/* DingusPPC - The Experimental PowerPC Macintosh emulator Copyright (C) 2018-20 divingkatae and maximum (theweirdo) spatium (Contact divingkatae#1017 or powermax#2286 on Discord for more info) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /** @file PowerPC Memory Management Unit emulation. */ /* TODO: - implement TLB - implement 601-style BATs - add proper error and exception handling */ #include "ppcmmu.h" #include "devices/memctrlbase.h" #include "memaccess.h" #include "ppcemu.h" #include #include #include #include #include #include #include /* pointer to exception handler to be called when a MMU exception is occured. */ void (*mmu_exception_handler)(Except_Type exception_type, uint32_t srr1_bits); /** PowerPC-style MMU BAT arrays (NULL initialization isn't prescribed). */ PPC_BAT_entry ibat_array[4] = {{0}}; PPC_BAT_entry dbat_array[4] = {{0}}; #define MMU_PROFILING // uncomment this to enable MMU profiling #define TLB_PROFILING // uncomment this to enable SoftTLB profiling /* MMU profiling */ #ifdef MMU_PROFILING /* global variables for lightweight MMU profiling */ uint64_t dmem_reads_total = 0; // counts reads from data memory uint64_t iomem_reads_total = 0; // counts I/O memory reads uint64_t dmem_writes_total = 0; // counts writes to data memory uint64_t iomem_writes_total = 0; // counts I/O memory writes uint64_t exec_reads_total = 0; // counts reads from executable memory uint64_t bat_transl_total = 0; // counts BAT translations uint64_t ptab_transl_total = 0; // counts page table translations uint64_t unaligned_reads = 0; // counts unaligned reads uint64_t unaligned_writes = 0; // counts unaligned writes uint64_t unaligned_crossp_r = 0; // counts unaligned crosspage reads uint64_t unaligned_crossp_w = 0; // counts unaligned crosspage writes #include "utils/profiler.h" #include class MMUProfile : public BaseProfile { public: MMUProfile() : BaseProfile("PPC_MMU") {}; void populate_variables(std::vector& vars) { vars.clear(); vars.push_back({.name = "Data Memory Reads Total", .format = ProfileVarFmt::DEC, .value = dmem_reads_total}); vars.push_back({.name = "I/O Memory Reads Total", .format = ProfileVarFmt::DEC, .value = iomem_reads_total}); vars.push_back({.name = "Data Memory Writes Total", .format = ProfileVarFmt::DEC, .value = dmem_writes_total}); vars.push_back({.name = "I/O Memory Writes Total", .format = ProfileVarFmt::DEC, .value = iomem_writes_total}); vars.push_back({.name = "Reads from Executable Memory", .format = ProfileVarFmt::DEC, .value = exec_reads_total}); vars.push_back({.name = "BAT Translations Total", .format = ProfileVarFmt::DEC, .value = bat_transl_total}); vars.push_back({.name = "Page Table Translations Total", .format = ProfileVarFmt::DEC, .value = ptab_transl_total}); vars.push_back({.name = "Unaligned Reads Total", .format = ProfileVarFmt::DEC, .value = unaligned_reads}); vars.push_back({.name = "Unaligned Writes Total", .format = ProfileVarFmt::DEC, .value = unaligned_writes}); vars.push_back({.name = "Unaligned Crosspage Reads Total", .format = ProfileVarFmt::DEC, .value = unaligned_crossp_r}); vars.push_back({.name = "Unaligned Crosspage Writes Total", .format = ProfileVarFmt::DEC, .value = unaligned_crossp_w}); }; void reset() { dmem_reads_total = 0; iomem_reads_total = 0; dmem_writes_total = 0; iomem_writes_total = 0; exec_reads_total = 0; bat_transl_total = 0; ptab_transl_total = 0; unaligned_reads = 0; unaligned_writes = 0; unaligned_crossp_r = 0; unaligned_crossp_w = 0; }; }; #endif /* SoftTLB profiling. */ #ifdef TLB_PROFILING /* global variables for lightweight SoftTLB profiling */ uint64_t num_primary_tlb_hits = 0; // number of hits in the primary TLB uint64_t num_secondary_tlb_hits = 0; // number of hits in the secondary TLB uint64_t num_tlb_refills = 0; // number of TLB refills uint64_t num_entry_replacements = 0; // number of entry replacements #include "utils/profiler.h" #include class TLBProfile : public BaseProfile { public: TLBProfile() : BaseProfile("PPC:MMU:TLB") {}; void populate_variables(std::vector& vars) { vars.clear(); vars.push_back({.name = "Number of hits in the primary TLB", .format = ProfileVarFmt::DEC, .value = num_primary_tlb_hits}); vars.push_back({.name = "Number of