/* DingusPPC - The Experimental PowerPC Macintosh emulator Copyright (C) 2018-24 divingkatae and maximum (theweirdo) spatium (Contact divingkatae#1017 or powermax#2286 on Discord for more info) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ // General opcodes for the processor - ppcopcodes.cpp #include #include #include "ppcemu.h" #include "ppcmacros.h" #include "ppcmmu.h" #include #include //Extract the registers desired and the values of the registers. // Affects CR Field 0 - For integer operations void ppc_changecrf0(uint32_t set_result) { ppc_state.cr &= 0x0FFFFFFFUL; if (set_result == 0) { ppc_state.cr |= 0x20000000UL; } else { if (set_result & 0x80000000) { ppc_state.cr |= 0x80000000UL; } else { ppc_state.cr |= 0x40000000UL; } } /* copy XER[SO] into CR0[SO]. */ ppc_state.cr |= (ppc_state.spr[SPR::XER] >> 3) & 0x10000000UL; } // Affects the XER register's Carry Bit inline void ppc_carry(uint32_t a, uint32_t b) { if (b < a) { ppc_state.spr[SPR::XER] |= XER::CA; } else { ppc_state.spr[SPR::XER] &= ~XER::CA; } } inline void ppc_carry_sub(uint32_t a, uint32_t b) { if (b >= a) { ppc_state.spr[SPR::XER] |= XER::CA; } else { ppc_state.spr[SPR::XER] &= ~XER::CA; } } // Affects the XER register's SO and OV Bits inline void ppc_setsoov(uint32_t a, uint32_t b, uint32_t d) { if ((a ^ b) & (a ^ d) & 0x80000000UL) { ppc_state.spr[SPR::XER] |= XER::SO | XER::OV; } else { ppc_state.spr[SPR::XER] &= ~XER::OV; } } typedef std::function CtxSyncCallback; std::vector gCtxSyncCallbacks; // perform context synchronization by executing registered actions if any void do_ctx_sync() { while (!gCtxSyncCallbacks.empty()) { gCtxSyncCallbacks.back()(); gCtxSyncCallbacks.pop_back(); } } void add_ctx_sync_action(const CtxSyncCallback &cb) { gCtxSyncCallbacks.push_back(cb); } /** The core functionality of this PPC emulation is within all of these void functions. This is where the opcode tables in the ppcemumain.h come into play - reducing the number of comparisons needed. This means loads of functions, but less CPU cycles needed to determine the function (theoretically). **/ template void dppc_interpreter::ppc_addi() { ppc_grab_regsdasimm(ppc_cur_instruction); if (shift) ppc_state.gpr[reg_d] = (reg_a == 0) ? (simm << 16) : (ppc_result_a + (simm << 16)); else ppc_state.gpr[reg_d] = (reg_a == 0) ? simm : (ppc_result_a + simm); } template void dppc_interpreter::ppc_addi(); template void dppc_interpreter::ppc_addi(); template void dppc_interpreter::ppc_addic() { ppc_grab_regsdasimm(ppc_cur_instruction); uint32_t ppc_result_d = (ppc_result_a + simm); ppc_carry(ppc_result_a, ppc_result_d); if (rec) ppc_changecrf0(ppc_result_d); ppc_store_iresult_reg(reg_d, ppc_result_d); } template void dppc_interpreter::ppc_addic(); template void dppc_interpreter::ppc_addic();; template void dppc_interpreter::ppc_add() { ppc_grab_regsdab(ppc_cur_instruction); uint32_t ppc_result_d = ppc_result_a + ppc_result_b; if (carry) ppc_carry(ppc_result_a, ppc_result_d); if (ov) ppc_setsoov(ppc_result_a, ~ppc_result_b, ppc_result_d); if (rec) ppc_changecrf0(ppc_result_d); ppc_store_iresult_reg(reg_d, ppc_result_d); } template void dppc_interpreter::ppc_add(); template void dppc_interpreter::ppc_add(); template void dppc_interpreter::ppc_add(); template void dppc_interpreter::ppc_add(); template void dppc_interpreter::ppc_add(); template void dppc_interpreter::ppc_add(); template void dppc_interpreter::ppc_add(); template void dppc_interpreter::ppc_add(); template void dppc_interpreter::ppc_adde() { ppc_grab_regsdab(ppc_cur_instruction); uint32_t xer_ca = !!(ppc_state.spr[SPR::XER] & XER::CA); uint32_t ppc_result_d = ppc_result_a + ppc_result_b + xer_ca; if ((ppc_result_d < ppc_result_a) || (xer_ca && (ppc_result_d == ppc_result_a))) { ppc_state.spr[SPR::XER] |= XER::CA; } else { ppc_state.spr[SPR::XER] &= ~XER::CA; } if (ov) ppc_setsoov(ppc_result_a, ~ppc_result_b, ppc_result_d); if (rec) ppc_changecrf0(ppc_result_d); ppc_store_iresult_reg(reg_d, ppc_result_d); } template void dppc_interpreter::ppc_adde(); template void dppc_interpreter::ppc_adde(); template void dppc_interpreter::ppc_adde(); template void dppc_interpreter::ppc_adde(); template void dppc_interpreter::ppc_addme() { ppc_grab_regsda(ppc_cur_instruction); uint32_t xer_ca = !!(ppc_state.spr[SPR::XER] & XER::CA); uint32_t ppc_result_d = ppc_result_a + xer_ca - 1; if (((xer_ca - 1) < 0xFFFFFFFFUL) || (ppc_result_d < ppc_result_a)) { ppc_state.spr[SPR::XER] |= XER::CA; } else { ppc_state.spr[SPR::XER] &= ~XER::CA; } if (ov) ppc_setsoov(ppc_result_a, 0, ppc_result_d); if (rec) ppc_changecrf0(ppc_result_d); ppc_store_iresult_reg(reg_d, ppc_result_d); } template void dppc_interpreter::ppc_addme(); template void dppc_interpreter::ppc_addme(); template void dppc_interpreter::ppc_addme(); template void dppc_interpreter::ppc_addme(); template void dppc_interpreter::ppc_addze() { ppc_grab_regsda(ppc_cur_instruction); uint32_t grab_xer = !!(ppc_state.spr[SPR::XER] & XER::CA); uint32_t ppc_result_d = ppc_result_a + grab_xer; if (ppc_result_d < ppc_result_a) { ppc_state.spr[SPR::XER] |= XER::CA; } else { ppc_state.spr[SPR::XER] &= ~XER::CA; } if (ov) ppc_setsoov(ppc_result_a, 0xFFFFFFFFUL, ppc_result_d); if (rec) ppc_changecrf0(ppc_result_d); ppc_store_iresult_reg(reg_d, ppc_result_d); } template void dppc_interpreter::ppc_addze(); template void dppc_interpreter::ppc_addze(); template void dppc_interpreter::ppc_addze(); template void dppc_interpreter::ppc_addze(); void dppc_interpreter::ppc_subfic() { ppc_grab_regsdasimm(ppc_cur_instruction); uint32_t ppc_result_d = simm - ppc_result_a; if (simm == -1) ppc_state.spr[SPR::XER] |= XER::CA; else ppc_carry(~ppc_result_a, ppc_result_d); ppc_store_iresult_reg(reg_d, ppc_result_d); } template void dppc_interpreter::ppc_subf() { ppc_grab_regsdab(ppc_cur_instruction); uint32_t ppc_result_d = ppc_result_b - ppc_result_a; if (carry) ppc_carry_sub(ppc_result_a, ppc_result_b); if (ov) ppc_setsoov(ppc_result_b, ppc_result_a, ppc_result_d); if (rec) ppc_changecrf0(ppc_result_d); ppc_store_iresult_reg(reg_d, ppc_result_d); } template void dppc_interpreter::ppc_subf(); template void dppc_interpreter::ppc_subf(); template void dppc_interpreter::ppc_subf(); template void dppc_interpreter::ppc_subf(); template void dppc_interpreter::ppc_subf(); template void dppc_interpreter::ppc_subf(); template void dppc_interpreter::ppc_subf(); template void dppc_interpreter::ppc_subf(); template void dppc_interpreter::ppc_subfe() { ppc_grab_regsdab(ppc_cur_instruction); uint32_t grab_ca = !!