/* DingusPPC - The Experimental PowerPC Macintosh emulator Copyright (C) 2018-24 divingkatae and maximum (theweirdo) spatium (Contact divingkatae#1017 or powermax#2286 on Discord for more info) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include /* Mach64 post dividers. */ static const int mach64_post_div[8] = { 1, 2, 4, 8, // standard post dividers 3, 5, 6, 12 // alternate post dividers }; /* Human readable Mach64 HW register names for easier debugging. */ static const std::map mach64_reg_names = { {0x0000, "CRTC_H_TOTAL_DISP"}, {0x0004, "CRTC_H_SYNC_STRT_WID"}, {0x0008, "CRTC_V_TOTAL_DISP"}, {0x000C, "CRTC_V_SYNC_STRT_WID"}, {0x0010, "CRTC_VLINE_CRNT_VLINE"}, {0x0014, "CRTC_OFF_PITCH"}, {0x0018, "CRTC_INT_CNTL"}, {0x001C, "CRTC_GEN_CNTL"}, {0x0020, "DSP_CONFIG"}, {0x0024, "DSP_ON_OFF"}, {0x002C, "MEM_BUF_CNTL"}, {0x0034, "MEM_ADDR_CFG"}, {0x0040, "OVR_CLR"}, {0x0044, "OVR_WID_LEFT_RIGHT"}, {0x0048, "OVR_WID_TOP_BOTTOM"}, {0x0060, "CUR_CLR0"}, {0x0064, "CUR_CLR1"}, {0x0068, "CUR_OFFSET"}, {0x006C, "CUR_HORZ_VERT_POSN"}, {0x0078, "GP_IO"}, {0x007C, "HW_DEBUG"}, {0x0080, "SCRATCH_REG0"}, {0x0084, "SCRATCH_REG1"}, {0x0088, "SCRATCH_REG2"}, {0x008C, "SCRATCH_REG3"}, {0x0090, "CLOCK_CNTL"}, {0x00A0, "BUS_CNTL"}, {0x00AC, "EXT_MEM_CNTL"}, {0x00B0, "MEM_CNTL"}, {0x00C0, "DAC_REGS"}, {0x00C4, "DAC_CNTL"}, {0x00D0, "GEN_TEST_CNTL"}, {0x00D4, "CUSTOM_MACRO_CNTL"}, {0x00E0, "CONFIG_CHIP_ID"}, {0x00E4, "CONFIG_STAT0"}, {0x01B4, "SRC_CNTL"}, {0x01FC, "SCALE_3D_CNTL"}, {0x0310, "FIFO_STAT"}, {0x0338, "GUI_STAT"}, {0x04C0, "MPP_CONFIG"}, {0x04C4, "MPP_STROBE_SEQ"}, {0x04C8, "MPP_ADDR"}, {0x04CC, "MPP_DATA"}, {0x0500, "TVO_CNTL"}, {0x0704, "SETUP_CNTL"}, }; ATIRage::ATIRage(uint16_t dev_id) : PCIDevice("ati-rage"), VideoCtrlBase(640, 480) { uint8_t asic_id; supports_types(HWCompType::MMIO_DEV | HWCompType::PCI_DEV); this->vram_size = GET_INT_PROP("gfxmem_size") << 20; // convert MBs to bytes // allocate video RAM this->vram_ptr = std::unique_ptr (new uint8_t[this->vram_size]); // ATI Rage driver needs to know ASIC ID (manufacturer's internal chip code) // to operate properly switch (dev_id) { case ATI_RAGE_GT_DEV_ID: asic_id = 0x9A; // GT-B2U3 fabricated by UMC this->cmd_fifo_size = 48; break; case ATI_RAGE_PRO_DEV_ID: asic_id = 0x5C; // R3B/D/P-A4 fabricated by UMC this->cmd_fifo_size = 128; break; default: asic_id = 0xDD; LOG_F(WARNING, "ATI Rage: bogus ASIC ID assigned!"); } // set up PCI configuration space header this->vendor_id = PCI_VENDOR_ATI; this->device_id = dev_id; this->subsys_vndr = PCI_VENDOR_ATI; this->subsys_id = 0x6987; // adapter ID this->class_rev = (0x030000 << 8) | asic_id; this->min_gnt = 8; this->irq_pin = 1; this->setup_bars({ {0, 0xFF000000UL}, // declare main aperture (16MB) {1, 0xFFFFFF01UL}, // declare I/O region (256 bytes) {2, 0xFFFFF000UL} // declare register aperture (4KB) }); this->pci_notify_bar_change = [this](int bar_num) { this->notify_bar_change(bar_num); }; // stuff