/*
DingusPPC - The Experimental PowerPC Macintosh emulator
Copyright (C) 2018-24 divingkatae and maximum
(theweirdo) spatium
(Contact divingkatae#1017 or powermax#2286 on Discord for more info)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/** @file TNT on-board video output emulation. */
/** TNT on-board video comprises several components:
- Chaos ASIC that provides data bus buffering between the video subsystem
and the processor bus
- Control ASIC that provides addressing and control for the video subsystem
- RaDACal RAMDAC ASIC for generating RGB video stream to the monitor
- Athens clock generator for generating pixel clock
Some TNT boards can generate composite video output and thus include
two additional components:
- Sixty6 ASIC that converts RGB pixels stored in the VRAM to YUV color space
- SAA7187 encoder that converts pixels from Sixty6 to composite video signal
Kudos to joevt#3510 for his precious technical help and HW hacking.
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace loguru {
enum : Verbosity {
Verbosity_RADACAL = loguru::Verbosity_INFO,
Verbosity_CONTROL = loguru::Verbosity_INFO
};
}
ControlVideo::ControlVideo()
: PCIDevice("Control-Video"), VideoCtrlBase()
{
supports_types(HWCompType::PCI_HOST | HWCompType::PCI_DEV);
// get VRAM size in MBs and convert it to bytes
this->vram_size = GET_INT_PROP("gfxmem_size") << 20;
// get VRAM banks
this->vram_banks = GET_INT_PROP("gfxmem_banks"); // bit 0: standard bank; bit 1: optional bank
switch(this->vram_banks) {
case 0:
this->vram_size = 0;
break;
case 1:
case 2:
this->vram_size = 2 << 20;
break;
default:
switch (this->vram_size) {
case 0:
this->vram_banks = 0;
break;
case 2:
this->vram_banks = 1;
break;
}
}
// allocate VRAM
this->vram_ptr = std::unique_ptr (new uint8_t[this->vram_size]);
// set up PCI configuration space header
this->vendor_id = PCI_VENDOR_APPLE;
this->device_id = 3;
this->class_rev = 0;
this->setup_bars({
{0, 0xFFFFFFFFUL}, // I/O region (4 bytes but it's weird because bit 1 is set)
{1, 0xFFFFF000UL}, // base address for the HW registers (4KB)
{2, 0xFC000000UL} // base address for the VRAM (64MB)
});
this->pci_notify_bar_change = [this](int bar_num) {
this->notify_bar_change(bar_num);
};
// initialize the video clock generator
this->clk_gen = std::unique_ptr (new AthensClocks(0x28));
// register the video clock generator with the I2C host
I2CBus* i2c_bus = dynamic_cast(gMachineObj->get_comp_by_type(HWCompType::I2C_HOST));
i2c_bus->register_device(0x28, this->clk_gen.get());
// attach RAMDAC
this->radacal = std::unique_ptr(new AppleRamdac(DacFlavour::RADACAL));
this->radacal->get_clut_entry_cb = [this](uint8_t index, uint8_t *colors) {
uint8_t a;
this->get_palette_color(index, colors[0], colors[1], colors[2], a);
};
this->radacal->set_clut_entry_cb = [this](uint8_t index, uint8_t *colors) {
this->set_palette_color(index, colors[0], colors[1], colors[2], 0xFF);
};
this->radacal->cursor_ctrl_cb = [this](bool cursor_on) {
if (cursor_on) {
this->radacal->measure_hw_cursor(this->fb_ptr - 16);
this->cursor_ovl_cb = [this](uint8_t *dst_buf, int dst_pitch) {
this->radacal->draw_hw_cursor(this->fb_ptr - 16,
dst_buf, dst_pitch);
};
} else {
this->cursor_ovl_cb = nullptr;
}
};
// attach IOBus Device #2 0xF301B000 ; register RaDACal with the I/O controller
GrandCentral* gc_obj = dynamic_cast(gMachineObj->get_comp_by_name("GrandCentral"));