(ppc_state.spr[SPR::XER] & XER::CA); uint32_t ppc_result_d = ~ppc_result_a + ppc_result_b + grab_ca; if (grab_ca && ppc_result_b == 0xFFFFFFFFUL) ppc_state.spr[SPR::XER] |= XER::CA; else ppc_carry(~ppc_result_a, ppc_result_d); if (ov) ppc_setsoov(ppc_result_b, ppc_result_a, ppc_result_d); if (rec) ppc_changecrf0(ppc_result_d); ppc_store_iresult_reg(reg_d, ppc_result_d); } template void dppc_interpreter::ppc_subfe(); template void dppc_interpreter::ppc_subfe(); template void dppc_interpreter::ppc_subfe(); template void dppc_interpreter::ppc_subfe(); template void dppc_interpreter::ppc_subfme() { ppc_grab_regsda(ppc_cur_instruction); uint32_t grab_ca = !!(ppc_state.spr[SPR::XER] & XER::CA); uint32_t ppc_result_d = ~ppc_result_a + grab_ca - 1; if (ppc_result_a == 0xFFFFFFFFUL && !grab_ca) ppc_state.spr[SPR::XER] &= ~XER::CA; else ppc_state.spr[SPR::XER] |= XER::CA; if (ov) { if (ppc_result_d == ppc_result_a && int32_t(ppc_result_d) > 0) ppc_state.spr[SPR::XER] |= XER::SO | XER::OV; else ppc_state.spr[SPR::XER] &= ~XER::OV; } if (rec) ppc_changecrf0(ppc_result_d); ppc_store_iresult_reg(reg_d, ppc_result_d); } template void dppc_interpreter::ppc_subfme(); template void dppc_interpreter::ppc_subfme(); template void dppc_interpreter::ppc_subfme(); template void dppc_interpreter::ppc_subfme(); template void dppc_interpreter::ppc_subfze() { ppc_grab_regsda(ppc_cur_instruction); uint32_t grab_ca = !!(ppc_state.spr[SPR::XER] & XER::CA); uint32_t ppc_result_d = ~ppc_result_a + grab_ca; if (!ppc_result_d && grab_ca) // special case: ppc_result_d = 0 and CA=1 ppc_state.spr[SPR::XER] |= XER::CA; else ppc_state.spr[SPR::XER] &= ~XER::CA; if (ov) { if (ppc_result_d && ppc_result_d == ppc_result_a) ppc_state.spr[SPR::XER] |= XER::SO | XER::OV; else ppc_state.spr[SPR::XER] &= ~XER::OV; } if (rec) ppc_changecrf0(ppc_result_d); ppc_store_iresult_reg(reg_d, ppc_result_d); } template void dppc_interpreter::ppc_subfze(); template void dppc_interpreter::ppc_subfze(); template void dppc_interpreter::ppc_subfze(); template void dppc_interpreter::ppc_subfze(); template void dppc_interpreter::ppc_andirc() { ppc_grab_regssauimm(ppc_cur_instruction); ppc_result_a = shift ? (ppc_result_d & (uimm << 16)) : (ppc_result_d & uimm); ppc_changecrf0(ppc_result_a); ppc_store_iresult_reg(reg_a, ppc_result_a); } template void dppc_interpreter::ppc_andirc(); template void dppc_interpreter::ppc_andirc(); template void dppc_interpreter::ppc_ori() { ppc_grab_regssauimm(ppc_cur_instruction); ppc_result_a = shift ? (ppc_result_d | (uimm << 16)) : (ppc_result_d | uimm); ppc_store_iresult_reg(reg_a, ppc_result_a); } template void dppc_interpreter::ppc_ori(); template void dppc_interpreter::ppc_ori(); template void dppc_interpreter::ppc_xori() { ppc_grab_regssauimm(ppc_cur_instruction); ppc_result_a = shift ? (ppc_result_d ^ (uimm << 16)) : (ppc_result_d ^ uimm); ppc_store_iresult_reg(reg_a, ppc_result_a); } template void dppc_interpreter::ppc_xori(); template void dppc_interpreter::ppc_xori(); template void dppc_interpreter::ppc_logical() { ppc_grab_regssab(ppc_cur_instruction); if (logical_op == logical_fun::ppc_and) ppc_result_a = ppc_result_d & ppc_result_b; else if (logical_op == logical_fun::ppc_andc) ppc_result_a = ppc_result_d & ~(ppc_result_b); else if (logical_op == logical_fun::ppc_eqv) ppc_result_a = ~(ppc_result_d ^ ppc_result_b); else if (logical_op == logical_fun::ppc_nand) ppc_result_a = ~(ppc_result_d & ppc_result_b); else if (logical_op == logical_fun::ppc_nor) ppc_result_a = ~(ppc_result_d | ppc_result_b); else if (logical_op == logical_fun::ppc_or) ppc_result_a = ppc_result_d | ppc_result_b; else if (logical_op == logical_fun::ppc_orc) ppc_result_a = ppc_result_d | ~(ppc_result_b); else if (logical_op == logical_fun::ppc_xor) ppc_result_a = ppc_result_d ^ ppc_result_b; if (rec) ppc_changecrf0(ppc_result_a); ppc_store_iresult_reg(reg_a, ppc_result_a); } template void dppc_interpreter::ppc_logical(); template void dppc_interpreter::ppc_logical(); template void dppc_interpreter::ppc_logical(); template void dppc_interpreter::ppc_logical(); template void dppc_interpreter::ppc_logical(); template void dppc_interpreter::ppc_logical(); template void dppc_interpreter::ppc_logical(); template void dppc_interpreter::ppc_logical(); template void dppc_interpreter::ppc_logical(); template void dppc_interpreter::ppc_logical(); template void dppc_interpreter::ppc_logical(); template void dppc_interpreter::ppc_logical(); template void dppc_interpreter::ppc_logical(); template void dppc_interpreter::ppc_logical(); template void dppc_interpreter::ppc_logical(); template void dppc_interpreter::ppc_logical(); template void dppc_interpreter::ppc_neg() { ppc_grab_regsda(ppc_cur_instruction); uint32_t ppc_result_d = ~(ppc_result_a) + 1; if (ov) { if (ppc_result_a == 0x80000000) ppc_state.spr[SPR::XER] |= XER::SO | XER::OV; else ppc_state.spr[SPR::XER] &= ~XER::OV; } if (rec) ppc_changecrf0(ppc_result_d); ppc_store_iresult_reg(reg_d, ppc_result_d); } template void dppc_interpreter::ppc_neg();; template void dppc_interpreter::ppc_neg(); template void dppc_interpreter::ppc_neg(); template void dppc_interpreter::ppc_neg(); template void dppc_interpreter::ppc_cntlzw() { ppc_grab_regssa(ppc_cur_instruction); uint32_t bit_check = ppc_result_d; #ifdef __builtin_clz //for GCC and Clang users uint32_t lead = !bit_check ? 32 : __builtin_clz(bit_check); #elif defined __lzcnt //for Visual C++ users uint32_t lead = __lzcnt(bit_check); #else uint32_t lead, mask; for (mask = 0x80000000UL, lead = 0; mask != 0; lead++, mask >>= 1) { if (bit_check & mask) break; } #endif ppc_result_a = lead; if (rec) { ppc_changecrf0(ppc_result_a); } ppc_store_iresult_reg(reg_a, ppc_result_a); } template void dppc_interpreter::ppc_cntlzw(); template void dppc_interpreter::ppc_cntlzw();; template void dppc_interpreter::ppc_mulhwu() { ppc_grab_regsdab(ppc_cur_instruction); uint64_t product = uint64_t(ppc_result_a) * uint64_t(ppc_result_b); uint32_t ppc_result_d = uint32_t(product >> 32); if (rec) ppc_changecrf0(ppc_result_d); ppc_store_iresult_reg(reg_d, ppc_result_d); } template void dppc_interpreter::ppc_mulhwu(); template void dppc_interpreter::ppc_mulhwu();; template void dppc_interpreter::ppc_mulhw() { ppc_grab_regsdab(ppc_cur_instruction); int64_t product = int64_t(int32_t(ppc_result_a)) * int64_t(int32_t(ppc_result_b)); uint32_t ppc_result_d = product >> 32; if (rec) ppc_changecrf0(ppc_result_d); ppc_store_iresult_reg(reg_d, ppc_result_d); } template void dppc_interpreter::ppc_mulhw(); template void dppc_interpreter::ppc_mulhw();; template