default values into chip registers this->regs[ATI_CONFIG_CHIP_ID] = (asic_id << 24) | dev_id; // initialize display identification this->disp_id = std::unique_ptr (new DisplayID()); uint8_t mon_code = this->disp_id->read_monitor_sense(0, 0); this->regs[ATI_GP_IO] = ((mon_code & 6) << 11) | ((mon_code & 1) << 8); } void ATIRage::notify_bar_change(int bar_num) { switch (bar_num) { case 0: if (this->aperture_base != (this->bars[bar_num] & 0xFFFFFFF0UL)) { this->aperture_base = this->bars[0] & 0xFFFFFFF0UL; this->host_instance->pci_register_mmio_region(this->aperture_base, APERTURE_SIZE - this->vram_size, this); LOG_F(INFO, "ATIRage: aperture address set to 0x%08X", this->aperture_base); } break; case 1: this->io_base = this->bars[1] & ~3; LOG_F(INFO, "ATIRage: I/O space address set to 0x%08X", this->io_base); break; case 2: LOG_F(INFO, "ATIRage: register aperture address set to 0x%08X", this->bars[2]); break; } } uint32_t ATIRage::pci_cfg_read(uint32_t reg_offs, AccessDetails &details) { if (reg_offs < 64) { return PCIDevice::pci_cfg_read(reg_offs, details); } switch (reg_offs) { case 0x40: return this->user_cfg; default: LOG_READ_UNIMPLEMENTED_CONFIG_REGISTER(); } return 0; } void ATIRage::pci_cfg_write(uint32_t reg_offs, uint32_t value, AccessDetails &details) { if (reg_offs < 64) { PCIDevice::pci_cfg_write(reg_offs, value, details); return; } switch (reg_offs) { case 0x40: this->user_cfg = value; break; default: LOG_WRITE_UNIMPLEMENTED_CONFIG_REGISTER(); } } const char* ATIRage::get_reg_name(uint32_t reg_offset) { auto iter = mach64_reg_names.find(reg_offset & ~3); if (iter != mach64_reg_names.end()) { return iter->second.c_str(); } else { return "unknown Mach64 register"; } } uint32_t ATIRage::read_reg(uint32_t reg_offset, uint32_t size) { uint64_t result; uint32_t offset = reg_offset & 3; switch (reg_offset >> 2) { case ATI_CLOCK_CNTL: result = this->regs[ATI_CLOCK_CNTL]; if ((offset + size - 1) >= 2) { uint8_t pll_addr = (this->regs[ATI_CLOCK_CNTL] >> 10) & 0x3F; insert_bits(result, this->plls[pll_addr], 16, 8); } break; case ATI_DAC_REGS: result = this->regs[ATI_DAC_REGS]; switch (reg_offset) { case ATI_DAC_W_INDEX: insert_bits(result, this->dac_wr_index, 0, 8); break; case ATI_DAC_MASK: insert_bits(result, this->dac_mask, 16, 8); break; case ATI_DAC_R_INDEX: insert_bits(result, this->dac_rd_index, 24, 8); break; case ATI_DAC_DATA: if (!this->comp_index) { uint8_t alpha; // temp variable for unused alpha get_palette_colors(this->dac_rd_index, color_buf[0], color_buf[1], color_buf[2], alpha); } insert_bits(result, color_buf[this->comp_index], 8, 8); if (++this->comp_index >= 3) { this->dac_rd_index++; // auto-increment reading index this->comp_index = 0; // reset color component index } } break; case ATI_GUI_STAT: result = this->cmd_fifo_size << 16; // HACK: tell the guest the command FIFO is empty break; default: result = this->regs[reg_offset >> 2]; } if (!offset && size == 4) { // fast