/* DingusPPC - The Experimental PowerPC Macintosh emulator Copyright (C) 2018-24 divingkatae and maximum (theweirdo) spatium (Contact divingkatae#1017 or powermax#2286 on Discord for more info) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /** @file TNT on-board video output emulation. */ /** TNT on-board video comprises several components: - Chaos ASIC that provides data bus buffering between the video subsystem and the processor bus - Control ASIC that provides addressing and control for the video subsystem - RaDACal RAMDAC ASIC for generating RGB video stream to the monitor - Athens clock generator for generating pixel clock Some TNT boards can generate composite video output and thus include two additional components: - Sixty6 ASIC that converts RGB pixels stored in the VRAM to YUV color space - SAA7187 encoder that converts pixels from Sixty6 to composite video signal Kudos to joevt#3510 for his precious technical help and HW hacking. */ #include #include #include #include #include #include #include #include #include #include #include namespace loguru { enum : Verbosity { Verbosity_RADACAL = loguru::Verbosity_INFO, Verbosity_CONTROL = loguru::Verbosity_INFO }; } ControlVideo::ControlVideo() : PCIDevice("Control-Video"), VideoCtrlBase() { supports_types(HWCompType::PCI_HOST | HWCompType::PCI_DEV); // get VRAM size in MBs and convert it to bytes this->vram_size = GET_INT_PROP("gfxmem_size") << 20; // get VRAM banks this->vram_banks = GET_INT_PROP("gfxmem_banks"); // bit 0: standard bank; bit 1: optional bank switch(this->vram_banks) { case 0: this->vram_size = 0; break; case 1: case 2: this->vram_size = 2 << 20; break; default: switch (this->vram_size) { case 0: this->vram_banks = 0; break; case 2: this->vram_banks = 1; break; } } // allocate VRAM this->vram_ptr = std::unique_ptr (new uint8_t[this->vram_size]); // set up PCI configuration space header this->vendor_id = PCI_VENDOR_APPLE; this->device_id = 3; this->class_rev = 0; this->setup_bars({ {0, 0xFFFFFFFFUL}, // I/O region (4 bytes but it's weird because bit 1 is set) {1, 0xFFFFF000UL}, // base address for the HW registers (4KB) {2, 0xFC000000UL} // base address for the VRAM (64MB) }); this->pci_notify_bar_change = [this](int bar_num) { this->notify_bar_change(bar_num); }; // initialize the video clock generator this->clk_gen = std::unique_ptr (new AthensClocks(0x28)); // register the video clock generator with the I2C host I2CBus* i2c_bus = dynamic_cast(gMachineObj->get_comp_by_type(HWCompType::I2C_HOST)); i2c_bus->register_device(0x28, this->clk_gen.get()); // attach RAMDAC this->radacal = std::unique_ptr(new AppleRamdac(DacFlavour::RADACAL)); this->radacal->get_clut_entry_cb = [this](uint8_t index, uint8_t *colors) { uint8_t a; this->get_palette_color(index, colors[0], colors[1], colors[2], a); }; this->radacal->set_clut_entry_cb = [this](uint8_t index, uint8_t *colors) { this->set_palette_color(index, colors[0], colors[1], colors[2], 0xFF); }; this->radacal->cursor_ctrl_cb = [this](bool cursor_on) { if (cursor_on) { this->radacal->measure_hw_cursor(this->fb_ptr - 16); this->cursor_ovl_cb = [this](uint8_t *dst_buf, int dst_pitch) { this->radacal->draw_hw_cursor(this->fb_ptr - 16, dst_buf, dst_pitch); }; } else { this->cursor_ovl_cb = nullptr; } }; // attach IOBus Device #2 0xF301B000 ; register