gc_obj->attach_iodevice(1, this->radacal.get());
// initialize display identification
this->display_id = std::unique_ptr (new DisplayID());
}
void ControlVideo::change_one_bar(uint32_t &aperture, uint32_t aperture_size, uint32_t aperture_new, int bar_num) {
if (aperture != aperture_new) {
if (aperture)
this->host_instance->pci_unregister_mmio_region(aperture, aperture_size, this);
aperture = aperture_new;
if (aperture)
this->host_instance->pci_register_mmio_region(aperture, aperture_size, this);
LOG_F(INFO, "%s: aperture[%d] set to 0x%08X", this->name.c_str(), bar_num, aperture);
}
}
void ControlVideo::notify_bar_change(int bar_num) {
switch (bar_num) {
case 0: change_one_bar(this->io_base , 4, this->bars[bar_num] & ~ 3, bar_num); break;
case 1: change_one_bar(this->regs_base, 0x1000, this->bars[bar_num] & ~15, bar_num); break;
case 2: change_one_bar(this->vram_base, 0x04000000, this->bars[bar_num] & ~15, bar_num); break;
}
}
int ControlVideo::device_postinit() {
this->int_ctrl = dynamic_cast(
gMachineObj->get_comp_by_type(HWCompType::INT_CTRL));
this->irq_id = this->int_ctrl->register_dev_int(IntSrc::CONTROL);
this->vbl_cb = [this](uint8_t irq_line_state) {
if (irq_line_state != !!(this->int_status & VBL_IRQ_STAT)) {
if (irq_line_state)
this->int_status |= VBL_IRQ_STAT;
else
this->int_status &= ~VBL_IRQ_STAT;
if (this->int_enable & VBL_IRQ_EN)
this->int_ctrl->ack_int(this->irq_id, irq_line_state);
}
};
return 0;
}
static const char * get_name_controlreg(int offset) {
switch (offset >> 4) {
case ControlRegs::CUR_LINE : return "CUR_LINE";
case ControlRegs::VFPEQ : return "VFPEQ";
case ControlRegs::VFP : return "VFP";
case ControlRegs::VAL : return "VAL";
case ControlRegs::VBP : return "VBP";
case ControlRegs::VBPEQ : return "VBPEQ";
case ControlRegs::VSYNC : return "VSYNC";
case ControlRegs::VHLINE : return "VHLINE";
case ControlRegs::PIPE_DELAY : return "PIPE_DELAY";
case ControlRegs::HPIX : return "HPIX";
case ControlRegs::HFP : return "HFP";
case ControlRegs::HAL : return "HAL";
case ControlRegs::HBWAY : return "HBWAY";
case ControlRegs::HSP : return "HSP";
case ControlRegs::HEQ : return "HEQ";
case ControlRegs::HLFLN : return "HLFLN";
case ControlRegs::HSERR : return "HSERR";
case ControlRegs::CNTTST : return "CNTTST";
case ControlRegs::SWATCH_CTRL : return "SWATCH_CTRL";
case ControlRegs::GBASE : return "GBASE";
case ControlRegs::ROW_WORDS : return "ROW_WORDS";
case ControlRegs::MON_SENSE : return "MON_SENSE";
case ControlRegs::MISC_ENABLES : return "MISC_ENABLES";
case ControlRegs::GSC_DIVIDE : return "GSC_DIVIDE";
case ControlRegs::REFRESH_COUNT : return "REFRESH_COUNT";
case ControlRegs::INT_ENABLE : return "INT_ENABLE";
case ControlRegs::INT_STATUS : return "INT_STATUS";
default : return "unknown";
}
}
uint32_t ControlVideo::read(uint32_t rgn_start, uint32_t offset, int size)
{
if (rgn_start == this->vram_base) {
if (offset & 0x800000) { // repeats every 16MB
// HACK: writing to VRAM in 128bit mode with only the standard
// bank populated seems to replicate the first 64bit portion of data
// in the second 64bit portion. This "feature" is used by
// the Mac OS driver to detect how much physical VRAM is installed.
// I handle this case here because reads from VRAM seem to happen
// far less frequently than writes.
if (this->enables & VRAM_WIDE_MODE) {
// Note: we ignore access to 4MB range at 0xC00000 because it is undefined for VRAM_WIDE_MODE.