void dppc_interpreter::ppc_mullw() { ppc_grab_regsdab(ppc_cur_instruction); int64_t product = int64_t(int32_t(ppc_result_a)) * int64_t(int32_t(ppc_result_b)); if (ov) { if (product != int64_t(int32_t(product))) { ppc_state.spr[SPR::XER] |= XER::SO | XER::OV; } else { ppc_state.spr[SPR::XER] &= ~XER::OV; } } uint32_t ppc_result_d = (uint32_t)product; if (rec) ppc_changecrf0(ppc_result_d); ppc_store_iresult_reg(reg_d, ppc_result_d); } template void dppc_interpreter::ppc_mullw(); template void dppc_interpreter::ppc_mullw(); template void dppc_interpreter::ppc_mullw(); template void dppc_interpreter::ppc_mullw(); void dppc_interpreter::ppc_mulli() { ppc_grab_regsdasimm(ppc_cur_instruction); int64_t product = int64_t(int32_t(ppc_result_a)) * int64_t(int32_t(simm)); uint32_t ppc_result_d = uint32_t(product); ppc_store_iresult_reg(reg_d, ppc_result_d); } template void dppc_interpreter::ppc_divw() { uint32_t ppc_result_d; ppc_grab_regsdab(ppc_cur_instruction); if (!ppc_result_b) { // handle the "anything / 0" case ppc_result_d = 0; // tested on G4 in Mac OS X 10.4 and Open Firmware. // ppc_result_d = (ppc_result_a & 0x80000000) ? -1 : 0; /* UNDOCUMENTED! */ if (ov) ppc_state.spr[SPR::XER] |= XER::SO | XER::OV; } else if (ppc_result_a == 0x80000000UL && ppc_result_b == 0xFFFFFFFFUL) { ppc_result_d = 0; // tested on G4 in Mac OS X 10.4 and Open Firmware. if (ov) ppc_state.spr[SPR::XER] |= XER::SO | XER::OV; } else { // normal signed devision ppc_result_d = int32_t(ppc_result_a) / int32_t(ppc_result_b); if (ov) ppc_state.spr[SPR::XER] &= ~XER::OV; } if (rec) ppc_changecrf0(ppc_result_d); ppc_store_iresult_reg(reg_d, ppc_result_d); } template void dppc_interpreter::ppc_divw();; template void dppc_interpreter::ppc_divw(); template void dppc_interpreter::ppc_divw(); template void dppc_interpreter::ppc_divw(); template void dppc_interpreter::ppc_divwu() { uint32_t ppc_result_d; ppc_grab_regsdab(ppc_cur_instruction); if (!ppc_result_b) { // division by zero ppc_result_d = 0; if (ov) ppc_state.spr[SPR::XER] |= XER::SO | XER::OV; if (rec) ppc_state.cr |= 0x20000000; } else { ppc_result_d = ppc_result_a / ppc_result_b; if (ov) ppc_state.spr[SPR::XER] &= ~XER::OV; } if (rec) ppc_changecrf0(ppc_result_d); ppc_store_iresult_reg(reg_d, ppc_result_d); } template void dppc_interpreter::ppc_divwu();; template void dppc_interpreter::ppc_divwu(); template void dppc_interpreter::ppc_divwu(); template void dppc_interpreter::ppc_divwu(); // Value shifting template void dppc_interpreter::ppc_shift() { ppc_grab_regssab(ppc_cur_instruction); if (ppc_result_b & 0x20) { ppc_result_a = 0; } else { ppc_result_a = shift ? (ppc_result_d << (ppc_result_b & 0x1F)) : (ppc_result_d >> (ppc_result_b & 0x1F)); } if (rec) ppc_changecrf0(ppc_result_a); ppc_store_iresult_reg(reg_a, ppc_result_a); } template void dppc_interpreter::ppc_shift(); template void dppc_interpreter::ppc_shift(); template void dppc_interpreter::ppc_shift(); template void dppc_interpreter::ppc_shift(); template void dppc_interpreter::ppc_sraw() { ppc_grab_regssab(ppc_cur_instruction); // clear XER[CA] by default ppc_state.spr[SPR::XER] &= ~XER::CA; if (ppc_result_b & 0x20) { // fill rA with the sign bit of rS ppc_result_a = int32_t(ppc_result_d) >> 31; if (ppc_result_a) // if rA is negative ppc_state.spr[SPR::XER] |= XER::CA; } else { uint32_t shift = ppc_result_b & 0x1F; ppc_result_a = int32_t(ppc_result_d) >> shift; if ((ppc_result_d & 0x80000000UL) && (ppc_result_d & ((1U << shift) - 1))) ppc_state.spr[SPR::XER] |= XER::CA; } if (rec) ppc_changecrf0(ppc_result_a); ppc_store_iresult_reg(reg_a, ppc_result_a); } template void dppc_interpreter::ppc_sraw(); template void dppc_interpreter::ppc_sraw();; template void dppc_interpreter::ppc_srawi() { ppc_grab_regssa(ppc_cur_instruction); uint32_t shift = (ppc_cur_instruction >> 11) & 0x1F; // clear XER[CA] by default ppc_state.spr[SPR::XER] &= ~XER::CA; if ((ppc_result_d & 0x80000000UL) && (ppc_result_d & ((1U << shift) - 1))) ppc_state.spr[SPR::XER] |= XER::CA; ppc_result_a = int32_t(ppc_result_d) >> shift; if (rec) ppc_changecrf0(ppc_result_a); ppc_store_iresult_reg(reg_a, ppc_result_a); } template void dppc_interpreter::ppc_srawi(); template void dppc_interpreter::ppc_srawi();; /** mask generator for rotate and shift instructions (ยง 4.2.1.4 PowerpC PEM) */ static inline uint32_t rot_mask(unsigned rot_mb, unsigned rot_me) { uint32_t m1 = 0xFFFFFFFFUL >> rot_mb; uint32_t m2 = (uint32_t)(0xFFFFFFFFUL << (31 - rot_me)); return ((rot_mb <= rot_me) ? m2 & m1 : m1 | m2); } void dppc_interpreter::ppc_rlwimi() { ppc_grab_regssa(ppc_cur_instruction); unsigned rot_sh = (ppc_cur_instruction >> 11) & 0x1F; unsigned rot_mb = (ppc_cur_instruction >> 6) & 0x1F; unsigned rot_me = (ppc_cur_instruction >> 1) & 0x1F; uint32_t mask = rot_mask(rot_mb, rot_me); uint32_t r = rot_sh ? ((ppc_result_d << rot_sh) | (ppc_result_d >> (32 - rot_sh))) : ppc_result_d; ppc_result_a = (ppc_result_a & ~mask) | (r & mask); if ((ppc_cur_instruction & 0x01) == 1) { ppc_changecrf0(ppc_result_a); } ppc_store_iresult_reg(reg_a, ppc_result_a); } void dppc_interpreter::ppc_rlwinm() { ppc_grab_regssa(ppc_cur_instruction); unsigned rot_sh = (ppc_cur_instruction >> 11) & 0x1F; unsigned rot_mb = (ppc_cur_instruction >> 6) & 0x1F; unsigned rot_me = (ppc_cur_instruction >> 1) & 0x1F; uint32_t mask = rot_mask(rot_mb, rot_me); uint32_t r = rot_sh ? ((ppc_result_d << rot_sh) | (ppc_result_d >> (32 - rot_sh))) : ppc_result_d; ppc_result_a = r & mask; if ((ppc_cur_instruction & 0x01) == 1) { ppc_changecrf0(ppc_result_a); } ppc_store_iresult_reg(reg_a, ppc_result_a); } void dppc_interpreter::ppc_rlwnm() { ppc_grab_regssab(ppc_cur_instruction); ppc_result_b &= 0x1F; unsigned rot_mb = (ppc_cur_instruction >> 6) & 0x1F; unsigned rot_me = (ppc_cur_instruction >> 1) & 0x1F; uint32_t mask = rot_mask(rot_mb, rot_me); uint32_t rot = ppc_result_b & 0x1F; uint32_t r = rot ? ((ppc_result_d << rot) | (ppc_result_d >> (32 - rot))) : ppc_result_d; ppc_result_a = r & mask; if ((ppc_cur_instruction & 0x01) == 1) { ppc_changecrf0(ppc_result_a); } ppc_store_iresult_reg(reg_a, ppc_result_a); } void dppc_interpreter::ppc_mfcr() { int reg_d = (ppc_cur_instruction >> 21) & 0x1F; ppc_state.gpr[reg_d] = ppc_state.cr; } void dppc_interpreter::ppc_mtsr() { #ifdef CPU_PROFILING num_supervisor_instrs++; #endif if (ppc_state.msr & MSR::PR) { ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::NOT_ALLOWED); } int reg_s = (ppc_cur_instruction >> 21) & 0x1F; uint32_t grab_sr = (ppc_cur_instruction >> 16) & 