//DingusPPC - Prototype 5bf2 //Written by divingkatae and maximum //(c)2018-20 (theweirdo) spatium //Please ask for permission //if you want to distribute this. //(divingkatae#1017 on Discord) //The main runfile - main.cpp //This is where the magic begins #include #include #include #include #include #include #include #include #include #include #include #include "ppcemu.h" #include "ppcmmu.h" #include "devices/mpc106.h" #include "debugger/debugger.h" #include "devices/machineid.h" #include "devices/macio.h" #include "devices/mpc106.h" #define max_16b_int 65535 #define max_32b_int 4294967295 #define ENDIAN_REVERSE16(x) (x >> 8) | (((x) & 0x00FF) << 8) #define ENDIAN_REVERSE32(x) (x >> 24) | ((x & 0x00FF0000) >> 8) | ((x & 0x0000FF00) << 8) | (x << 24) #define ENDIAN_REVERSE64(x) (x >> 56) | ((x & 0x00FF000000000000) >> 48) | ((x & 0x0000FF0000000000) >> 40) | ((x & 0x000000FF00000000) >> 32) | \ ((x & 0x00000000FF000000) << 32) | ((x & 0x0000000000FF0000) << 40) | ((x & 0x000000000000FF00) << 48) | ((x & 0x00000000000000FF) << 56) using namespace std; /** Power Macintosh ROM identification string is located in the ConfigInfo structure starting at 0x30D064 (PCI Macs) or 0x30C064 (Nubus Macs). This helps a lot to determine which hardware is to be used. */ static const map PPCMac_ROMIdentity = { //Codename Abbreviation for... {"Alch", "Performa 6400"}, //Alchemy {"Come", "PowerBook 2400"}, //Comet {"Cord", "Power Mac 5200/6200 series"}, //Cordyceps {"Gaze", "Power Mac 6500"}, //Gazelle {"Goss", "Power Mac G3 Beige"}, //Gossamer {"GRX ", "PowerBook G3 Wallstreet"}, //(Unknown) {"Hoop", "PowerBook 3400"}, //Hooper {"PBX ", "PowerBook Pre-G3"}, //(Unknown) {"PDM ", "Nubus Power Mac or WGS"}, //Piltdown Man (6100/7100/8100) {"Pip ", "Pippin... uh... yeah..."}, //Pippin {"Powe", "Generic Power Mac"}, //PowerMac? {"Spar", "20th Anniversay Mac, you lucky thing."}, //Spartacus {"Tanz", "Power Mac 4400"}, //Tanzania {"TNT ", "Power Mac 7xxxx/8xxx series"}, //Trinitrotoluene :-) {"Zanz", "A complete engima."}, //Zanzibar (mentioned in Sheepshaver's code, but no match to any known ROM) {"????", "A clone, perhaps?"} //N/A (Placeholder ID) }; SetPRS ppc_state; bool power_on = 1; bool is_nubus = 0; bool grab_branch; bool grab_exception; bool grab_return; bool grab_breakpoint; uint32_t ppc_cur_instruction; //Current instruction for the PPC uint32_t ppc_effective_address; uint32_t ppc_real_address; uint32_t ppc_next_instruction_address; //Used for branching, setting up the NIA uint32_t return_value; MemCtrlBase *mem_ctrl_instance = 0; HeathrowIC *heathrow = 0; GossamerID *machine_id; //A pointer to a pointer, used for quick movement to one of the following //memory areas. These are listed right below. unsigned char * grab_array_ptr; unsigned char * machine_sysram_mem; unsigned char * machine_sysconfig_mem; unsigned char * machine_upperiocontrol_mem; unsigned char * machine_iocontrolcdma_mem; unsigned char * machine_loweriocontrol_mem; unsigned char * machine_interruptack_mem; unsigned char * machine_iocontrolmem_mem; unsigned char * machine_f8xxxx_mem; unsigned char * machine_fexxxx_mem; unsigned char * machine_fecxxx_mem; unsigned char * machine_feexxx_mem; unsigned char * machine_ff00xx_mem; unsigned char * machine_ff80xx_mem; unsigned char * machine_sysrom_mem; uint32_t grab_sysram_size; uint32_t grab_iocont_size; uint32_t grab_sysrom_size; uint32_t ram_size_set; uint32_t prev_msr_state = 0; uint32_t cur_msr_state = 0; //MSR Flags bool msr_es_change; //Check Endian uint32_t rom_file_begin; //where to start storing ROM files in memory uint32_t pci_io_end; uint32_t rom_filesize; clock_t clock_test_begin; //Used to make sure the TBR does not increment so quickly. uint32_t write_opcode; uint8_t write_char; /* //DISK VARIABLES unsigned char * grab_disk_buf; bool disk_inserted; uint64_t disk_offset = 0; uint32_t disk_word = 0; */ uint16_t rev_endian16(uint16_t insert_int){ return ENDIAN_REVERSE16(insert_int); } uint32_t rev_endian32(uint32_t insert_int){ return ENDIAN_REVERSE32(insert_int); } uint64_t rev_endian64(uint64_t insert_int){ return ENDIAN_REVERSE64(insert_int); } //Time Base Register Update Code //TODO - Make this a bit less hacky somehow. void ppc_tbr_update() { clock_t clock_test_current = clock(); uint32_t test_clock = ((uint32_t) (clock_test_current - clock_test_begin)) / CLOCKS_PER_SEC; if (test_clock){ if (ppc_state.ppc_tbr[0] != 0xFFFFFFFF){ ppc_state.ppc_tbr[0]++; } else{ ppc_state.ppc_tbr[0] = 0; if (ppc_state.ppc_tbr[1] !=0xFFFFFFFF){ ppc_state.ppc_tbr[1]++; } else{ ppc_state.ppc_tbr[1] = 0; } } clock_test_begin = clock(); //Placeholder Decrementing Code if(ppc_state.ppc_spr[22] > 0){ ppc_state.ppc_spr[22]--; } } } void ppc_exception_handler(uint32_t exception_type, uint32_t handle_args){ ppc_next_instruction_address = 0x0; //used to construct a new address grab_exception = true; printf("MSR VALUE: %x \n Exception Type: %x", ppc_state.ppc_msr, exception_type); //Check ROM Exception Prefix if (ppc_state.ppc_msr & 0x40){ ppc_next_instruction_address |= 0xFFF00000; } else{ ppc_next_instruction_address &= 0x0000FFFF; } switch(exception_type){ case 0x0100: //System Reset ppc_state.ppc_spr[26] = ((ppc_cur_instruction + 4) & 0xFFFFFFFC); ppc_state.ppc_spr[27] = ppc_state.ppc_msr; ppc_state.ppc_msr = (ppc_state.ppc_msr & 0xFFFD0041); ppc_next_instruction_address += 0x0100; break; /** case 0x0200: //Machine Check break; case 0x0300: //DSI break; case 0x0400: //ISI break; **/ case 0x0500: //External Interrupt ppc_state.ppc_spr[26] = ((ppc_cur_instruction + 4) & 0xFFFFFFFC); ppc_state.ppc_spr[27] = (ppc_state.ppc_msr & 0xFFFF); ppc_state.ppc_msr = (ppc_state.ppc_msr & 0xFFFD0041); ppc_next_instruction_address += 0x0500; break; case 0x0600: //Alignment Exception ppc_state.ppc_spr[26] = ((ppc_cur_instruction + 4) & 0xFFFFFFFC); ppc_state.ppc_spr[27] = (ppc_state.ppc_msr & 0xFFFF); ppc_state.ppc_msr = (ppc_state.ppc_msr & 0xFFFD0041); ppc_state.ppc_spr[19] = ppc_cur_instruction; ppc_next_instruction_address += 0x0600; case 0x0700: //Program; ppc_state.ppc_spr[26] = ((ppc_cur_instruction + 4) & 0xFFFFFFFC); handle_args += 