RaDACal with the I/O controller GrandCentral* gc_obj = dynamic_cast(gMachineObj->get_comp_by_name("GrandCentral")); gc_obj->attach_iodevice(1, this->radacal.get()); // initialize display identification this->display_id = std::unique_ptr (new DisplayID()); } void ControlVideo::change_one_bar(uint32_t &aperture, uint32_t aperture_size, uint32_t aperture_new, int bar_num) { if (aperture != aperture_new) { if (aperture) this->host_instance->pci_unregister_mmio_region(aperture, aperture_size, this); aperture = aperture_new; if (aperture) this->host_instance->pci_register_mmio_region(aperture, aperture_size, this); LOG_F(INFO, "%s: aperture[%d] set to 0x%08X", this->name.c_str(), bar_num, aperture); } } void ControlVideo::notify_bar_change(int bar_num) { switch (bar_num) { case 0: change_one_bar(this->io_base , 4, this->bars[bar_num] & ~ 3, bar_num); break; case 1: change_one_bar(this->regs_base, 0x1000, this->bars[bar_num] & ~15, bar_num); break; case 2: change_one_bar(this->vram_base, 0x04000000, this->bars[bar_num] & ~15, bar_num); break; } } int ControlVideo::device_postinit() { this->int_ctrl = dynamic_cast( gMachineObj->get_comp_by_type(HWCompType::INT_CTRL)); this->irq_id = this->int_ctrl->register_dev_int(IntSrc::CONTROL); this->vbl_cb = [this](uint8_t irq_line_state) { if (irq_line_state != !!(this->int_status & VBL_IRQ_STAT)) { if (irq_line_state) this->int_status |= VBL_IRQ_STAT; else this->int_status &= ~VBL_IRQ_STAT; if (this->int_enable & VBL_IRQ_EN) this->int_ctrl->ack_int(this->irq_id, irq_line_state); } }; return 0; } static const char * get_name_controlreg(int offset) { switch (offset >> 4) { case ControlRegs::CUR_LINE : return "CUR_LINE"; case ControlRegs::VFPEQ : return "VFPEQ"; case ControlRegs::VFP : return "VFP"; case ControlRegs::VAL : return "VAL"; case ControlRegs::VBP : return "VBP"; case ControlRegs::VBPEQ : return "VBPEQ"; case ControlRegs::VSYNC : return "VSYNC"; case ControlRegs::VHLINE : return "VHLINE"; case ControlRegs::PIPE_DELAY : return "PIPE_DELAY"; case ControlRegs::HPIX : return "HPIX"; case ControlRegs::HFP : return "HFP"; case ControlRegs::HAL : return "HAL"; case ControlRegs::HBWAY : return "HBWAY"; case ControlRegs::HSP : return "HSP"; case ControlRegs::HEQ : return "HEQ"; case ControlRegs::HLFLN : return "HLFLN"; case ControlRegs::HSERR : return "HSERR"; case ControlRegs::CNTTST : return "CNTTST"; case ControlRegs::SWATCH_CTRL : return "SWATCH_CTRL"; case ControlRegs::GBASE : return "GBASE"; case ControlRegs::ROW_WORDS : return "ROW_WORDS"; case ControlRegs::MON_SENSE : return "MON_SENSE"; case ControlRegs::MISC_ENABLES : return "MISC_ENABLES"; case ControlRegs::GSC_DIVIDE : return "GSC_DIVIDE"; case ControlRegs::REFRESH_COUNT : return "REFRESH_COUNT"; case ControlRegs::INT_ENABLE : return "INT_ENABLE"; case ControlRegs::INT_STATUS : return "INT_STATUS"; default : return "unknown"; } } uint32_t ControlVideo::read(uint32_t rgn_start, uint32_t offset, int size) { if (rgn_start == this->vram_base) { if (offset & 0x800000) { // repeats every 16MB // HACK: writing to VRAM in 128bit mode with only the standard // bank populated seems to replicate the first 64bit portion of data // in the second 64bit portion. This "feature" is used by // the Mac OS driver to detect how much physical VRAM is installed. // I handle this case