// There is data there but it is not in the same order as the first 4MB.
switch (this->vram_banks) {
case 0: // no banks
return 0;
case 1: // standard bank
// FIXME: verify real Power Mac behavior with only standard bank
offset &= ~8UL;
return read_mem(&this->vram_ptr[offset & 0x1FFFFF], size);
case 2: // optional bank
// FIXME: verify real Power Mac behavior with only optional bank
offset |= 8UL;
return read_mem(&this->vram_ptr[offset & 0x1FFFFF], size);
case 3: // both banks
return read_mem(&this->vram_ptr[offset & 0x3FFFFF], size);
}
}
else {
switch (this->vram_banks) {
case 0: // no banks
return 0;
case 1: // standard bank
switch ((offset >> 21) & 3) {
case 0: // mirror
case 1: // mirror
case 2: // standard bank
return read_mem(&this->vram_ptr[offset & 0x1FFFFF], size);
case 3: // optional bank
return 0;
}
case 2: // optional bank
switch ((offset >> 21) & 3) {
case 0: // mirror
case 1: // mirror
case 2: // standard bank
return 0;
case 3: // optional bank
return read_mem(&this->vram_ptr[offset & 0x1FFFFF], size);
}
case 3: // both banks
switch ((offset >> 21) & 3) {
case 0: // mirror
case 1: // mirror
case 2: // standard bank
return read_mem(&this->vram_ptr[offset & 0x1FFFFF], size);
case 3: // optional bank
return read_mem(&this->vram_ptr[offset & 0x1FFFFF + 0x200000], size);
}
} // switch
} // if not VRAM_WIDE_MODE
}
LOG_F(ERROR, "%s: read from little-endian aperture address 0x%X", this->name.c_str(),
this->vram_base + offset);
return 0;
}
if (rgn_start == this->regs_base) {
uint32_t value;
switch (offset >> 4) {
case ControlRegs::CUR_LINE:
value = 0; // current active video line should relate this to refresh rate
LOG_F(ERROR, "Control: read CUR_LINE %03x", offset);
break;
case ControlRegs::VFPEQ:
case ControlRegs::VFP:
case ControlRegs::VAL:
case ControlRegs::VBP:
case ControlRegs::VBPEQ:
case ControlRegs::VSYNC:
case ControlRegs::VHLINE:
case ControlRegs::PIPE_DELAY:
case ControlRegs::HPIX:
case ControlRegs::HFP:
case ControlRegs::HAL:
case ControlRegs::HBWAY:
case ControlRegs::HSP:
case ControlRegs::HEQ:
case ControlRegs::HLFLN:
case ControlRegs::HSERR:
value = this->swatch_params[(offset >> 4) - ControlRegs::VFPEQ];
break;
case ControlRegs::CNTTST:
value = 0;
break;
case ControlRegs::SWATCH_CTRL:
value = this->swatch_ctrl;
break;
case ControlRegs::GBASE:
value = this->fb_base;
break;
case ControlRegs::ROW_WORDS:
value = this->row_words;
break;
case ControlRegs::MON_SENSE:
value = (this->cur_mon_id << 6) | this->mon_sense;
LOG_F(CONTROL, "%s: read MON_SENSE %03x.%c = %0*x", this->name.c_str(), offset, SIZE_ARG(size), size * 2, value);
break;
case ControlRegs::MISC_ENABLES:
value = this->enables;
break;
case ControlRegs::GSC_DIVIDE:
value = this->clock_divider;
break;
case ControlRegs::REFRESH_COUNT:
value = 0;
break;
case ControlRegs::INT_STATUS:
value = this->int_status;
break;
case ControlRegs::INT_ENABLE:
value = this->int_enable;
break;
default:
LOG_F(ERROR, "Control: read %03x", offset);
value = 0;
}
AccessDetails details;
details.size = size;
details.offset = offset & 3;
uint32_t result = pci_conv_rd_data(value, value, details);
if ((offset & 3) || (size != 4)) {
LOG_F(WARNING, "%s: read %s %03x.%c = %08x -> %0*x", this->name.c_str(), get_name_controlreg(offset), offset, SIZE_ARG(size), value, size * 2, result);
}
return result;
}
return 0;
}
void ControlVideo::write(uint32_t rgn_start, uint32_t offset, uint32_t value, int size)
{
if (rgn_start == this->vram_base) {
if (offset & 0x800000) {
if (this->enables & VRAM_WIDE_MODE) {
// Note: we ignore access to 4MB range at 0xC00000 because it is undefined for VRAM_WIDE_MODE.