0x10000; ppc_state.ppc_spr[27] = handle_args + (ppc_state.ppc_msr & 0xFFFF); ppc_state.ppc_msr = (ppc_state.ppc_msr & 0xFFFD0041); ppc_next_instruction_address += 0x0700; break; case 0x0C00: //Sys Call ppc_state.ppc_spr[26] = ((ppc_cur_instruction + 4) & 0xFFFFFFFC); ppc_state.ppc_spr[27] = (ppc_state.ppc_msr & 0xFFFF); ppc_state.ppc_msr = (ppc_state.ppc_msr & 0xFFFD0041); ppc_next_instruction_address += 0x0C00; break; /** case 0x0d: //Trace break **/ default: ppc_state.ppc_spr[26] = ((ppc_cur_instruction + 4) & 0xFFFFFFFC); ppc_state.ppc_spr[27] = (ppc_state.ppc_msr & 0xFFFF); ppc_state.ppc_msr = (ppc_state.ppc_msr & 0xFFFD0041); ppc_next_instruction_address += exception_type; } } //Initialize the PPC's registers. void reg_init(){ for (uint32_t i = 0; i < 32; i++){ ppc_state.ppc_fpr[i] = 0; } ppc_state.ppc_pc = 0; for (uint32_t i = 0; i < 32; i++){ ppc_state.ppc_gpr[i] = 0; } ppc_state.ppc_cr = 0; ppc_state.ppc_fpscr = 0; ppc_state.ppc_tbr[0] = 0; ppc_state.ppc_tbr[1] = 0; for (uint32_t i = 0; i < 1024; i++){ switch(i){ case 287: //Identify as a G3 //Processor IDS // 601 v1 - 00010001 // 603 v1 - 00030001 // 604 v1 - 00040001 // 603e v1 - 00060101 // 750 v1 - 00080200 ppc_state.ppc_spr[i] = 0x00080200; break; /** case 528: case 536: ppc_state.ppc_spr[i] = 0x00001FFE; break; case 530: case 538: ppc_state.ppc_spr[i] = 0xC0001FFE; break; case 532: case 540: ppc_state.ppc_spr[i] = 0xE0001FFE; break; case 534: case 542: ppc_state.ppc_spr[i] = 0xF0001FFE; break; case 529: case 531: case 537: case 539: ppc_state.ppc_spr[i] = 0x00000002; break; case 533: case 541: ppc_state.ppc_spr[i] = 0xE0000002; break; case 535: ppc_state.ppc_spr[i] = 0xF0000002; break; case 543: ppc_state.ppc_spr[i] = 0x00000002; break; **/ default: ppc_state.ppc_spr[i] = 0; } } //Only bit 25 of the MSR is initially set on bootup. ppc_state.ppc_msr = 0x40; for (uint32_t i = 0; i < 16; i++){ ppc_state.ppc_sr[i] = 0; } } //Debugging Functions uint32_t reg_print(){ for (uint32_t i = 0; i < 32; i++){ printf("FPR %d : %" PRIx64 "", i, ppc_state.ppc_fpr[i]); } ppc_state.ppc_pc = 0; for (uint32_t i = 0; i < 32; i++){ printf("GPR %d : %x", i, ppc_state.ppc_gpr[i]); } printf("CR : %x", ppc_state.ppc_cr); printf("FPSCR : %x", ppc_state.ppc_fpscr); printf("TBR 0 : %x", ppc_state.ppc_tbr[0]); printf("TBR 1 : %x", ppc_state.ppc_tbr[1]); for (uint32_t i = 0; i < 1024; i++){ printf("SPR %d : %x", i, ppc_state.ppc_spr[i]); } printf("CR : %x", ppc_state.ppc_cr); printf("MSR : %x", ppc_state.ppc_msr); for (uint32_t i = 0; i < 16; i++){ printf("SR %d : %x", i, ppc_state.ppc_sr[i]); } return 0; } uint32_t reg_read(){ uint32_t grab_me = 0; std::cout << hex << "TODO: Decide which register to read from; for now, which GPR?" << endl; //printf("Which register to read from? 0 - GPR, 1 = FPR, 2 = CR, 3 = FPSCR"); std::cin >> hex >> grab_me; if (grab_me < 32){ printf("GPR value: %d", ppc_state.ppc_gpr[grab_me]); } return 0; } uint32_t reg_write(){ uint32_t grab_me = 0; std::cout << hex << "TODO: Decide which register to write to; for now, which GPR?" << endl; //printf("Which register to write to? 0 - GPR, 1 = FPR, 2 = CR, 3 = FPSCR"); std::cin >> hex >> grab_me; if (grab_me < 32){ printf("GPR value: %d", ppc_state.ppc_gpr[grab_me]); } return 0; } void execute_interpreter(){ //Main execution loop for the interpreter. while (power_on){ //printf("PowerPC Address: %x \n", ppc_state.ppc_pc); quickinstruction_translate(ppc_state.ppc_pc); ppc_main_opcode(); if (grab_branch & !grab_exception){ ppc_state.ppc_pc = ppc_next_instruction_address; grab_branch = 0; ppc_tbr_update(); } else if (grab_return | grab_exception){ ppc_state.ppc_pc = ppc_next_instruction_address; grab_exception = 0; grab_return = 0; ppc_tbr_update(); } else{ ppc_state.ppc_pc += 4; ppc_tbr_update(); } } } void execute_interpreter_bp (uint32_t ppc_break_addr){ //Main loop like the above, with the only big difference //being that this stops on reaching the desired address. //It then prints the regs at the time it stopped. while (ppc_state.ppc_pc != ppc_break_addr){ quickinstruction_translate(ppc_state.ppc_pc); ppc_main_opcode(); if (grab_branch & !grab_exception){ ppc_state.ppc_pc = ppc_next_instruction_address; grab_branch = 0; ppc_tbr_update(); } else if (grab_return | grab_exception){ ppc_state.ppc_pc = ppc_next_instruction_address; grab_exception = 0; grab_return = 0; ppc_tbr_update(); } else{ ppc_state.ppc_pc += 4; ppc_tbr_update(); } ppc_cur_instruction = 0; } reg_print(); } int main(int argc, char **argv) { ram_size_set = 0x4000000; //64 MB of RAM for the Mac rom_file_begin = 0xFFF00000; //where to start storing ROM files in memory pci_io_end = 0x83FFFFFF; rom_filesize = 0x400000; //Init virtual CPU. reg_init(); //0xFFF00100 is where the reset vector is. //In other words, begin executing code here. ppc_state.ppc_pc = 0xFFF00100; uint32_t opcode_entered = 0; //used for testing opcodes in playground std::cout << "DingusPPC - Prototype 5bf4 (7/14/2019) " << endl; std::cout << "Written by divingkatae, (c) 2019. " << endl; std::cout << "This is not intended for general use. " << endl; std::cout << "Use at your own discretion. " << endl; //Open the ROM File. ifstream romFile; romFile.open("rom.bin", ios::in|ios::binary); if (romFile.fail()){ cerr << "rom.bin not present. Please provide an appropriate ROM file" << " and restart this program.\n"; romFile.close(); return 1; } //Calculate and validate ROM file size. romFile.seekg(0, romFile.end); rom_filesize = romFile.tellg(); printf("Rom SIZE: %d \n", rom_filesize); romFile.seekg (0, romFile.beg); if (rom_filesize != 0x400000){ cerr << "Unsupported ROM File size. Expected size is 4 megabytes.\n"; romFile.close(); return 1; } machine_sysram_mem = (unsigned char*) calloc (67108864, 1); machine_sysconfig_mem = (unsigned char*) calloc (2048, 1); machine_upperiocontrol_mem = (unsigned char*) calloc (8388608, 1); machine_iocontrolcdma_mem = (unsigned char*) calloc (8388608, 1); machine_loweriocontrol_mem = (unsigned char*) calloc (33554432, 1); machine_interruptack_mem = (unsigned char*) calloc (16, 1); machine_iocontrolmem_mem = (unsigned char*) calloc (67108864, 1); machine_f8xxxx_mem = (unsigned char*) calloc (4096, 1); machine_fexxxx_mem = (unsigned char*) calloc (262144, 1); machine_fecxxx_mem = (unsigned char*) calloc (4096, 1); machine_feexxx_mem = (unsigned char*) calloc (4096, 1); machine_ff00xx_mem = (unsigned char*) calloc (4096, 1); machine_ff80xx_mem = (unsigned char*) calloc (1048576, 1); machine_sysrom_mem = (unsigned char*) calloc (rom_filesize, 1); memset(machine_sysram_mem, 0x0, 67108864); memset(machine_sysconfig_mem, 0x0, 2048); memset(machine_upperiocontrol_mem, 0x0, 8388607); memset(machine_iocontrolcdma_mem, 0x0, 8388607); memset(machine_interruptack_mem, 0x0, 16); memset(machine_iocontrolmem_mem, 0x0, 67108864); memset(machine_f8xxxx_mem, 0x0, 4096); memset(machine_fexxxx_mem, 0x0, 262144); memset(machine_fecxxx_mem, 0x0, 4096); memset(machine_feexxx_mem, 0x0, 4096); memset(machine_ff00xx_mem, 0x0, 4096); memset(machine_ff80xx_mem, 0x0, 1048576); grab_sysram_size = sizeof(machine_sysram_mem); grab_sysrom_size = rom_filesize; //Sanity checks - Prevent the input files being too small or too big. //Also prevent the ROM area from overflow. if (ram_size_set < 0x800000){ cerr << "The RAM size must be at least 8 MB to function.\n"; return 1; } else if (ram_size_set > 0x20000000){ cerr << "RAM too big. Must be no more than 2 GB.\n"; return 1; } rom_file_begin = 0xFFFFFFFF - grab_sysrom_size + 1; char configGrab = 0; uint32_t configInfoOffset = 0; romFile.seekg (0x300082, ios::beg); //This is where the place to get the offset is romFile.get(configGrab); //just one byte to determine ConfigInfo location configInfoOffset = (uint32_t)(configGrab & 0xff); if (configInfoOffset == 0xC0){ is_nubus = 1; } uint32_t configInfoAddr = 0x300000 + (configInfoOffset << 8) + 0x69; //address to check the identifier string char memPPCBlock[5]; //First four chars are enough to distinguish between codenames romFile.seekg (configInfoAddr, ios::beg); romFile.read(memPPCBlock, 4); memPPCBlock[4] = 0; uint32_t rom_id = (memPPCBlock[0] << 24) | (memPPCBlock[1] << 16) | (memPPCBlock[2] << 8) | memPPCBlock[3]; std::string string_test = std::string(memPPCBlock); //Just auto-iterate through the list for (auto iter = PPCMac_ROMIdentity.begin(); iter != PPCMac_ROMIdentity.end(); ){ string redo_me = iter->first; if (string_test.compare(redo_me) == 0){ cout << "The machine is identified as..." << iter->second << endl; romFile.seekg (0x0, ios::beg); break; } else{ iter++; } } switch(rom_id) { case 0x476F7373: { cout << "Initialize Gossamer hardware..."; MPC106 *mpc106 = new MPC106(); mem_ctrl_instance = mpc106; if (!mem_ctrl_instance->add_rom_region(0xFFC00000, 0x400000)) { cout << "failure!