path return static_cast(result); } else { // slow path if ((offset + size) > 4) { result |= (uint64_t)(this->regs[(reg_offset >> 2) + 1]) << 32; } return static_cast(extract_bits(result, offset * 8, size * 8)); } } void ATIRage::write_reg(uint32_t reg_offset, uint32_t value, uint32_t size) { uint32_t offset = reg_offset & 3; reg_offset >>= 2; if (offset || size != 4) { // slow path if ((offset + size) > 4) { ABORT_F("%s: unaligned DWORD writes not implemented", this->name.c_str()); } uint64_t old_val = this->regs[reg_offset]; insert_bits(old_val, value, offset * 8, size * 8); value = static_cast(old_val); } switch (reg_offset) { case ATI_CRTC_H_TOTAL_DISP: LOG_F(9, "%s: ATI_CRTC_H_TOTAL_DISP set to 0x%08X", this->name.c_str(), value); break; case ATI_CRTC_OFF_PITCH: if (this->regs[reg_offset] != value) { this->regs[reg_offset] = value; this->crtc_update(); } break; case ATI_CRTC_GEN_CNTL: if (bit_changed(this->regs[reg_offset], value, 6)) { if (value & 0x40) { this->regs[reg_offset] |= (1 << 6); this->blank_on = true; this->blank_display(); } else { this->regs[reg_offset] &= ~(1 << 6); this->blank_on = false; } } if (bit_changed(this->regs[reg_offset], value, 25)) { this->regs[reg_offset] = value; if (bit_set(this->regs[reg_offset], 25) && !bit_set(this->regs[reg_offset], 6)) { this->crtc_update(); } return; } break; case ATI_GP_IO: this->regs[reg_offset] = value; if (offset < 2 && (offset + size - 1) >= 1) { uint8_t gpio_levels = (this->regs[ATI_GP_IO] >> 8) & 0xFFU; gpio_levels = ((gpio_levels & 0x30) >> 3) | (gpio_levels & 1); uint8_t gpio_dirs = (this->regs[ATI_GP_IO] >> 24) & 0xFFU; gpio_dirs = ((gpio_dirs & 0x30) >> 3) | (gpio_dirs & 1); gpio_levels = this->disp_id->read_monitor_sense(gpio_levels, gpio_dirs); insert_bits(this->regs[ATI_GP_IO], ((gpio_levels & 6) << 3) | (gpio_levels & 1), 8, 8); } return; case ATI_CLOCK_CNTL: this->regs[reg_offset] = value; if ((offset + size - 1) >= 2 && bit_set(this->regs[ATI_CLOCK_CNTL], 9)) { uint8_t pll_addr = (this->regs[ATI_CLOCK_CNTL] >> 10) & 0x3F; uint8_t pll_data = (value >> 16) & 0xFF; this->plls[pll_addr] = pll_data; LOG_F(9, "%s: PLL #%d set to 0x%02X", this->name.c_str(), pll_addr, pll_data); } return; case ATI_DAC_REGS: switch (reg_offset * 4 + offset) { case ATI_DAC_W_INDEX: this->dac_wr_index = value & 0xFFU; this->comp_index = 0; break; case ATI_DAC_MASK: this->dac_mask = (value >> 16) & 0xFFU; break; case ATI_DAC_R_INDEX: this->dac_rd_index = (value >> 24) & 0xFFU; this->comp_index = 0; break; case ATI_DAC_DATA: this->color_buf[this->comp_index] = (value >> 8) & this->dac_mask; if (++this->comp_index >= 3) { this->set_palette_color(this->dac_wr_index, color_buf[0], color_buf[1], color_buf[2], 0xFF); this->dac_wr_index++; // auto-increment color index this->comp_index = 0; // reset color component index } } return; case ATI_GEN_TEST_CNTL: if (bit_changed(this->regs[reg_offset], value, 7)) { if (bit_set(value, 7)) this->setup_hw_cursor(); else