIN32 #else (backend_name == "socket") ? CHARIO_BE_SOCKET : #endif CHARIO_BE_NULL ); this->ch_b->attach_backend(CHARIO_BE_NULL); this->reg_ptr = 0; } void EsccController::reset() { this->master_int_cntrl &= 0xFC; this->master_int_cntrl |= 0xC0; this->ch_a->reset(true); this->ch_b->reset(true); } uint8_t EsccController::read(uint8_t reg_offset) { uint8_t value; switch(reg_offset) { case EsccReg::Port_B_Cmd: LOG_F(9, "ESCC: reading Port B register RR%d", this->reg_ptr); if (this->reg_ptr == 2) { // TODO: implement interrupt vector modifications value = this->int_vec; } else { value = this->ch_b->read_reg(this->reg_ptr); } this->reg_ptr = 0; break; case EsccReg::Port_A_Cmd: LOG_F(9, "ESCC: reading Port A register RR%d", this->reg_ptr); if (this->reg_ptr == 2) { value = this->int_vec; } else { value = this->ch_a->read_reg(this->reg_ptr); } break; case EsccReg::Port_B_Data: value = this->ch_b->receive_byte(); break; case EsccReg::Port_A_Data: value = this->ch_a->receive_byte(); break; case EsccReg::Enh_Reg_B: LOG_F(WARNING, "ESCC_B: reading from unimplemented register 0x%x", reg_offset); value = 0; break; case EsccReg::Enh_Reg_A: LOG_F(WARNING, "ESCC_A: reading from unimplemented register 0x%x", reg_offset); value = 0; break; default: LOG_F(WARNING, "ESCC: reading from unimplemented register 0x%x", reg_offset); value = 0; } return value; } void EsccController::write(uint8_t reg_offset, uint8_t value) { switch(reg_offset) { case EsccReg::Port_B_Cmd: this->write_internal(this->ch_b.get(), value); break; case EsccReg::Port_A_Cmd: this->write_internal(this->ch_a.get(), value); break; case EsccReg::Port_B_Data: this->ch_b->send_byte(value); break; case EsccReg::Port_A_Data: this->ch_a->send_byte(value); break; default: LOG_F(9, "ESCC: writing 0x%X to unimplemented register 0x%x", value, reg_offset); } } void EsccController::write_internal(EsccChannel *ch, uint8_t value) { if (this->reg_ptr) { // chip-specific registers if (this->reg_ptr == 9) { // see if some reset is requested switch(value & 0xC0) { case RESET_CH_B: this->master_int_cntrl &= 0xDF; this->ch_b->reset(false); break; case RESET_CH_A: this->master_int_cntrl &= 0xDF; this->ch_a->reset(false); break; case RESET_ESCC: this->reset(); break; } this->master_int_cntrl = value & 0x3F; } else if (this->reg_ptr == 2) { this->int_vec = value; } else { // channel-specific registers ch->write_reg(this->reg_ptr, value); } this->reg_ptr = 0; } else { this->reg_ptr = value & 7; switch(value >> 3) { case WR0Cmd::Point_High: this->reg_ptr |= 8; break; } } } // ======================== ESCC Channel methods ============================== void EsccChannel::attach_backend(int id) { switch(id) { case CHARIO_BE_NULL: this->chario = std::unique_ptr (new CharIoNull); break; case CHARIO_BE_STDIO: this->chario = std::unique_ptr (new CharIoStdin); break; #ifdef _WIN32 #else case CHARIO_BE_SOCKET: this->chario = std::unique_ptr (new CharIoSocket); break; #endif default: LOG_F(ERROR, "%s: unknown backend ID %d, using NULL instead", this->name.c_str(), id); this->chario = std::unique_ptr (new CharIoNull); } } void EsccChannel::reset(bool hw_reset) { this->chario->rcv_disable(); this->write_regs[1] &= 0x24; this->write_regs[3] &= 0xFE; this->write_regs[4] |= 0x04; this->write_regs[5] &= 0x61; this->write_regs[15] = 0xF8; this->read_regs[0] &= 0x3C; this->read_regs[0] |= 0x44; this->read_regs[1] = 0x06; this->read_regs[3] = 0x00; this->read_regs[10] = 0x00; // initialize DPLL this->dpll_active = 0; this->dpll_mode = DpllMode::NRZI; this->dpll_clock_src = 0; // initialize Baud Rate Generator (BRG) this->brg_active = 0; this->brg_clock_src = 0; if (hw_reset) { this->write_regs[10] = 0; this->write_regs[11] = 8; this->write_regs[14] &= 0xC0; this->write_regs[14] |= 0x20; } else { this->write_regs[10] &= 0x60; this->write_regs[14] &= 0xC3; this->write_regs[14] |= 0x20; } } void EsccChannel::write_reg(int reg_num, uint8_t value) { switch (reg_num) { case 3: if ((this->write_regs[3] ^ value) & 0x10) { this->write_regs[3] |= 0x10; this->read_regs[0] |= 