\n" << endl; delete(mem_ctrl_instance); romFile.close(); return 1; } machine_id = new GossamerID(0x3d8c); assert(machine_id != 0); mpc106->add_mmio_region(0xFF000004, 4096, machine_id); heathrow = new HeathrowIC(); assert(heathrow != 0); mpc106->pci_register_device(16, heathrow); cout << "done" << endl; } break; default: cout << "This machine not supported yet." << endl; return 1; } //Read ROM file content and transfer it to the dedicated ROM region romFile.read ((char *)machine_sysrom_mem,grab_sysrom_size); mem_ctrl_instance->set_data(0xFFC00000, machine_sysrom_mem, rom_filesize); romFile.close(); clock_test_begin = clock(); if (argc > 1){ string checker = argv[1]; cout << checker << endl; if (checker == "fuzzer"){ //Brute force every instruction that the PPC can interpret. //TODO: Change this so that this goes through user-specified instructions. ppc_cur_instruction = 0xFFFFFFFF; std::cout << "Testing Opcode: " << ppc_cur_instruction << endl; while (ppc_cur_instruction > 0x00000000){ ppc_main_opcode(); ppc_cur_instruction--; } } else if ((checker=="1")|(checker=="realtime")|(checker=="/realtime")|(checker=="-realtime")){ execute_interpreter(); } else if ((checker=="e")|(checker=="loadelf")|(checker=="/loadelf")|(checker=="-loadelf")){ ifstream elfFile; uint32_t elf_file_setsize = 0; char elf_headerchk [4]; char elf_bformat [1]; char elf_machine [2]; char elf_memoffset [4]; elfFile.seekg(0, elfFile.end); elf_file_setsize = elfFile.tellg(); elfFile.seekg (0, elfFile.beg); if (elf_file_setsize < 45){ cerr << "Elf File TOO SMALL. Please make sure it's a legitimate file."; return 1; } else if (elf_file_setsize > ram_size_set){ cerr << "Elf File TOO BIG. Please make sure it fits within memory."; return 1; } //There's got to be a better way to get fields of info from an ELF file. elfFile.seekg(0x0, ios::beg); //ELF file begins here elfFile.read(elf_headerchk, 4); elfFile.seekg(0x4, ios::cur); elfFile.read(elf_bformat, 1); elfFile.seekg(0x8, ios::cur); elfFile.read(elf_machine, 2); elfFile.seekg(0x6, ios::cur); elfFile.read(elf_memoffset, 4); elfFile.seekg (0, elfFile.beg); bool elf_valid_check = (atoi(elf_headerchk) == 0x7F454C46) && (atoi(elf_bformat) == 1) &&\ ((atoi(elf_machine) == 0) | (atoi(elf_machine) == 20)); if (!elf_valid_check){ cerr << "The ELF file inserted was not legitimate. Please try again." << endl; return 1; } elfFile.read ((char *)machine_sysram_mem,ram_size_set); if (argc > 2){ string elfname = string(argv[1]); elfname = elfname + ".elf"; elfFile.open(elfname, ios::in|ios::binary); } else{ elfFile.open("test.elf", ios::in|ios::binary); } if (elfFile.fail()){ cerr << "Please insert the elf file before continuing.\n"; return 1; } ppc_state.ppc_pc = atoi(elf_memoffset); execute_interpreter(); } else if ((checker=="until")|(checker=="/until")|(checker=="-until")){ uint32_t grab_bp = 0x0; std::cout << hex << "Enter the address in hex for where to stop execution." << endl; cin >> hex >> grab_bp; execute_interpreter_bp(grab_bp); } else if (checker=="disas"){ if (argc > 2){ checker = argv[1]; } else{ checker = "\\compile.txt"; } ifstream inFile (checker, ios::binary | ios::ate); if (!inFile) { cerr << "Unable to open file for assembling."; exit(1); } } else if ((checker=="stepi")|(checker=="/stepi")|(checker=="-stepi")){ std::cout << hex << "Ready to execute an opcode?" << endl; string check_q; cin >> check_q; getline (cin, check_q); if (check_q != "No"){ quickinstruction_translate(ppc_state.ppc_pc); ppc_main_opcode(); if (grab_branch & !grab_exception){ ppc_state.ppc_pc = ppc_next_instruction_address; grab_branch = 0; ppc_tbr_update(); } else if (grab_return | grab_exception){ ppc_state.ppc_pc = ppc_next_instruction_address; grab_exception = 0; grab_return = 0; ppc_tbr_update(); } else{ ppc_state.ppc_pc += 4; ppc_tbr_update(); } } } else if ((checker=="stepp")|(checker=="/stepp")|(checker=="-stepp")){ std::cout << hex << "Ready to execute a page of opcodes?" << endl; string check_q; cin >> check_q; getline (cin, check_q); if (check_q != "No"){ for (int instructions_to_do = 0; instructions_to_do < 256; instructions_to_do++){ quickinstruction_translate(ppc_state.ppc_pc); ppc_main_opcode(); if (grab_branch & !grab_exception){ ppc_state.ppc_pc = ppc_next_instruction_address; grab_branch = 0; ppc_tbr_update(); } else if (grab_return | grab_exception){ ppc_state.ppc_pc = ppc_next_instruction_address; grab_exception = 0; grab_return = 0; ppc_tbr_update(); } else{ ppc_state.ppc_pc += 4; ppc_tbr_update(); } } } } else if ((checker=="play")|(checker=="playground")|(checker=="/playground")|(checker=="-playground")){ std::cout << hex << "Enter any opcodes for the PPC you want here." << endl; while (power_on){ cin >> hex >> opcode_entered; //power off the PPC if (opcode_entered == 0x00000000){ power_on = 0; } //print registers else if (opcode_entered == 0x00000001){ reg_print(); } else if (opcode_entered == 0x00000002){ reg_read(); } else if (opcode_entered == 0x00000003){ reg_write(); } //test another opcode else{ ppc_cur_instruction = opcode_entered; quickinstruction_translate(ppc_state.ppc_pc); ppc_main_opcode(); if (grab_branch & !grab_exception){ ppc_state.ppc_pc = ppc_next_instruction_address; grab_branch = 0; ppc_tbr_update(); } else if (grab_return | grab_exception){ ppc_state.ppc_pc = ppc_next_instruction_address; grab_exception = 0; grab_return = 0; ppc_tbr_update(); } else{ ppc_state.ppc_pc += 4; ppc_tbr_update(); } } } } else if (checker == "debugger") { enter_debugger(); } } else{ std::cout << " " << endl; std::cout << "Please enter one of the following commands when " << endl; std::cout << "booting up DingusPPC... " << endl; std::cout << " " << endl; std::cout << " " << endl; std::cout << "realtime - Run the emulator in real-time. " << endl; std::cout << "loadelf - Load an ELF file to run from RAM. " << endl; std::cout << "debugger - Enter the interactive debugger. " << endl; std::cout << "fuzzer - Test every single PPC opcode. " << endl; std::cout << "stepp - Execute a page of opcodes per key press." << endl; std::cout << "playground - Mess around with and opcodes. " << endl; } delete(heathrow); delete(machine_id); delete(mem_ctrl_instance); //Free memory after the emulation is completed. free(machine_sysram_mem); free(machine_upperiocontrol_mem); free(machine_iocontrolcdma_mem); free(machine_loweriocontrol_mem); free(machine_interruptack_mem); free(machine_iocontrolmem_mem); free(machine_f8xxxx_mem); free(machine_fexxxx_mem); free(machine_fecxxx_mem); free(machine_feexxx_mem); free(machine_ff00xx_mem); free(machine_ff80xx_mem); free(machine_sysrom_mem); return 0; }