this->cursor_on = false; } if (bit_changed(this->regs[reg_offset], value, 8)) { if (!bit_set(value, 8)) LOG_F(9, "%s: reset GUI engine", this->name.c_str()); } if (bit_changed(this->regs[reg_offset], value, 9)) { if (bit_set(value, 9)) LOG_F(9, "%s: reset memory controller", this->name.c_str()); } if (value & 0xFFFFFC00) { LOG_F(WARNING, "%s: unhandled GEN_TEST_CNTL state=0x%X", this->name.c_str(), value); } break; case ATI_CONFIG_CHIP_ID: return; // prevent writes to this read-only register } this->regs[reg_offset] = value; } bool ATIRage::io_access_allowed(uint32_t offset) { if (offset >= this->io_base && offset < (this->io_base + 0x100)) { if (this->command & 1) { return true; } LOG_F(WARNING, "ATI I/O space disabled in the command reg"); } return false; } bool ATIRage::pci_io_read(uint32_t offset, uint32_t size, uint32_t* res) { if (!this->io_access_allowed(offset)) { return false; } *res = BYTESWAP_SIZED(this->read_reg(offset - this->io_base, size), size); return true; } bool ATIRage::pci_io_write(uint32_t offset, uint32_t value, uint32_t size) { if (!this->io_access_allowed(offset)) { return false; } this->write_reg(offset - this->io_base, BYTESWAP_SIZED(value, size), size); return true; } uint32_t ATIRage::read(uint32_t rgn_start, uint32_t offset, int size) { if (offset < this->vram_size) { // little-endian VRAM region return read_mem(&this->vram_ptr[offset], size); } else if (offset >= BE_FB_OFFSET) { // big-endian VRAM region return read_mem(&this->vram_ptr[offset - BE_FB_OFFSET], size); } else if (offset >= MM_REGS_0_OFF) { // memory-mapped registers, block 0 return BYTESWAP_SIZED(this->read_reg(offset & 0x3FF, size), size); } else if (offset >= MM_REGS_1_OFF) { // memory-mapped registers, block 1 return BYTESWAP_SIZED(this->read_reg((offset & 0x3FF) + 0x400, size), size); } else { LOG_F(WARNING, "ATI Rage: read attempt from unmapped aperture region at 0x%08X", offset); } return 0; } void ATIRage::write(uint32_t rgn_start, uint32_t offset, uint32_t value, int size) { if (offset < this->vram_size) { // little-endian VRAM region write_mem(&this->vram_ptr[offset], value, size); } else if (offset >= BE_FB_OFFSET) { // big-endian VRAM region write_mem(&this->vram_ptr[offset & (BE_FB_OFFSET - 1)], value, size); } else if (offset >= MM_REGS_0_OFF) { // memory-mapped registers, block 0 this->write_reg(offset & 0x3FF, BYTESWAP_SIZED(value, size), size); } else if (offset >= MM_REGS_1_OFF) { // memory-mapped registers, block 1 this->write_reg((offset & 0x3FF) + 0x400, BYTESWAP_SIZED(value, size), size); } else { LOG_F(WARNING, "ATI Rage: write attempt to unmapped aperture region at 0x%08X", offset); } } float ATIRage::calc_pll_freq(int scale, int fb_div) { return (ATI_XTAL * scale * fb_div) / this->plls[PLL_REF_DIV]; } void ATIRage::verbose_pixel_format(int crtc_index) { if (crtc_index) { LOG_F(ERROR, "CRTC2 not supported yet"); return; } uint32_t fmt = extract_bits(this->regs[ATI_CRTC_GEN_CNTL], 