here because reads from VRAM seem to happen // far less frequently than writes. if (this->enables & VRAM_WIDE_MODE) { // Note: we ignore access to 4MB range at 0xC00000 because it is undefined for VRAM_WIDE_MODE. // There is data there but it is not in the same order as the first 4MB. switch (this->vram_banks) { case 0: // no banks return 0; case 1: // standard bank // FIXME: verify real Power Mac behavior with only standard bank offset &= ~8UL; return read_mem(&this->vram_ptr[offset & 0x1FFFFF], size); case 2: // optional bank // FIXME: verify real Power Mac behavior with only optional bank offset |= 8UL; return read_mem(&this->vram_ptr[offset & 0x1FFFFF], size); case 3: // both banks return read_mem(&this->vram_ptr[offset & 0x3FFFFF], size); } } else { switch (this->vram_banks) { case 0: // no banks return 0; case 1: // standard bank switch ((offset >> 21) & 3) { case 0: // mirror case 1: // mirror case 2: // standard bank return read_mem(&this->vram_ptr[offset & 0x1FFFFF], size); case 3: // optional bank return 0; } case 2: // optional bank switch ((offset >> 21) & 3) { case 0: // mirror case 1: // mirror case 2: // standard bank return 0; case 3: // optional bank return read_mem(&this->vram_ptr[offset & 0x1FFFFF], size); } case 3: // both banks switch ((offset >> 21) & 3) { case 0: // mirror case 1: // mirror case 2: // standard bank return read_mem(&this->vram_ptr[offset & 0x1FFFFF], size); case 3: // optional bank return read_mem(&this->vram_ptr[offset & 0x1FFFFF + 0x200000], size); } } // switch } // if not VRAM_WIDE_MODE } LOG_F(ERROR, "%s: read from little-endian aperture address 0x%X", this->name.c_str(), this->vram_base + offset); return 0; } if (rgn_start == this->regs_base) { uint32_t value; switch (offset >> 4) { case ControlRegs::CUR_LINE: value = 0; // current active video line should relate this to refresh rate LOG_F(ERROR, "Control: read CUR_LINE %03x", offset); break; case ControlRegs::VFPEQ: case ControlRegs::VFP: case ControlRegs::VAL: case ControlRegs::VBP: case ControlRegs::VBPEQ: case ControlRegs::VSYNC: case ControlRegs::VHLINE: case ControlRegs::PIPE_DELAY: case ControlRegs::HPIX: case ControlRegs::HFP: case ControlRegs::HAL: case ControlRegs::HBWAY: case ControlRegs::HSP: case ControlRegs::HEQ: case ControlRegs::HLFLN: case ControlRegs::HSERR: value = this->swatch_params[(offset >> 4) - ControlRegs::VFPEQ]; break; case ControlRegs::CNTTST: value = 0; break; case ControlRegs::SWATCH_CTRL: value = this->swatch_ctrl; break; case ControlRegs::GBASE: value = this->fb_base; break; case ControlRegs::ROW_WORDS: value = this->row_words; break; case ControlRegs::MON_SENSE: value = (this->cur_mon_id << 6) | this->mon_sense; LOG_F(CONTROL, "%s: read MON_SENSE %03x.%c = %0*x", this->name.c_str(), offset, SIZE_ARG(size), size * 2, value); break; case ControlRegs::MISC_ENABLES: value = this->enables; break; case ControlRegs::GSC_DIVIDE: value = this->clock_divider; break; case ControlRegs::REFRESH_COUNT: value = 0; break; case ControlRegs::INT_STATUS: value = this->int_status; break; case ControlRegs::INT_ENABLE: value = this->int_enable; break; default: LOG_F(ERROR, "Control: read %03x", offset); value = 0; } AccessDetails details; details.size = size; details.offset = offset & 3; uint32_t result = pci_conv_rd_data(value, value, details); if ((offset & 3) || (size != 4)) { LOG_F(WARNING, "%s: read %s %03x.