0x0F; ppc_state.sr[grab_sr] = ppc_state.gpr[reg_s]; mmu_pat_ctx_changed(); } void dppc_interpreter::ppc_mtsrin() { #ifdef CPU_PROFILING num_supervisor_instrs++; #endif if (ppc_state.msr & MSR::PR) { ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::NOT_ALLOWED); } ppc_grab_regssb(ppc_cur_instruction); uint32_t grab_sr = ppc_result_b >> 28; ppc_state.sr[grab_sr] = ppc_result_d; mmu_pat_ctx_changed(); } void dppc_interpreter::ppc_mfsr() { #ifdef CPU_PROFILING num_supervisor_instrs++; #endif if (ppc_state.msr & MSR::PR) { ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::NOT_ALLOWED); } int reg_d = (ppc_cur_instruction >> 21) & 0x1F; uint32_t grab_sr = (ppc_cur_instruction >> 16) & 0x0F; ppc_state.gpr[reg_d] = ppc_state.sr[grab_sr]; } void dppc_interpreter::ppc_mfsrin() { #ifdef CPU_PROFILING num_supervisor_instrs++; #endif if (ppc_state.msr & MSR::PR) { ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::NOT_ALLOWED); } ppc_grab_regsdb(ppc_cur_instruction); uint32_t grab_sr = ppc_result_b >> 28; ppc_state.gpr[reg_d] = ppc_state.sr[grab_sr]; } void dppc_interpreter::ppc_mfmsr() { #ifdef CPU_PROFILING num_supervisor_instrs++; #endif if (ppc_state.msr & MSR::PR) { ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::NOT_ALLOWED); } uint32_t reg_d = (ppc_cur_instruction >> 21) & 0x1F; ppc_state.gpr[reg_d] = ppc_state.msr; } void dppc_interpreter::ppc_mtmsr() { #ifdef CPU_PROFILING num_supervisor_instrs++; #endif if (ppc_state.msr & MSR::PR) { ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::NOT_ALLOWED); } uint32_t reg_s = (ppc_cur_instruction >> 21) & 0x1F; ppc_state.msr = ppc_state.gpr[reg_s]; // generate External Interrupt Exception // if CPU interrupt line is asserted if (ppc_state.msr & MSR::EE && int_pin) { //LOG_F(WARNING, "MTMSR: CPU INT pending, generate CPU exception"); ppc_exception_handler(Except_Type::EXC_EXT_INT, 0); } else if ((ppc_state.msr & MSR::EE) && dec_exception_pending) { dec_exception_pending = false; //LOG_F(WARNING, "MTMSR: decrementer exception triggered"); ppc_exception_handler(Except_Type::EXC_DECR, 0); } else { mmu_change_mode(); } } static inline void calc_rtcl_value() { uint64_t new_ts = get_virt_time_ns(); uint64_t rtc_l = new_ts - rtc_timestamp + rtc_lo; if (rtc_l >= ONE_BILLION_NS) { // check RTCL overflow rtc_hi += (uint32_t)(rtc_l / ONE_BILLION_NS); rtc_lo = rtc_l % ONE_BILLION_NS; } else { rtc_lo = (uint32_t)rtc_l; } rtc_timestamp = new_ts; } static inline uint64_t calc_tbr_value() { uint64_t tbr_inc; uint32_t tbr_inc_lo; uint64_t diff = get_virt_time_ns() - tbr_wr_timestamp; _u32xu64(tbr_freq_ghz, diff, tbr_inc, tbr_inc_lo); return (tbr_wr_value + tbr_inc); } static inline uint32_t calc_dec_value() { uint64_t dec_adj; uint32_t dec_adj_lo; uint64_t diff = get_virt_time_ns() - dec_wr_timestamp; _u32xu64(tbr_freq_ghz, diff, dec_adj, dec_adj_lo); return (dec_wr_value - static_cast(dec_adj)); } static void update_timebase(uint64_t mask, uint64_t new_val) { uint64_t tbr_value = calc_tbr_value(); tbr_wr_value = (tbr_value & mask) | new_val; tbr_wr_timestamp = get_virt_time_ns(); } static uint32_t decrementer_timer_id = 0; static void trigger_decrementer_exception() { decrementer_timer_id = 0; dec_wr_value = -1; dec_wr_timestamp = get_virt_time_ns(); if (ppc_state.msr & MSR::EE) { dec_exception_pending = false; //LOG_F(WARNING, "decrementer exception triggered"); ppc_exception_handler(Except_Type::EXC_DECR, 0); } else { //LOG_F(WARNING, "decrementer exception pending"); dec_exception_pending = true; } } static void update_decrementer(uint32_t val) { dec_wr_value = val; dec_wr_timestamp = get_virt_time_ns(); dec_exception_pending = false; if (is_601) return; if (decrementer_timer_id) { //LOG_F(WARNING, "decrementer cancel timer"); TimerManager::get_instance()->cancel_timer(decrementer_timer_id); } uint64_t time_out; uint32_t time_out_lo; _u32xu64(val, tbr_period_ns, time_out, time_out_lo); //LOG_F(WARNING, "decrementer:0x%08X ns:%llu", val, time_out); decrementer_timer_id = TimerManager::get_instance()->add_oneshot_timer( time_out, trigger_decrementer_exception ); } void dppc_interpreter::ppc_mfspr() { uint32_t ref_spr = (((ppc_cur_instruction >> 11) & 0x1F) << 5) | ((ppc_cur_instruction >> 16) & 0x1F); #ifdef CPU_PROFILING if (ref_spr > 31) { num_supervisor_instrs++; } #endif switch (ref_spr) { case SPR::RTCL_U: calc_rtcl_value(); ppc_state.spr[SPR::RTCL_U] = rtc_lo & 0x3FFFFF80UL; break; case SPR::RTCU_U: calc_rtcl_value(); ppc_state.spr[SPR::RTCU_U] = rtc_hi; break; case SPR::DEC: ppc_state.spr[SPR::DEC] = calc_dec_value(); break; } ppc_state.gpr[(ppc_cur_instruction >> 21) & 0x1F] = ppc_state.spr[ref_spr]; } void dppc_interpreter::ppc_mtspr() { uint32_t ref_spr = (((ppc_cur_instruction >> 11) & 0x1F) << 5) | ((ppc_cur_instruction >> 16) & 0x1F); #ifdef CPU_PROFILING if (ref_spr > 31) { num_supervisor_instrs++; } #endif if (ref_spr == SPR::PVR) { // prevent writes to the read-only PVR return; } uint32_t val = ppc_state.gpr[(ppc_cur_instruction >> 21) & 0x1F]; ppc_state.spr[ref_spr] = val; switch (ref_spr) { case SPR::XER: ppc_state.spr[ref_spr] = val & 0xe000ff7f; break; case SPR::SDR1: mmu_pat_ctx_changed(); // adapt to SDR1 changes break; case SPR::RTCL_S: calc_rtcl_value(); rtc_lo = val & 0x3FFFFF80UL; break; case SPR::RTCU_S: calc_rtcl_value(); rtc_hi = val; break; case SPR::DEC: update_decrementer(val); break; case SPR::TBL_S: update_timebase(0xFFFFFFFF00000000ULL, val); break; case SPR::TBU_S: update_timebase(0x00000000FFFFFFFFULL, uint64_t(val) << 32); break; case 528: case 529: case 530: case 531: case 532: case 533: case 534: case 535: ibat_update(ref_spr); break; case 536: case 537: case 538: case 539: case 540: case 541: case 542: case 543: dbat_update(ref_spr); } } void dppc_interpreter::ppc_mftb() { uint32_t ref_spr = (((ppc_cur_instruction >> 11) & 0x1F) << 5) | ((ppc_cur_instruction >> 16) & 0x1F); int reg_d = (ppc_cur_instruction >> 21) & 0x1F; uint64_t tbr_value = calc_tbr_value(); switch (ref_spr) { case SPR::TBL_U: ppc_state.gpr[reg_d] = uint32_t(tbr_value); break; case SPR::TBU_U: ppc_state.gpr[reg_d] = uint32_t(tbr_value >> 32); break; default: ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::ILLEGAL_OP); } } void dppc_interpreter::ppc_mtcrf() { ppc_grab_regssa(ppc_cur_instruction); uint8_t crm = (ppc_cur_instruction >> 12) & 0xFFU; uint32_t cr_mask = 0; if (crm == 0xFFU) // the fast case cr_mask = 0xFFFFFFFFUL; else { // the slow case if (crm & 0x80) cr_mask |= 0xF0000000UL; if (crm & 0x40) cr_mask |= 0x0F000000UL; if (crm & 0x20) cr_mask |= 0x00F00000UL; if (crm & 0x10) cr_mask |= 0x000F0000UL; if (crm & 0x08) cr_mask |= 0x0000F000UL; if (crm & 0x04) cr_mask |= 0x00000F00UL; if (crm & 0x02) cr_mask |= 0x000000F0UL; if (crm & 0x01) cr_mask |= 0x0000000FUL; } ppc_state.cr = (ppc_state.cr & ~cr_mask) | (ppc_result_d & cr_mask); } void dppc_interpreter::ppc_mcrxr() { int crf_d = (ppc_cur_instruction >> 21) & 0x1C; ppc_state.cr = (ppc_state.cr & ~(0xF0000000UL >> crf_d)) | ((ppc_state.spr[SPR::XER] & 0xF0000000UL) >> crf_d); ppc_state.spr[SPR::XER] &= 0x0FFFFFFF; } template void dppc_interpreter::ppc_exts() { ppc_grab_regssa(ppc_cur_instruction); ppc_result_a = int32_t(T(ppc_result_d)); if (rec) ppc_changecrf0(ppc_result_a); ppc_store_iresult_reg(reg_a, ppc_result_a); } template void dppc_interpreter::ppc_exts(); template void dppc_interpreter::ppc_exts(); template void dppc_interpreter::ppc_exts(); template void dppc_interpreter::ppc_exts(); // Branching Instructions template void dppc_interpreter::ppc_b() { int32_t adr_li = int32_t((ppc_cur_instruction & ~3UL) << 6) >> 6; if (a) ppc_next_instruction_address = adr_li; else ppc_next_instruction_address = uint32_t(ppc_state.pc + adr_li); if (l) ppc_state.spr[SPR::LR] = uint32_t(ppc_state.pc + 4); exec_flags = EXEF_BRANCH; } template void dppc_interpreter::ppc_b(); template void dppc_interpreter::ppc_b(); template void dppc_interpreter::ppc_b(); template void dppc_interpreter::ppc_b(); template void dppc_interpreter::ppc_bc() { uint32_t ctr_ok; uint32_t cnd_ok; uint32_t br_bo = (ppc_cur_instruction >> 21) & 0x1F; uint32_t br_bi = (ppc_cur_instruction >> 16) & 0x1F; int32_t br_bd = int32_t(int16_t(ppc_cur_instruction & ~3UL)); if (!(br_bo & 0x04)) { (ppc_state.spr[SPR::CTR])--; /* decrement CTR */ } ctr_ok = (br_bo & 0x04) | ((ppc_state.spr[SPR::CTR] != 0) == !(br_bo & 0x02)); cnd_ok = (br_bo & 0x10) | (!(ppc_state.cr & (0x80000000UL >> br_bi)) == !(br_bo & 0x08)); if (ctr_ok && cnd_ok) { if (a) ppc_next_instruction_address = br_bd; else ppc_next_instruction_address = uint32_t(ppc_state.pc + br_bd); exec_flags = EXEF_BRANCH; } if (l) ppc_state.spr[SPR::LR] = ppc_state.pc + 4; } template void dppc_interpreter::ppc_bc(); template void dppc_interpreter::ppc_bc(); template void dppc_interpreter::ppc_bc(); template void dppc_interpreter::ppc_bc(); template void dppc_interpreter::ppc_bcctr() { uint32_t ctr_ok; uint32_t cnd_ok; uint32_t br_bo = (ppc_cur_instruction >> 21) & 0x1F; uint32_t br_bi = (ppc_cur_instruction >> 16) & 0x1F; uint32_t ctr = ppc_state.spr[SPR::CTR]; uint32_t new_ctr; if (for601) { new_ctr = ctr - 1; if (!(br_bo & 0x04)) { ppc_state.spr[SPR::CTR] = new_ctr; /* decrement CTR */ } } else { new_ctr = ctr; } ctr_ok = (br_bo & 0x04) | ((new_ctr != 0) == !(br_bo & 0x02)); cnd_ok = (br_bo & 0x10) | (!(ppc_state.cr & (0x80000000UL >> br_bi)) == !(br_bo & 0x08)); if (ctr_ok && cnd_ok) { ppc_next_instruction_address = (ctr & ~3UL); exec_flags = EXEF_BRANCH; } if (l) ppc_state.spr[SPR::LR] = ppc_state.pc + 4; } template void dppc_interpreter::ppc_bcctr(); template void dppc_interpreter::ppc_bcctr(); template void dppc_interpreter::ppc_bcctr(); template void dppc_interpreter::ppc_bcctr(); template void dppc_interpreter::ppc_bclr() { uint32_t br_bo = (ppc_cur_instruction >> 21) & 0x1F; uint32_t br_bi = (ppc_cur_instruction >> 16) & 0x1F; uint32_t ctr_ok; uint32_t cnd_ok; if (!(br_bo & 0x04)) { (ppc_state.spr[SPR::CTR])--; /* decrement CTR */ } ctr_ok = (br_bo & 0x04) | ((ppc_state.spr[SPR::CTR] != 0) == !(br_bo & 0x02)); cnd_ok = (br_bo & 0x10) | (!(ppc_state.cr & (0x80000000UL >> br_bi)) == !(br_bo & 0x08)); if (ctr_ok && cnd_ok) { ppc_next_instruction_address = (ppc_state.spr[SPR::LR] & ~3UL); exec_flags = EXEF_BRANCH; } if (l) ppc_state.spr[SPR::LR] = ppc_state.pc + 4; } template void dppc_interpreter::ppc_bclr(); template void dppc_interpreter::ppc_bclr(); // Compare Instructions void dppc_interpreter::ppc_cmp() { #ifdef CHECK_INVALID if (ppc_cur_instruction & 0x200000) { LOG_F(WARNING, "Invalid CMP instruction form (L=1)!"); return; } #endif int crf_d = (ppc_cur_instruction >> 21) & 0x1C; ppc_grab_regssab(ppc_cur_instruction); uint32_t xercon = (ppc_state.spr[SPR::XER] & XER::SO) >> 3; uint32_t cmp_c = (int32_t(ppc_result_a) == int32_t(ppc_result_b)) ? 0x20000000UL : \ (int32_t(ppc_result_a) > int32_t(ppc_result_b)) ? 0x40000000UL : 0x80000000UL; ppc_state.cr = ((ppc_state.cr & ~(0xf0000000UL >> crf_d)) | ((cmp_c + xercon) >> crf_d)); } void dppc_interpreter::ppc_cmpi() { #ifdef CHECK_INVALID if (ppc_cur_instruction & 0x200000) { LOG_F(WARNING, "Invalid CMPI instruction form (L=1)!"); return; } #endif int crf_d = (ppc_cur_instruction >> 21) & 0x1C; ppc_grab_regsasimm(ppc_cur_instruction); uint32_t xercon = (ppc_state.spr[SPR::XER] & XER::SO) >> 3; uint32_t cmp_c = (int32_t(ppc_result_a) == simm) ? 0x20000000UL : \ (int32_t(ppc_result_a) > simm) ? 0x40000000UL : 0x80000000UL; ppc_state.cr = ((ppc_state.cr & ~(0xf0000000UL >> crf_d)) | ((cmp_c + xercon) >> crf_d)); } void dppc_interpreter::ppc_cmpl() { #ifdef CHECK_INVALID if (ppc_cur_instruction & 0x200000) { LOG_F(WARNING, "Invalid CMPL instruction form (L=1)!"); return; } #endif int crf_d = (ppc_cur_instruction >> 21) & 0x1C; ppc_grab_regssab(ppc_cur_instruction); uint32_t xercon = (ppc_state.spr[SPR::XER] & XER::SO) >> 3; uint32_t cmp_c = (ppc_result_a == ppc_result_b) ? 0x20000000UL : \ (ppc_result_a > ppc_result_b) ? 0x40000000UL : 0x80000000UL; ppc_state.cr = ((ppc_state.cr & ~(0xf0000000UL >> crf_d)) | ((cmp_c + xercon) >> crf_d)); } void dppc_interpreter::ppc_cmpli() { #ifdef CHECK_INVALID if (ppc_cur_instruction & 0x200000) { LOG_F(WARNING, "Invalid CMPLI instruction form (L=1)!"); return; } #endif int crf_d = (ppc_cur_instruction >> 21) & 0x1C; ppc_grab_regssauimm(ppc_cur_instruction); uint32_t xercon = (ppc_state.spr[SPR::XER] & XER::SO) >> 3; uint32_t cmp_c = (ppc_result_a == uimm) ? 0x20000000UL : \ (ppc_result_a > uimm) ? 0x40000000UL : 0x80000000UL; ppc_state.cr = ((ppc_state.cr & ~(0xf0000000UL >> crf_d)) | ((cmp_c + xercon) >> crf_d)); } // Condition Register Changes void dppc_interpreter::ppc_mcrf() { int crf_d = (ppc_cur_instruction >> 21) & 0x1C; int crf_s = (ppc_cur_instruction >> 16) & 0x1C; // extract and right justify source flags field uint32_t grab_s = (ppc_state.cr >> (28 - crf_s)) & 0xF; ppc_state.cr = (ppc_state.cr & ~(0xf0000000UL >> crf_d)) | (grab_s << (28 - crf_d)); } void dppc_interpreter::ppc_crand() { ppc_grab_dab(ppc_cur_instruction); uint8_t ir = (ppc_state.cr >> (31 - reg_a)) & (ppc_state.cr >> (31 - reg_b)); if (ir & 1) { ppc_state.cr |= (0x80000000UL >> reg_d); } else { ppc_state.cr &= ~(0x80000000UL >> reg_d); } } void dppc_interpreter::ppc_crandc() { ppc_grab_dab(ppc_cur_instruction); if ((ppc_state.cr & (0x80000000UL >> reg_a)) && !