// There is data there but it is not in the same order as the first 4MB.
switch (this->vram_banks) {
case 0: // no banks
return;
case 1: // standard bank
// FIXME: verify real Power Mac behavior with only standard bank
offset &= ~8UL;
return write_mem(&this->vram_ptr[offset & 0x1FFFFF], value, size);
case 2: // optional bank
// FIXME: verify real Power Mac behavior with only optional bank
offset |= 8UL;
return write_mem(&this->vram_ptr[offset & 0x1FFFFF], value, size);
case 3: // both banks
return write_mem(&this->vram_ptr[offset & 0x3FFFFF], value, size);
}
}
else {
switch (this->vram_banks) {
case 0: // no banks
return;
case 1: // standard bank
switch ((offset >> 21) & 3) {
case 0: // mirror
case 1: // mirror
case 2: // standard bank
return write_mem(&this->vram_ptr[offset & 0x1FFFFF], value, size);
case 3: // optional bank
return;
}
case 2: // optional bank
switch ((offset >> 21) & 3) {
case 0: // mirror
case 1: // mirror
case 3: // optional bank
return write_mem(&this->vram_ptr[offset & 0x1FFFFF], value, size);
case 2: // standard bank
return;
}
case 3: // both banks
switch ((offset >> 21) & 3) {
case 0: // mirror
case 1: // mirror
write_mem(&this->vram_ptr[offset & 0x1FFFFF], value, size);
write_mem(&this->vram_ptr[offset & 0x1FFFFF + 0x200000], value, size);
return;
case 2: // standard bank
return write_mem(&this->vram_ptr[offset & 0x1FFFFF], value, size);
case 3: // optional bank
return write_mem(&this->vram_ptr[offset & 0x1FFFFF + 0x200000], value, size);
}
} // switch
} // if not VRAM_WIDE_MODE
} else {
LOG_F(ERROR, "%s: write to little-endian aperture address 0x%X", this->name.c_str(),
this->vram_base + offset);
}
return;
}
if (rgn_start == this->regs_base) {
value = BYTESWAP_32(value);
switch (offset >> 4) {
case ControlRegs::PIPE_DELAY:
this->swatch_params[(offset >> 4) - ControlRegs::VFPEQ] = value & 0x3FF;
if (value & ~0x3FF)
LOG_F(ERROR, "%s: write PIPE_DELAY %03x.%c = %0*x", this->name.c_str(), offset, SIZE_ARG(size), size * 2, value);
else
LOG_F(CONTROL, "%s: write PIPE_DELAY %03x.%c = %0*x", this->name.c_str(), offset, SIZE_ARG(size), size * 2, value);
if (this->display_enabled) {
this->enable_display();
}
break;
case ControlRegs::HEQ:
this->swatch_params[(offset >> 4) - ControlRegs::VFPEQ] = value & 0xFFU;
if (value & ~0xFFU)
LOG_F(ERROR, "%s: write HEQ %03x.%c = %0*x", this->name.c_str(), offset, SIZE_ARG(size), size * 2, value);
else
LOG_F(CONTROL, "%s: write HEQ %03x.%c = %0*x", this->name.c_str(), offset, SIZE_ARG(size), size * 2, value);
if (this->display_enabled) {
this->enable_display();
}
break;
case ControlRegs::VFPEQ:
case ControlRegs::VFP:
case ControlRegs::VAL:
case ControlRegs::VBP:
case ControlRegs::VBPEQ:
case ControlRegs::VSYNC:
case ControlRegs::VHLINE:
case ControlRegs::HPIX:
case ControlRegs::HFP:
case ControlRegs::HAL:
case ControlRegs::HBWAY:
case ControlRegs::HSP:
case ControlRegs::HLFLN:
case ControlRegs::HSERR:
this->swatch_params[(offset >> 4) - ControlRegs::VFPEQ] = value & 0xFFF;
if (value & ~0xFFF)
LOG_F(ERROR, "%s: write %s %03x.%c = %0*x", this->name.c_str(), get_name_controlreg(offset), offset, SIZE_ARG(size), size * 2, value);
else
LOG_F(CONTROL, "%s: write %s %03x.%c = %0*x", this->name.c_str(), get_name_controlreg(offset), offset, SIZE_ARG(size), size * 2, value);
if (this->display_enabled) {
this->enable_display();
}
break;
case ControlRegs::CNTTST:
this->cnt_tst = value & 0xFFF;