0x10; // set SYNC_HUNT flag LOG_F(9, "%s: Hunt mode entered.", this->name.c_str()); } if ((this->write_regs[3] ^ value) & 1) { if (value & 1) { this->write_regs[3] |= 0x1; this->chario->rcv_enable(); LOG_F(9, "%s: receiver enabled.", this->name.c_str()); } else { this->write_regs[3] ^= 0x1; this->chario->rcv_disable(); LOG_F(9, "%s: receiver disabled.", this->name.c_str()); this->write_regs[3] |= 0x10; // enter HUNT mode this->read_regs[0] |= 0x10; // set SYNC_HUNT flag } } this->write_regs[3] = (this->write_regs[3] & 0x11) | (value & 0xEE); return; case 7: if (this->write_regs[15] & 1) { this->wr7_enh = value; return; } break; case 14: switch (value >> 5) { case DPLL_NULL_CMD: break; case DPLL_ENTER_SRC_MODE: this->dpll_active = 1; this->read_regs[10] &= 0x3F; break; case DPLL_DISABLE: this->dpll_active = 0; // fallthrough case DPLL_RST_MISSING_CLK: this->read_regs[10] &= 0x3F; break; case DPLL_SET_SRC_BGR: this->dpll_clock_src = 0; break; case DPLL_SET_SRC_RTXC: this->dpll_clock_src = 1; break; case DPLL_SET_FM_MODE: this->dpll_mode = DpllMode::FM; break; case DPLL_SET_NRZI_MODE: this->dpll_mode = DpllMode::NRZI; break; default: LOG_F(WARNING, "%s: unimplemented DPLL command %d", this->name.c_str(), value >> 5); } if (value & 0x1C) { // Local Loopback, Auto Echo DTR/REQ bits set LOG_F(WARNING, "%s: unexpected value in WR14 = 0x%X", this->name.c_str(), value); } if (this->brg_active ^ (value & 1)) { this->brg_active = value & 1; LOG_F(9, "%s: BRG %s", this->name.c_str(), this->brg_active ? "enabled" : "disabled"); } return; } this->write_regs[reg_num] = value; } uint8_t EsccChannel::read_reg(int reg_num) { if (!reg_num) { if (this->chario->rcv_char_available()) { this->read_regs[0] |= 1; } } return this->read_regs[reg_num]; } void EsccChannel::send_byte(uint8_t value) { // TODO: put one byte into the Data FIFO this->chario->xmit_char(value); } uint8_t EsccChannel::receive_byte() { // TODO: remove one byte from the Receive FIFO uint8_t c; if (this->chario->rcv_char_available_now()) { this->chario->rcv_char(&c); } else { c = 0; } this->read_regs[0] &= ~1; return c; } void EsccChannel::dma_start_tx() { } void EsccChannel::dma_start_rx() { } void EsccChannel::dma_stop_tx() { if (this->timer_id_tx) { TimerManager::get_instance()->cancel_timer(this->timer_id_tx); this->timer_id_tx = 0; } } void EsccChannel::dma_stop_rx() { if (this->timer_id_rx) { TimerManager::get_instance()->cancel_timer(this->timer_id_rx); this->timer_id_rx = 0; } } void EsccChannel::dma_in_tx() { LOG_F(ERROR, "%s: Unexpected DMA INPUT command for transmit.", this->name.c_str()); } void EsccChannel::dma_in_rx() { if (dma_ch[1]->get_push_data_remaining()) { this->timer_id_rx = TimerManager::get_instance()->add_oneshot_timer( 0, [this]() { this->timer_id_rx = 0; char c = receive_byte(); int xx = dma_ch[1]->push_data(&c, 1); this->dma_in_rx(); }); } } void EsccChannel::dma_out_tx() { this->timer_id_tx = TimerManager::get_instance()->add_oneshot_timer( 10, [this]() { this->timer_id_tx = 0; uint8_t *data; uint32_t avail_len; if (dma_ch[1]->pull_data(256, &avail_len, &data) == MoreData) { while(avail_len) { this->send_byte(*data++); avail_len--; } this->dma_out_tx(); } }); } void EsccChannel::dma_out_rx() { LOG_F(ERROR, "%s: Unexpected DMA OUTPUT command for receive.", this->name.c_str()); } void EsccChannel::dma_flush_tx() { this->dma_stop_tx(); this->timer_id_tx = TimerManager::get_instance()->add_oneshot_timer( 10, [this]() { this->timer_id_tx = 0; dma_ch[1]->end_pull_data(); }); } void EsccChannel::dma_flush_rx() { this->dma_stop_rx(); this->timer_id_rx = TimerManager::get_instance()->add_oneshot_timer( 10, [this]() { this->timer_id_rx = 0; dma_ch[1]->end_push_data(); }); } static const vector CharIoBackends = {"null", "stdio", "socket"}; static const PropMap Escc_Properties = { {"serial_backend", new StrProperty("null", CharIoBackends)}, }; static const DeviceDescription Escc_Descriptor = { EsccController::create, {}, Escc_Properties }; REGISTER_DEVICE(Escc, Escc_Descriptor);