(ppc_state.cr & (0x80000000UL >> reg_b))) { ppc_state.cr |= (0x80000000UL >> reg_d); } else { ppc_state.cr &= ~(0x80000000UL >> reg_d); } } void dppc_interpreter::ppc_creqv() { ppc_grab_dab(ppc_cur_instruction); uint8_t ir = (ppc_state.cr >> (31 - reg_a)) ^ (ppc_state.cr >> (31 - reg_b)); if (ir & 1) { // compliment is implemented by swapping the following if/else bodies ppc_state.cr &= ~(0x80000000UL >> reg_d); } else { ppc_state.cr |= (0x80000000UL >> reg_d); } } void dppc_interpreter::ppc_crnand() { ppc_grab_dab(ppc_cur_instruction); uint8_t ir = (ppc_state.cr >> (31 - reg_a)) & (ppc_state.cr >> (31 - reg_b)); if (ir & 1) { ppc_state.cr &= ~(0x80000000UL >> reg_d); } else { ppc_state.cr |= (0x80000000UL >> reg_d); } } void dppc_interpreter::ppc_crnor() { ppc_grab_dab(ppc_cur_instruction); uint8_t ir = (ppc_state.cr >> (31 - reg_a)) | (ppc_state.cr >> (31 - reg_b)); if (ir & 1) { ppc_state.cr &= ~(0x80000000UL >> reg_d); } else { ppc_state.cr |= (0x80000000UL >> reg_d); } } void dppc_interpreter::ppc_cror() { ppc_grab_dab(ppc_cur_instruction); uint8_t ir = (ppc_state.cr >> (31 - reg_a)) | (ppc_state.cr >> (31 - reg_b)); if (ir & 1) { ppc_state.cr |= (0x80000000UL >> reg_d); } else { ppc_state.cr &= ~(0x80000000UL >> reg_d); } } void dppc_interpreter::ppc_crorc() { ppc_grab_dab(ppc_cur_instruction); if ((ppc_state.cr & (0x80000000UL >> reg_a)) || !(ppc_state.cr & (0x80000000UL >> reg_b))) { ppc_state.cr |= (0x80000000UL >> reg_d); } else { ppc_state.cr &= ~(0x80000000UL >> reg_d); } } void dppc_interpreter::ppc_crxor() { ppc_grab_dab(ppc_cur_instruction); uint8_t ir = (ppc_state.cr >> (31 - reg_a)) ^ (ppc_state.cr >> (31 - reg_b)); if (ir & 1) { ppc_state.cr |= (0x80000000UL >> reg_d); } else { ppc_state.cr &= ~(0x80000000UL >> reg_d); } } // Processor MGMT Fns. void dppc_interpreter::ppc_rfi() { #ifdef CPU_PROFILING num_supervisor_instrs++; #endif uint32_t new_srr1_val = (ppc_state.spr[SPR::SRR1] & 0x87C0FF73UL); uint32_t new_msr_val = (ppc_state.msr & ~0x87C0FF73UL); ppc_state.msr = (new_msr_val | new_srr1_val) & 0xFFFBFFFFUL; // generate External Interrupt Exception // if CPU interrupt line is still asserted if (ppc_state.msr & MSR::EE && int_pin) { uint32_t save_srr0 = ppc_state.spr[SPR::SRR0] & ~3UL; ppc_exception_handler(Except_Type::EXC_EXT_INT, 0); ppc_state.spr[SPR::SRR0] = save_srr0; return; } if ((ppc_state.msr & MSR::EE) && dec_exception_pending) { dec_exception_pending = false; //LOG_F(WARNING, "decrementer exception from rfi msr:0x%X", ppc_state.msr); uint32_t save_srr0 = ppc_state.spr[SPR::SRR0] & ~3UL; ppc_exception_handler(Except_Type::EXC_DECR, 0); ppc_state.spr[SPR::SRR0] = save_srr0; return; } ppc_next_instruction_address = ppc_state.spr[SPR::SRR0] & ~3UL; do_ctx_sync(); // RFI is context synchronizing mmu_change_mode(); grab_return = true; exec_flags = EXEF_RFI; } void dppc_interpreter::ppc_sc() { do_ctx_sync(); // SC is context synchronizing! ppc_exception_handler(Except_Type::EXC_SYSCALL, 0x20000); } void dppc_interpreter::ppc_tw() { uint32_t reg_a = (ppc_cur_instruction >> 11) & 0x1F; uint32_t reg_b = (ppc_cur_instruction >> 16) & 0x1F; uint32_t ppc_to = (ppc_cur_instruction >> 21) & 0x1F; if (((int32_t(ppc_state.gpr[reg_a]) < int32_t(ppc_state.gpr[reg_b])) && (ppc_to & 0x10)) || ((int32_t(ppc_state.gpr[reg_a]) > int32_t(ppc_state.gpr[reg_b])) && (ppc_to & 0x08)) || ((int32_t(ppc_state.gpr[reg_a]) == int32_t(ppc_state.gpr[reg_b])) && (ppc_to & 0x04)) || ((ppc_state.gpr[reg_a] < ppc_state.gpr[reg_b]) && (ppc_to & 0x02)) || ((ppc_state.gpr[reg_a] > ppc_state.gpr[reg_b]) && (ppc_to & 0x01))) { ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::TRAP); } } void dppc_interpreter::ppc_twi() { int32_t simm = int32_t(int16_t(ppc_cur_instruction)); uint32_t reg_a = (ppc_cur_instruction >> 16) & 0x1F; uint32_t ppc_to = (ppc_cur_instruction >> 21) & 0x1F; if (((int32_t(ppc_state.gpr[reg_a]) < simm) && (ppc_to & 0x10)) || ((int32_t(ppc_state.gpr[reg_a]) > simm) && (ppc_to & 0x08)) || ((int32_t(ppc_state.gpr[reg_a]) == simm) && (ppc_to & 0x04)) || (ppc_state.gpr[reg_a] < uint32_t(simm) && (ppc_to & 0x02)) || (ppc_state.gpr[reg_a] > uint32_t(simm) && (ppc_to & 0x01))) { ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::TRAP); } } void dppc_interpreter::ppc_eieio() { /* placeholder */ } void dppc_interpreter::ppc_isync() { do_ctx_sync(); } void dppc_interpreter::ppc_sync() { /* placeholder */ } void dppc_interpreter::ppc_icbi() { /* placeholder */ } void dppc_interpreter::ppc_dcbf() { /* placeholder */ } void dppc_interpreter::ppc_dcbi() { #ifdef CPU_PROFILING num_supervisor_instrs++; #endif /* placeholder */ } void dppc_interpreter::ppc_dcbst() { /* placeholder */ } void dppc_interpreter::ppc_dcbt() { // Not needed, the HDI reg is touched to no-op this instruction. return; } void dppc_interpreter::ppc_dcbtst() { // Not needed, the HDI reg is touched to no-op this instruction. return; } void dppc_interpreter::ppc_dcbz() { ppc_grab_regsdab(ppc_cur_instruction); ppc_effective_address = ppc_result_b + (reg_a ? ppc_result_a : 0); ppc_effective_address &= 0xFFFFFFE0UL; // align EA on a 32-byte boundary // the following is not especially efficient but necessary // to make BlockZero under Mac OS 8.x and later to work mmu_write_vmem(ppc_effective_address + 0, 0); mmu_write_vmem(ppc_effective_address + 8, 0); mmu_write_vmem(ppc_effective_address + 16, 0); mmu_write_vmem(ppc_effective_address + 24, 0); } // Integer Load and Store Functions template void dppc_interpreter::ppc_st() { #ifdef CPU_PROFILING num_int_stores++; #endif ppc_grab_regssa(ppc_cur_instruction); ppc_effective_address = int32_t(int16_t(ppc_cur_instruction)); ppc_effective_address += reg_a ? ppc_result_a : 0; mmu_write_vmem(ppc_effective_address, ppc_result_d); } template void dppc_interpreter::ppc_st(); template void dppc_interpreter::ppc_st(); template void dppc_interpreter::ppc_st(); template void dppc_interpreter::ppc_stx() { #ifdef CPU_PROFILING num_int_stores++; #endif ppc_grab_regssab(ppc_cur_instruction); ppc_effective_address = ppc_result_b + (reg_a ? ppc_result_a : 0); mmu_write_vmem(ppc_effective_address, ppc_result_d); } template void dppc_interpreter::ppc_stx(); template void dppc_interpreter::ppc_stx(); template void dppc_interpreter::ppc_stx(); template void dppc_interpreter::ppc_stu() { #ifdef CPU_PROFILING num_int_stores++; #endif ppc_grab_regssa(ppc_cur_instruction); if (reg_a != 0) { ppc_effective_address = int32_t(int16_t(ppc_cur_instruction)); ppc_effective_address += ppc_result_a; mmu_write_vmem(ppc_effective_address, ppc_result_d); ppc_state.gpr[reg_a] = ppc_effective_address; } else { ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::ILLEGAL_OP); } } template void dppc_interpreter::ppc_stu(); template void dppc_interpreter::ppc_stu(); template void dppc_interpreter::ppc_stu(); template void dppc_interpreter::ppc_stux() { #ifdef CPU_PROFILING num_int_stores++; #endif ppc_grab_regssab(ppc_cur_instruction); if (reg_a != 0) { ppc_effective_address = ppc_result_a + ppc_result_b; mmu_write_vmem(ppc_effective_address, ppc_result_d); ppc_state.gpr[reg_a] = ppc_effective_address; } else { ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::ILLEGAL_OP); } } template void dppc_interpreter::ppc_stux(); template void dppc_interpreter::ppc_stux(); template void dppc_interpreter::ppc_stux(); void dppc_interpreter::ppc_sthbrx() { #ifdef CPU_PROFILING num_int_stores++; #endif ppc_grab_regssab(ppc_cur_instruction); ppc_effective_address = ppc_result_b + (reg_a ? ppc_result_a : 0); ppc_result_d = uint32_t(BYTESWAP_16(uint16_t(ppc_result_d))); mmu_write_vmem(ppc_effective_address, ppc_result_d); } void dppc_interpreter::ppc_stwcx() { #ifdef CPU_PROFILING num_int_stores++; #endif ppc_grab_regssab(ppc_cur_instruction); ppc_effective_address = (reg_a == 0) ? ppc_result_b : (ppc_result_a + ppc_result_b); ppc_state.cr &= 0x0FFFFFFFUL; // clear CR0 ppc_state.cr |= (ppc_state.spr[SPR::XER] & XER::SO) >> 3; // copy XER[SO] to CR0[SO] if (ppc_state.reserve) { mmu_write_vmem(ppc_effective_address, ppc_result_d); ppc_state.reserve = false; ppc_state.cr |= 0x20000000UL; // set CR0[EQ] } } void dppc_interpreter::ppc_stwbrx() { #ifdef CPU_PROFILING num_int_stores++; #endif ppc_grab_regssab(ppc_cur_instruction); ppc_effective_address = ppc_result_b + (reg_a ? ppc_result_a : 0); ppc_result_d = BYTESWAP_32(ppc_result_d); mmu_write_vmem(ppc_effective_address, ppc_result_d); } void dppc_interpreter::ppc_stmw() { #ifdef CPU_PROFILING num_int_stores++; #endif ppc_grab_regssa(ppc_cur_instruction); ppc_effective_address = int32_t(int16_t(ppc_cur_instruction)); ppc_effective_address += reg_a ? ppc_result_a : 0; /* what should we do if EA is unaligned? */ if (ppc_effective_address & 3) { ppc_alignment_exception(ppc_effective_address); } for (; reg_s <= 31; reg_s++) { mmu_write_vmem(ppc_effective_address, ppc_state.gpr[reg_s]); ppc_effective_address += 4; } } template void dppc_interpreter::ppc_lz() { #ifdef CPU_PROFILING num_int_loads++; #endif ppc_grab_regsda(ppc_cur_instruction); ppc_effective_address = int32_t(int16_t(ppc_cur_instruction)); ppc_effective_address += reg_a ? ppc_result_a : 0; uint32_t ppc_result_d = mmu_read_vmem(ppc_effective_address); ppc_store_iresult_reg(reg_d, ppc_result_d); } template void dppc_interpreter::ppc_lz(); template void dppc_interpreter::ppc_lz(); template void dppc_interpreter::ppc_lz(); template void dppc_interpreter::ppc_lzu() { #ifdef CPU_PROFILING num_int_loads++; #endif ppc_grab_regsda(ppc_cur_instruction); ppc_effective_address = int32_t(int16_t(ppc_cur_instruction)); if ((reg_a != reg_d) && reg_a != 0) { ppc_effective_address += ppc_result_a; uint32_t ppc_result_d = mmu_read_vmem(ppc_effective_address); uint32_t ppc_result_a = ppc_effective_address; ppc_store_iresult_reg(reg_d, ppc_result_d); ppc_store_iresult_reg(reg_a, ppc_result_a); } else { ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::ILLEGAL_OP); } } template void dppc_interpreter::ppc_lzu(); template void dppc_interpreter::ppc_lzu(); template void dppc_interpreter::ppc_lzu(); template void dppc_interpreter::ppc_lzx() { #ifdef CPU_PROFILING num_int_loads++; #endif ppc_grab_regsdab(ppc_cur_instruction); ppc_effective_address = ppc_result_b + (reg_a ? ppc_result_a : 0); uint32_t ppc_result_d = mmu_read_vmem(ppc_effective_address); ppc_store_iresult_reg(reg_d, ppc_result_d); } template void dppc_interpreter::ppc_lzx(void); template void dppc_interpreter::ppc_lzx(void); template void dppc_interpreter::ppc_lzx(void); template void dppc_interpreter::ppc_lzux() { #ifdef CPU_PROFILING num_int_loads++; #endif ppc_grab_regsdab(ppc_cur_instruction); if ((reg_a != reg_d) && reg_a != 0) { ppc_effective_address = ppc_result_a + ppc_result_b; uint32_t ppc_result_d = mmu_read_vmem(ppc_effective_address); ppc_result_a = ppc_effective_address; ppc_store_iresult_reg(reg_d, ppc_result_d); ppc_store_iresult_reg(reg_a, ppc_result_a); } else { ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::ILLEGAL_OP); } } template void dppc_interpreter::ppc_lzux(void); template void dppc_interpreter::ppc_lzux(void); template void dppc_interpreter::ppc_lzux(void); void dppc_interpreter::ppc_lha() { #ifdef CPU_PROFILING num_int_loads++; #endif ppc_grab_regsda(ppc_cur_instruction); ppc_effective_address = int32_t(int16_t(ppc_cur_instruction)); ppc_effective_address += (reg_a ? ppc_result_a : 0); int16_t val = mmu_read_vmem(ppc_effective_address); ppc_store_iresult_reg(reg_d, int32_t(val)); } void dppc_interpreter::ppc_lhau() { #ifdef CPU_PROFILING num_int_loads++; #endif ppc_grab_regsda(ppc_cur_instruction); if ((reg_a != reg_d) && reg_a != 0) { ppc_effective_address = int32_t(int16_t(ppc_cur_instruction)); ppc_effective_address += ppc_result_a; int16_t val = mmu_read_vmem(ppc_effective_address); ppc_store_iresult_reg(reg_d, int32_t(val)); uint32_t ppc_result_a = ppc_effective_address; ppc_store_iresult_reg(reg_a, ppc_result_a); } else { ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::ILLEGAL_OP); } } void dppc_interpreter::ppc_lhaux() { #ifdef CPU_PROFILING num_int_loads++; #endif ppc_grab_regsdab(ppc_cur_instruction); if ((reg_a != reg_d) && reg_a != 0) { ppc_effective_address = ppc_result_a + ppc_result_b; int16_t val = mmu_read_vmem(ppc_effective_address); ppc_store_iresult_reg(reg_d, int32_t(val)); uint32_t ppc_result_a = ppc_effective_address; ppc_store_iresult_reg(reg_a, ppc_result_a); } else { ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::ILLEGAL_OP); } } void dppc_interpreter::ppc_lhax() { #ifdef CPU_PROFILING num_int_loads++; #endif ppc_grab_regsdab(ppc_cur_instruction); ppc_effective_address = ppc_result_b + (reg_a ? ppc_result_a : 0); int16_t val = mmu_read_vmem(ppc_effective_address); ppc_store_iresult_reg(reg_d, int32_t(val)); } void dppc_interpreter::ppc_lhbrx() { #ifdef CPU_PROFILING num_int_loads++; #endif ppc_grab_regsdab(ppc_cur_instruction); ppc_effective_address = ppc_result_b + (reg_a ? ppc_result_a : 0); uint32_t ppc_result_d = uint32_t(BYTESWAP_16(mmu_read_vmem(ppc_effective_address))); ppc_store_iresult_reg(reg_d, ppc_result_d); } void dppc_interpreter::ppc_lwbrx() { #ifdef CPU_PROFILING num_int_loads++; #endif ppc_grab_regsdab(ppc_cur_instruction); ppc_effective_address = ppc_result_b + (reg_a ? ppc_result_a : 0); uint32_t ppc_result_d = BYTESWAP_32(mmu_read_vmem(ppc_effective_address)); ppc_store_iresult_reg(reg_d, ppc_result_d); } void dppc_interpreter::ppc_lwarx() { #ifdef CPU_PROFILING num_int_loads++; #endif // Placeholder - Get the reservation of memory implemented! ppc_grab_regsdab(ppc_cur_instruction); ppc_effective_address = ppc_result_b + (reg_a ? ppc_result_a : 0); ppc_state.reserve = true; uint32_t ppc_result_d = mmu_read_vmem(ppc_effective_address); ppc_store_iresult_reg(reg_d, ppc_result_d); } void dppc_interpreter::ppc_lmw() { #ifdef CPU_PROFILING num_int_loads++; #endif ppc_grab_regsda(ppc_cur_instruction); ppc_effective_address = int32_t(int16_t(ppc_cur_instruction)); ppc_effective_address += (reg_a ? ppc_result_a : 0); // How many words to load in memory - using a do-while for this do { ppc_state.gpr[reg_d] = mmu_read_vmem(ppc_effective_address); ppc_effective_address += 4; reg_d++; } while (reg_d < 32); } void dppc_interpreter::ppc_lswi() { #ifdef CPU_PROFILING num_int_loads++; #endif ppc_grab_regsda(ppc_cur_instruction); ppc_effective_address = reg_a ? ppc_result_a : 0; uint32_t grab_inb = (ppc_cur_instruction >> 11) & 0x1F; grab_inb = grab_inb ? grab_inb : 32; while (grab_inb >= 4) { ppc_state.gpr[reg_d] = mmu_read_vmem(ppc_effective_address); reg_d++; if (reg_d >= 32) { // wrap around through GPR0 reg_d = 0; } ppc_effective_address += 4; grab_inb -= 4; } // handle remaining bytes switch (grab_inb) { case 1: ppc_state.gpr[reg_d] = mmu_read_vmem(ppc_effective_address) << 24; break; case 2: ppc_state.gpr[reg_d] = mmu_read_vmem(ppc_effective_address) << 16; break; case 3: ppc_state.gpr[reg_d] = mmu_read_vmem(ppc_effective_address) << 16; ppc_state.gpr[reg_d] += mmu_read_vmem(ppc_effective_address + 2) << 8; break; default: break; } } void dppc_interpreter::ppc_lswx() { #ifdef CPU_PROFILING num_int_loads++; #endif ppc_grab_regsdab(ppc_cur_instruction); /* // Invalid instruction forms if ((reg_d == 0 && reg_a == 0) || (reg_d == reg_a) || (reg_d == reg_b)) { // UNTESTED! Does invalid form really cause exception? // G4 doesn't do exception ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::ILLEGAL_OP); } */ ppc_effective_address = ppc_result_b + (reg_a ? ppc_result_a : 0); uint32_t grab_inb = ppc_state.spr[SPR::XER] & 0x7F; for (;;) { if (is_601 && (reg_d == reg_b || (reg_a != 0 && reg_d == reg_a))) { // UNTESTED! MPC601 manual is inconsistant on whether reg_b is skipped or not reg_d = (reg_d + 1) & 0x1F; // wrap around through GPR0 } switch (grab_inb) { case 0: return; case 1: ppc_state.gpr[reg_d] = mmu_read_vmem(ppc_effective_address) << 24; return; case 2: ppc_state.gpr[reg_d] = mmu_read_vmem(ppc_effective_address) << 16; return; case 3: ppc_state.gpr[reg_d] = (mmu_read_vmem(ppc_effective_address) << 16) | (mmu_read_vmem(ppc_effective_address + 2) << 8); return; } ppc_state.gpr[reg_d] = mmu_read_vmem(ppc_effective_address); reg_d = (reg_d + 1) & 0x1F; // wrap around through GPR0 ppc_effective_address += 4; grab_inb -= 4; } } void dppc_interpreter::ppc_stswi() { #ifdef CPU_PROFILING num_int_stores++; #endif ppc_grab_regssa(ppc_cur_instruction); ppc_effective_address = reg_a ? ppc_result_a : 0; uint32_t grab_inb = (ppc_cur_instruction >> 11) & 0x1F; grab_inb = grab_inb ? grab_inb : 32; while (grab_inb >= 4) { mmu_write_vmem(ppc_effective_address, ppc_state.gpr[reg_s]); reg_s++; if (reg_s >= 32) { // wrap around through GPR0 reg_s = 0; } ppc_effective_address += 4; grab_inb -= 4; } // handle remaining bytes switch (grab_inb) { case 1: mmu_write_vmem(ppc_effective_address, ppc_state.gpr[reg_s] >> 24); break; case 2: mmu_write_vmem(ppc_effective_address, ppc_state.gpr[reg_s] >> 16); break; case 3: mmu_write_vmem(ppc_effective_address, ppc_state.gpr[reg_s] >> 16); mmu_write_vmem(ppc_effective_address + 2, (ppc_state.gpr[reg_s] >> 8) & 0xFF); break; default: break; } } void dppc_interpreter::ppc_stswx() { #ifdef CPU_PROFILING num_int_stores++; #endif ppc_grab_regssab(ppc_cur_instruction); ppc_effective_address = ppc_result_b + (reg_a ? ppc_result_a : 0); uint32_t grab_inb = ppc_state.spr[SPR::XER] & 127; while (grab_inb >= 4) { mmu_write_vmem(ppc_effective_address, ppc_state.gpr[reg_s]); reg_s++; if (reg_s >= 32) { // wrap around through GPR0 reg_s = 0; } ppc_effective_address += 4; grab_inb -= 4; } // handle remaining bytes switch (grab_inb) { case 1: mmu_write_vmem(ppc_effective_address, ppc_state.gpr[reg_s] >> 24); break; case 2: mmu_write_vmem(ppc_effective_address, ppc_state.gpr[reg_s] >> 16); break; case 3: mmu_write_vmem(ppc_effective_address, ppc_state.gpr[reg_s] >> 16); mmu_write_vmem(ppc_effective_address + 2, (ppc_state.gpr[reg_s] >> 8) & 0xFF); break; default: break; } } void dppc_interpreter::ppc_eciwx() { uint32_t ear_enable = 0x80000000; // error if EAR[E] != 1 if (!(ppc_state.spr[282] && ear_enable)) { ppc_exception_handler(Except_Type::EXC_DSI, 0x0); } ppc_grab_regsdab(ppc_cur_instruction); ppc_effective_address = ppc_result_b + (reg_a ? ppc_result_a : 0); if (ppc_effective_address & 0x3) { ppc_alignment_exception(ppc_effective_address); } uint32_t ppc_result_d = mmu_read_vmem(ppc_effective_address); ppc_store_iresult_reg(reg_d, ppc_result_d); } void dppc_interpreter::ppc_ecowx() { uint32_t ear_enable = 0x80000000; // error if EAR[E] != 1 if (!(ppc_state.spr[282] && ear_enable)) { ppc_exception_handler(Except_Type::EXC_DSI, 0x0); } ppc_grab_regssab(ppc_cur_instruction); ppc_effective_address = ppc_result_b + (reg_a ? ppc_result_a : 0); if (ppc_effective_address & 0x3) { ppc_alignment_exception(ppc_effective_address); } mmu_write_vmem(ppc_effective_address, ppc_result_d); } // TLB Instructions void dppc_interpreter::ppc_tlbie() { #ifdef CPU_PROFILING num_supervisor_instrs++; #endif tlb_flush_entry(ppc_state.gpr[(ppc_cur_instruction >> 11) & 0x1F]); } void dppc_interpreter::ppc_tlbia() { #ifdef CPU_PROFILING num_supervisor_instrs++; #endif /* placeholder */ } void dppc_interpreter::ppc_tlbld() { #ifdef CPU_PROFILING num_supervisor_instrs++; #endif /* placeholder */ } void dppc_interpreter::ppc_tlbli() { #ifdef CPU_PROFILING num_supervisor_instrs++; #endif /* placeholder */ } void dppc_interpreter::ppc_tlbsync() { #ifdef CPU_PROFILING num_supervisor_instrs++; #endif /* placeholder */ }