if (value)
LOG_F(WARNING, "%s: CNTTST set to 0x%X", this->name.c_str(), value);
break;
case ControlRegs::SWATCH_CTRL:
value &= 0x7FF;
if ((this->swatch_ctrl ^ value) & DISABLE_TIMING) {
this->swatch_ctrl = value;
this->strobe_counter = 0;
} else if ((this->swatch_ctrl ^ value) & RESET_TIMING) {
this->swatch_ctrl = value;
if (value & RESET_TIMING) { // count 0-to-1 transitions
this->strobe_counter++;
if (this->strobe_counter >= 2) {
if (value & DISABLE_TIMING) {
disable_display();
this->display_enabled = false;
} else {
enable_display();
this->display_enabled = true;
}
}
}
} else
this->swatch_ctrl = value;
break;
case ControlRegs::GBASE:
this->fb_base = value & 0x3FFFE0;
if (this->display_enabled) {
this->enable_display();
}
break;
case ControlRegs::ROW_WORDS:
this->row_words = value & 0x7FE0;
if (this->display_enabled) {
this->enable_display();
}
break;
case ControlRegs::MON_SENSE: {
if (value & ~0x3F)
LOG_F(ERROR, "%s: write MON_SENSE %03x.%c = %0*x", this->name.c_str(), offset, SIZE_ARG(size), size * 2, value);
else
LOG_F(CONTROL, "%s: write MON_SENSE %03x.%c = %0*x", this->name.c_str(), offset, SIZE_ARG(size), size * 2, value);
uint8_t dirs = ((value >> 3) & 7) ^ 7;
uint8_t levels = ((value & 7) & dirs) | (dirs ^ 7);
this->mon_sense = value & 0x3F;
this->cur_mon_id = this->display_id->read_monitor_sense(levels, dirs);
}
break;
case ControlRegs::MISC_ENABLES:
if ((this->enables ^ value) & BLANK_DISABLE) {
if (value & BLANK_DISABLE)
this->blank_on = false;
else {
this->blank_on = true;
this->blank_display();
}
}
this->enables = value & 0xFFF;
if (this->enables & FB_ENDIAN_LITTLE)
LOG_F(ERROR, "%s: little-endian framebuffer is not implemented yet", this->name.c_str());
break;
case ControlRegs::GSC_DIVIDE:
this->clock_divider = value & 3;
if (this->display_enabled) {
this->enable_display();
}
break;
case ControlRegs::REFRESH_COUNT:
LOG_F(9, "Control: VRAM refresh count set to %d", value);
break;
case ControlRegs::INT_ENABLE:
if ((this->int_enable ^ value) & VBL_IRQ_CLR) {
// clear VBL IRQ on a 1-to-0 transition of INT_ENABLE[VBL_IRQ_CLR]
if (!(value & VBL_IRQ_CLR))
this->vbl_cb(0);
}
this->int_enable = value & 0x0F;
break;
default:
LOG_F(ERROR, "Control: write %03x = %0*x", offset, size * 2, value);
}
}
}
uint8_t* ControlVideo::GetVram()
{
return &this->vram_ptr[0];
}
void ControlVideo::enable_display()
{
int new_width, new_height, clk_divisor;
// get pixel frequency from Athens
this->pixel_clock = this->clk_gen->get_dot_freq();
// get RaDACal clock divisor
clk_divisor = this->radacal->get_clock_div();
// calculate active_width and active_height from video timing parameters
new_width = swatch_params[ControlRegs::HFP-1] - swatch_params[ControlRegs::HAL-1];
new_height = swatch_params[ControlRegs::VFP-1] - swatch_params[ControlRegs::VAL-1];
new_width *= clk_divisor;
if (this->enables & SCAN_CONTROL) {
new_height >>= 1;
}
this->active_width = new_width;
this->active_height = new_height;
// set framebuffer parameters
this->fb_ptr = &this->vram_ptr[this->fb_base];
this->fb_pitch = this->row_words;
if (~this->enables & SCAN_CONTROL) {
this->fb_pitch >>= 1;
}
this->pixel_depth = this->radacal->get_pix_width();
if (swatch_params[ControlRegs::HAL-1] != swatch_params[ControlRegs::PIPE_DELAY-1] + 1 || this->pixel_depth == 32) {
// don't know how to calculate offset from GBASE (fb_base); it is always hard coded as + 16 in the ndrv.