8, 3); const char* what = "Pixel format:"; switch (fmt) { case 1: LOG_F(INFO, "%s 4 bpp with DAC palette", what); break; case 2: // check the undocumented DAC_DIRECT bit if (bit_set(this->regs[ATI_DAC_CNTL], 10)) { LOG_F(INFO, "%s 8 bpp direct color (RGB322)", what); } else { LOG_F(INFO, "%s 8 bpp with DAC palette", what); } break; case 3: LOG_F(INFO, "%s 15 bpp direct color (RGB555)", what); break; case 4: LOG_F(INFO, "%s 16 bpp direct color (RGB565)", what); break; case 5: LOG_F(INFO, "%s 24 bpp direct color (RGB888)", what); break; case 6: LOG_F(INFO, "%s 32 bpp direct color (ARGB8888)", what); break; default: LOG_F(ERROR, "%s: CRTC pixel format %d not supported", this->name.c_str(), fmt); } } void ATIRage::crtc_update() { uint32_t new_width, new_height, new_htotal, new_vtotal; // check for unsupported modes and fail early if (!bit_set(this->regs[ATI_CRTC_GEN_CNTL], 24)) ABORT_F("%s: VGA not supported", this->name.c_str()); if ((this->plls[PLL_VCLK_CNTL] & 3) != 3) ABORT_F("%s: VLCK source != VPLL", this->name.c_str()); bool need_recalc = false; new_width = (extract_bits(this->regs[ATI_CRTC_H_TOTAL_DISP], 16, 8) + 1) * 8; new_height = extract_bits(this->regs[ATI_CRTC_V_TOTAL_DISP], 16, 11) + 1; if (new_width != this->active_width || new_height != this->active_height) { this->create_display_window(new_width, new_height); need_recalc = true; } new_htotal = (extract_bits(this->regs[ATI_CRTC_H_TOTAL_DISP], 0, 9) + 1) * 8; new_vtotal = extract_bits(this->regs[ATI_CRTC_V_TOTAL_DISP], 0, 11) + 1; if (new_htotal != this->hori_total || new_vtotal != this->vert_total) { this->hori_total = new_htotal; this->vert_total = new_vtotal; need_recalc = true; } if (!need_recalc) return; // look up which VPLL ouput is requested int clock_sel = this->regs[ATI_CLOCK_CNTL] & 3; // calculate VPLL output frequency float vpll_freq = calc_pll_freq(2, this->plls[VCLK0_FB_DIV + clock_sel]); // calculate post divider's index // NOTE: post divider's index has been extended by an additional // bit in Rage Pro. This bit is resided in PLL_EXT_CNTL register. int post_div_idx = ((this->plls[PLL_EXT_CNTL] >> (clock_sel + 2)) & 4) | ((this->plls[VCLK_POST_DIV] >> (clock_sel * 2)) & 3); // pixel clock = source_freq / post_div this->pixel_clock = vpll_freq / mach64_post_div[post_div_idx]; // calculate display refresh rate this->refresh_rate = pixel_clock / this->hori_total / this->vert_total; // set up frame buffer converter int pix_fmt = extract_bits(this->regs[ATI_CRTC_GEN_CNTL], 8, 3); switch (pix_fmt) { case 1: this->convert_fb_cb = [this](uint8_t *dst_buf, int dst_pitch) { this->convert_frame_4bpp_indexed(dst_buf, dst_pitch); }; break; case 2: if (bit_set(this->regs[ATI_DAC_CNTL], 10)) { this->convert_fb_cb = [this](uint8_t *dst_buf, int dst_pitch) { this->convert_frame_8bpp(dst_buf, dst_pitch); }; } else { this->convert_fb_cb = [this](uint8_t *dst_buf, int dst_pitch) { this->convert_frame_8bpp_indexed(dst_buf, dst_pitch); }; } break; case 