%c = %08x -> %0*x", this->name.c_str(), get_name_controlreg(offset), offset, SIZE_ARG(size), value, size * 2, result); } return result; } return 0; } void ControlVideo::write(uint32_t rgn_start, uint32_t offset, uint32_t value, int size) { if (rgn_start == this->vram_base) { if (offset & 0x800000) { if (this->enables & VRAM_WIDE_MODE) { // Note: we ignore access to 4MB range at 0xC00000 because it is undefined for VRAM_WIDE_MODE. // There is data there but it is not in the same order as the first 4MB. switch (this->vram_banks) { case 0: // no banks return; case 1: // standard bank // FIXME: verify real Power Mac behavior with only standard bank offset &= ~8UL; return write_mem(&this->vram_ptr[offset & 0x1FFFFF], value, size); case 2: // optional bank // FIXME: verify real Power Mac behavior with only optional bank offset |= 8UL; return write_mem(&this->vram_ptr[offset & 0x1FFFFF], value, size); case 3: // both banks return write_mem(&this->vram_ptr[offset & 0x3FFFFF], value, size); } } else { switch (this->vram_banks) { case 0: // no banks return; case 1: // standard bank switch ((offset >> 21) & 3) { case 0: // mirror case 1: // mirror case 2: // standard bank return write_mem(&this->vram_ptr[offset & 0x1FFFFF], value, size); case 3: // optional bank return; } case 2: // optional bank switch ((offset >> 21) & 3) { case 0: // mirror case 1: // mirror case 3: // optional bank return write_mem(&this->vram_ptr[offset & 0x1FFFFF], value, size); case 2: // standard bank return; } case 3: // both banks switch ((offset >> 21) & 3) { case 0: // mirror case 1: // mirror write_mem(&this->vram_ptr[offset & 0x1FFFFF], value, size); write_mem(&this->vram_ptr[offset & 0x1FFFFF + 0x200000], value, size); return; case 2: // standard bank return write_mem(&this->vram_ptr[offset & 0x1FFFFF], value, size); case 3: // optional bank return write_mem(&this->vram_ptr[offset & 0x1FFFFF + 0x200000], value, size); } } // switch } // if not VRAM_WIDE_MODE } else { LOG_F(ERROR, "%s: write to little-endian aperture address 0x%X", this->name.c_str(), this->vram_base + offset); } return; } if (rgn_start == this->regs_base) { value = BYTESWAP_32(value); switch (offset >> 4) { case ControlRegs::PIPE_DELAY: this->swatch_params[(offset >> 4) - ControlRegs::VFPEQ] = value & 0x3FF; if (value & ~0x3FF) LOG_F(ERROR, "%s: write PIPE_DELAY %03x.%c = %0*x", this->name.c_str(), offset, SIZE_ARG(size), size * 2, value); else LOG_F(CONTROL, "%s: write PIPE_DELAY %03x.%c = %0*x", this->name.c_str(), offset, SIZE_ARG(size), size * 2, value); if (this->display_enabled) { this->enable_display(); } break; case ControlRegs::HEQ: this->swatch_params[(offset >> 4) - ControlRegs::VFPEQ] = value & 0xFFU; if (value & ~0xFFU) LOG_F(ERROR, "%s: write HEQ %03x.%c = %0*x", this->name.c_str(), offset, SIZE_ARG(size), size * 2, value); else LOG_F(CONTROL, "%s: write HEQ %03x.%c = %0*x", this->name.c_str(), offset, SIZE_ARG(size), size * 2, value); if (this->display_enabled) { this->enable_display(); } break; case ControlRegs::VFPEQ: case ControlRegs::VFP: case ControlRegs::VAL: case ControlRegs::VBP: case ControlRegs::VBPEQ: case ControlRegs::VSYNC: case ControlRegs::VHLINE: case ControlRegs::HPIX: case ControlRegs::HFP: case ControlRegs::HAL: case ControlRegs::HBWAY: case ControlRegs::HSP: case ControlRegs::HLFLN: case ControlRegs::HSERR: this->swatch_params[(offset >> 4) - ControlRegs::VFPEQ] = value & 0xFFF; if (value & ~0xFFF) LOG_F(ERROR, "%s: write %s %03x.