this->fb_ptr += 16; // first 16 bytes are for 4 bpp HW cursor
}
else {
/*
Open Firmware frame buffer has these properties:
- GBASE == 0 // no offset from vram_ptr
- fb_ptr == vram_ptr // no offset from GBASE
- active_width == ROW_WORDS (row_words) // no offset between rows
- HAL == PIPE_DELAY + 1
- depth_mode = 0 // 8 bit indexed
*/
}
if (this->radacal->get_dbl_buf_cr() == 0 && this->vram_banks == 3) {
this->fb_ptr += 0x200000;
}
// get pixel depth from RaDACal
switch (this->pixel_depth) {
case 8:
this->convert_fb_cb = [this](uint8_t *dst_buf, int dst_pitch) {
this->convert_frame_8bpp_indexed(dst_buf, dst_pitch);
};
break;
case 16:
this->convert_fb_cb = [this](uint8_t *dst_buf, int dst_pitch) {
this->convert_frame_15bpp_BE(dst_buf, dst_pitch);
};
break;
case 32:
this->convert_fb_cb = [this](uint8_t *dst_buf, int dst_pitch) {
this->convert_frame_32bpp_BE(dst_buf, dst_pitch);
};
break;
default:
LOG_F(ERROR, "RaDACal: Invalid pixel depth code!");
}
// calculate display refresh rate
this->hori_blank = swatch_params[ControlRegs::HAL-1] +
(swatch_params[ControlRegs::HSP-1] - swatch_params[ControlRegs::HFP-1]);
this->hori_blank *= clk_divisor;
this->vert_blank = swatch_params[ControlRegs::VAL-1] +
(swatch_params[ControlRegs::VSYNC-1] - swatch_params[ControlRegs::VFP-1]);
if (this->enables & SCAN_CONTROL) {
this->vert_blank >>= 1;
}
this->hori_total = this->hori_blank + new_width;
this->vert_total = this->vert_blank + new_height;
this->radacal->set_fb_parameters(active_width, active_height, this->fb_pitch);
this->stop_refresh_task();
// set up periodic timer for display updates
if (this->active_width > 0 && this->active_height > 0 && this->pixel_clock > 0) {
this->refresh_rate = (double)(this->pixel_clock) / (this->hori_total * this->vert_total);
if (~this->enables & SCAN_CONTROL) {
this->refresh_rate *= 2;
}
LOG_F(INFO, "%s: refresh rate set to %f Hz", this->name.c_str(), this->refresh_rate);
this->start_refresh_task();
this->blank_on = false;
LOG_F(CONTROL, "Control: display enabled");
this->crtc_on = true;
}
else {
LOG_F(CONTROL, "Control: display not enabled");
this->blank_on = true;
this->crtc_on = false;
}
}
void ControlVideo::disable_display()
{
this->crtc_on = false;
LOG_F(INFO, "Control: display disabled");
}
// ========================== Device registry stuff ==========================
static const PropMap Control_Properties = {
{"gfxmem_banks",
new IntProperty(3, vector({0, 1, 2, 3}))},
{"gfxmem_size",
new IntProperty(4, vector({0, 2, 4}))},
{"mon_id",
new StrProperty("AppleVision1710")},
};
static const DeviceDescription Control_Descriptor = {
ControlVideo::create, {}, Control_Properties
};
REGISTER_DEVICE(ControlVideo, Control_Descriptor);