3: this->convert_fb_cb = [this](uint8_t *dst_buf, int dst_pitch) { this->convert_frame_15bpp_BE(dst_buf, dst_pitch); }; break; case 4: this->convert_fb_cb = [this](uint8_t *dst_buf, int dst_pitch) { this->convert_frame_16bpp(dst_buf, dst_pitch); }; break; case 5: this->convert_fb_cb = [this](uint8_t *dst_buf, int dst_pitch) { this->convert_frame_24bpp(dst_buf, dst_pitch); }; break; case 6: this->convert_fb_cb = [this](uint8_t *dst_buf, int dst_pitch) { this->convert_frame_32bpp_BE(dst_buf, dst_pitch); }; break; default: LOG_F(ERROR, "%s: unsupported pixel format %d", this->name.c_str(), pix_fmt); } static uint8_t bits_per_pixel[8] = {0, 4, 8, 16, 16, 24, 32, 0}; this->fb_pitch = extract_bits(this->regs[ATI_CRTC_OFF_PITCH], 22, 10) * (bits_per_pixel[pix_fmt & 7] * 8) >> 3; this->fb_ptr = &this->vram_ptr[extract_bits(this->regs[ATI_CRTC_OFF_PITCH], 0, 20) * 8]; LOG_F(INFO, "%s: primary CRT controller enabled:", this->name.c_str()); LOG_F(INFO, "Video mode: %s", bit_set(this->regs[ATI_CRTC_GEN_CNTL], 24) ? "extended" : "VGA"); LOG_F(INFO, "Video width: %d px", this->active_width); LOG_F(INFO, "Video height: %d px", this->active_height); verbose_pixel_format(0); LOG_F(INFO, "VPLL frequency: %f MHz", vpll_freq * 1e-6); LOG_F(INFO, "Pixel (dot) clock: %f MHz", this->pixel_clock * 1e-6); LOG_F(INFO, "Refresh rate: %f Hz", this->refresh_rate); this->stop_refresh_task(); this->start_refresh_task(); this->crtc_on = true; } void ATIRage::draw_hw_cursor(uint8_t *dst_buf, int dst_pitch) { uint8_t *src_buf, *src_row, *dst_row, px4; int vert_offset = extract_bits(this->regs[ATI_CUR_HORZ_VERT_OFF], 16, 5); src_buf = &this->vram_ptr[this->regs[ATI_CUR_OFFSET] * 8]; int cur_height = 64 - vert_offset; uint32_t color0 = this->regs[ATI_CUR_CLR0] | 0x000000FFUL; uint32_t color1 = this->regs[ATI_CUR_CLR1] | 0x000000FFUL; for (int h = 0; h < cur_height; h++) { dst_row = &dst_buf[h * dst_pitch]; src_row = &src_buf[h * 16]; for (int x = 0; x < 16; x++) { px4 = src_row[x]; for (int p = 0; p < 4; p++, px4 >>= 2, dst_row += 4) { switch(px4 & 3) { case 0: // cursor color 0 WRITE_DWORD_BE_A(dst_row, color0); break; case 1: // cursor color 1 WRITE_DWORD_BE_A(dst_row, color1); break; case 2: // transparent WRITE_DWORD_BE_A(dst_row, 0); break; case 3: // 1's complement of display pixel break; } } } } } void ATIRage::get_cursor_position(int& x, int& y) { x = this->regs[ATI_CUR_HORZ_VERT_POSN] & 0xFFFFU; y = (this->regs[ATI_CUR_HORZ_VERT_POSN] >> 16) & 0xFFFFU; } static const PropMap AtiRage_Properties = { {"gfxmem_size", new IntProperty( 2, vector({2, 4, 6}))}, {"mon_id", new StrProperty("")}, }; static const DeviceDescription AtiRageGT_Descriptor = { ATIRage::create_gt, {}, AtiRage_Properties }; static const DeviceDescription AtiRagePro_Descriptor = { ATIRage::create_pro, {}, AtiRage_Properties }; REGISTER_DEVICE(AtiRageGT, AtiRageGT_Descriptor); REGISTER_DEVICE(AtiRagePro, AtiRagePro_Descriptor);