%c = %0*x", this->name.c_str(), get_name_controlreg(offset), offset, SIZE_ARG(size), size * 2, value); else LOG_F(CONTROL, "%s: write %s %03x.%c = %0*x", this->name.c_str(), get_name_controlreg(offset), offset, SIZE_ARG(size), size * 2, value); if (this->display_enabled) { this->enable_display(); } break; case ControlRegs::CNTTST: this->cnt_tst = value & 0xFFF; if (value) LOG_F(WARNING, "%s: CNTTST set to 0x%X", this->name.c_str(), value); break; case ControlRegs::SWATCH_CTRL: value &= 0x7FF; if ((this->swatch_ctrl ^ value) & DISABLE_TIMING) { this->swatch_ctrl = value; this->strobe_counter = 0; } else if ((this->swatch_ctrl ^ value) & RESET_TIMING) { this->swatch_ctrl = value; if (value & RESET_TIMING) { // count 0-to-1 transitions this->strobe_counter++; if (this->strobe_counter >= 2) { if (value & DISABLE_TIMING) { disable_display(); this->display_enabled = false; } else { enable_display(); this->display_enabled = true; } } } } else this->swatch_ctrl = value; break; case ControlRegs::GBASE: this->fb_base = value & 0x3FFFE0; if (this->display_enabled) { this->enable_display(); } break; case ControlRegs::ROW_WORDS: this->row_words = value & 0x7FE0; if (this->display_enabled) { this->enable_display(); } break; case ControlRegs::MON_SENSE: { if (value & ~0x3F) LOG_F(ERROR, "%s: write MON_SENSE %03x.%c = %0*x", this->name.c_str(), offset, SIZE_ARG(size), size * 2, value); else LOG_F(CONTROL, "%s: write MON_SENSE %03x.%c = %0*x", this->name.c_str(), offset, SIZE_ARG(size), size * 2, value); uint8_t dirs = ((value >> 3) & 7) ^ 7; uint8_t levels = ((value & 7) & dirs) | (dirs ^ 7); this->mon_sense = value & 0x3F; this->cur_mon_id = this->display_id->read_monitor_sense(levels, dirs); } break; case ControlRegs::MISC_ENABLES: if ((this->enables ^ value) & BLANK_DISABLE) { if (value & BLANK_DISABLE) this->blank_on = false; else { this->blank_on = true; this->blank_display(); } } this->enables = value & 0xFFF; if (this->enables & FB_ENDIAN_LITTLE) LOG_F(ERROR, "%s: little-endian framebuffer is not implemented yet", this->name.c_str()); break; case ControlRegs::GSC_DIVIDE: this->clock_divider = value & 3; if (this->display_enabled) { this->enable_display(); } break; case ControlRegs::REFRESH_COUNT: LOG_F(9, "Control: VRAM refresh count set to %d", value); break; case ControlRegs::INT_ENABLE: if ((this->int_enable ^ value) & VBL_IRQ_CLR) { // clear VBL IRQ on a 1-to-0 transition of INT_ENABLE[VBL_IRQ_CLR] if (!(value & VBL_IRQ_CLR)) this->vbl_cb(0); } this->int_enable = value & 0x0F; break; default: LOG_F(ERROR, "Control: write %03x = %0*x", offset, size * 2, value); } } } uint8_t* ControlVideo::GetVram() { return &this->vram_ptr[0]; } void ControlVideo::enable_display() { int new_width, new_height, clk_divisor; // get pixel frequency from Athens this->pixel_clock = this->clk_gen->get_dot_freq(); // get RaDACal clock divisor clk_divisor = this->radacal->get_clock_div(); // calculate active_width and active_height from video timing parameters new_width = swatch_params[ControlRegs::HFP-1] - swatch_params[ControlRegs::HAL-1]; new_height = swatch_params[ControlRegs::VFP-1] - swatch_params[ControlRegs::VAL-1]; new_width *= clk_divisor; if (this->enables & SCAN_CONTROL) { new_height >>= 1; } this->active_width = new_width; this->active_height = new_height; // set framebuffer parameters this->fb_ptr = &this->vram_ptr[this->fb_base]; this->fb_pitch = this->row_words; if (~this->enables & SCAN_CONTROL) { this->fb_pitch >>= 1; } this->pixel_depth = this->radacal->get_pix_width(); if (swatch_params[ControlRegs::HAL-1] != swatch_params[ControlRegs::PIPE_DELAY-1] + 1 || this->pixel_depth == 32) { // don't know how to calculate offset from GBASE (fb_base); it is always hard coded as + 16 in the ndrv. this->fb_ptr += 16; // first 16 bytes are for 4 bpp HW cursor } else { /* Open Firmware frame buffer has these properties: - GBASE == 0 // no offset from vram_ptr - fb_ptr == vram_ptr // no offset from GBASE - active_width == ROW_WORDS (row_words) // no offset between rows - HAL == PIPE_DELAY + 1 - depth_mode = 0 // 8 bit indexed */ } if (this->radacal->get_dbl_buf_cr() == 0 && this->vram_banks == 3) { this->fb_ptr += 0x200000; } // get pixel depth from RaDACal switch (this->pixel_depth) { case 8: this->convert_fb_cb = [this](uint8_t *dst_buf, int dst_pitch) { this->convert_frame_8bpp_indexed(dst_buf, dst_pitch); }; break; case 16: this->convert_fb_cb = [this](uint8_t *dst_buf, int dst_pitch) { this->convert_frame_15bpp_BE(dst_buf, dst_pitch); }; break; case 32: this->convert_fb_cb = [this](uint8_t *dst_buf, int dst_pitch) { this->convert_frame_32bpp_BE(dst_buf, dst_pitch); }; break; default: LOG_F(ERROR, "RaDACal: Invalid pixel depth code!"); } // calculate display refresh rate this->hori_blank = swatch_params[ControlRegs::HAL-1] + (swatch_params[ControlRegs::HSP-1] - swatch_params[ControlRegs::HFP-1]); this->hori_blank *= clk_divisor; this->vert_blank = swatch_params[ControlRegs::VAL-1] + (swatch_params[ControlRegs::VSYNC-1] - swatch_params[ControlRegs::VFP-1]); if (this->enables & SCAN_CONTROL) { this->vert_blank >>= 1; } this->hori_total = this->hori_blank + new_width; this->vert_total = this->vert_blank + new_height; this->radacal->set_fb_parameters(active_width, active_height, this->fb_pitch); this->stop_refresh_task(); // set up periodic timer for display updates if (this->active_width > 0 && this->active_height > 0 && this->pixel_clock > 0) { this->refresh_rate = (double)(this->pixel_clock) / (this->hori_total * this->vert_total); if (~this->enables & SCAN_CONTROL) { this->refresh_rate *= 2; } LOG_F(INFO, "%s: refresh rate set to %f Hz", this->name.c_str(), this->refresh_rate); this->start_refresh_task(); this->blank_on = false; LOG_F(CONTROL, "Control: display enabled"); this->crtc_on = true; } else { LOG_F(CONTROL, "Control: display not enabled"); this->blank_on = true; this->crtc_on = false; } } void ControlVideo::disable_display() { this->crtc_on = false; LOG_F(INFO, "Control: display disabled"); } // ========================== Device registry stuff ========================== static const PropMap Control_Properties = { {"gfxmem_banks", new IntProperty(3, vector({0, 1, 2, 3}))}, {"gfxmem_size", new IntProperty(4, vector({0, 2, 4}))}, {"mon_id", new StrProperty("AppleVision1710")}, }; static const DeviceDescription Control_Descriptor = { ControlVideo::create, {}, Control_Properties }; REGISTER_DEVICE(ControlVideo, Control_Descriptor);