hits in the secondary TLB", .format = ProfileVarFmt::DEC, .value = num_secondary_tlb_hits}); vars.push_back({.name = "Number of TLB refills", .format = ProfileVarFmt::DEC, .value = num_tlb_refills}); vars.push_back({.name = "Number of replaced TLB entries", .format = ProfileVarFmt::DEC, .value = num_entry_replacements}); }; void reset() { num_primary_tlb_hits = 0; num_secondary_tlb_hits = 0; num_tlb_refills = 0; num_entry_replacements = 0; }; }; #endif /** remember recently used physical memory regions for quicker translation. */ AddressMapEntry last_read_area = {0xFFFFFFFF, 0xFFFFFFFF}; AddressMapEntry last_write_area = {0xFFFFFFFF, 0xFFFFFFFF}; AddressMapEntry last_exec_area = {0xFFFFFFFF, 0xFFFFFFFF}; AddressMapEntry last_ptab_area = {0xFFFFFFFF, 0xFFFFFFFF}; AddressMapEntry last_dma_area = {0xFFFFFFFF, 0xFFFFFFFF}; template static inline T read_phys_mem(AddressMapEntry *mru_rgn, uint32_t addr) { if (addr < mru_rgn->start || (addr + sizeof(T)) > mru_rgn->end) { AddressMapEntry* entry = mem_ctrl_instance->find_range(addr); if (entry) { *mru_rgn = *entry; } else { LOG_F(ERROR, "Read from unmapped memory at 0x%08X!\n", addr); return (-1ULL ? sizeof(T) == 8 : -1UL); } } if (mru_rgn->type & (RT_ROM | RT_RAM)) { #ifdef MMU_PROFILING dmem_reads_total++; #endif switch(sizeof(T)) { case 1: return *(mru_rgn->mem_ptr + (addr - mru_rgn->start)); case 2: if (is_aligned) { return READ_WORD_BE_A(mru_rgn->mem_ptr + (addr - mru_rgn->start)); } else { return READ_WORD_BE_U(mru_rgn->mem_ptr + (addr - mru_rgn->start)); } case 4: if (is_aligned) { return READ_DWORD_BE_A(mru_rgn->mem_ptr + (addr - mru_rgn->start)); } else { return READ_DWORD_BE_U(mru_rgn->mem_ptr + (addr - mru_rgn->start)); } case 8: if (is_aligned) { return READ_QWORD_BE_A(mru_rgn->mem_ptr + (addr - mru_rgn->start)); } default: LOG_F(ERROR, "READ_PHYS: invalid size %lu passed\n", sizeof(T)); return (-1ULL ? sizeof(T) == 8 : -1UL); } } else if (mru_rgn->type & RT_MMIO) { #ifdef MMU_PROFILING iomem_reads_total++; #endif return (mru_rgn->devobj->read(mru_rgn->start, addr - mru_rgn->start, sizeof(T))); } else { LOG_F(ERROR, "READ_PHYS: invalid region type!\n"); return (-1ULL ? sizeof(T) == 8 : -1UL); } } template static inline void write_phys_mem(AddressMapEntry *mru_rgn, uint32_t addr, T value) { if (addr < mru_rgn->start || (addr + sizeof(T)) > mru_rgn->end) { AddressMapEntry* entry = mem_ctrl_instance->find_range(addr); if (entry) { *mru_rgn = *entry; } else { LOG_F(ERROR, "Write to unmapped memory at 0x%08X!\n", addr); return; } } if (mru_rgn->type & RT_RAM) { #ifdef MMU_PROFILING dmem_writes_total++; #endif switch(sizeof(T)) { case 1: *(mru_rgn->mem_ptr + (addr - mru_rgn->start)) = value; break; case 2: if (is_aligned) { WRITE_WORD_BE_A(mru_rgn->mem_ptr + (addr - mru_rgn->start), value); } else { WRITE_WORD_BE_U(mru_rgn->mem_ptr + (addr - mru_rgn->start), value); } break; case 4: if (is_aligned) { WRITE_DWORD_BE_A(mru_rgn->mem_ptr + (addr - mru_rgn->start), value); } else { WRITE_DWORD_BE_U(mru_rgn->mem_ptr + (addr - mru_rgn->start), value); } break; case 8: if (is_aligned) { WRITE_QWORD_BE_A(mru_rgn->mem_ptr + (addr - mru_rgn->start), value); } break; default: LOG_F(ERROR, "WRITE_PHYS: invalid size %lu passed\n", sizeof(T)); return; } } else if (mru_rgn->type & RT_MMIO) { #ifdef MMU_PROFILING iomem_writes_total++; #endif mru_rgn->devobj->write(mru_rgn->start, addr - mru_rgn->start, value, sizeof(T)); } else { LOG_F(ERROR, "WRITE_PHYS: invalid region type!\n"); } } uint8_t* mmu_get_dma_mem(uint32_t addr, uint32_t size) { if (addr >= last_dma_area.start && (addr + size) <= last_dma_area.end) { return last_dma_area.mem_ptr + (addr - last_dma_area.start); } else { AddressMapEntry* entry = mem_ctrl_instance->find_range(addr); if (entry && entry->type & (RT_ROM | RT_RAM)) { last_dma_area.start = entry->start; last_dma_area.end = entry->end; last_dma_area.mem_ptr = entry->mem_ptr; return last_dma_area.mem_ptr + (addr - last_dma_area.start); } else { LOG_F(ERROR, "SOS: DMA access to unmapped memory %08X!\n", addr); exit(-1); // FIXME: ugly error handling, must be the proper exception! } } } void ppc_set_cur_instruction(const uint8_t* ptr) { ppc_cur_instruction = READ_DWORD_BE_A(ptr); } bool gTLBFlushBatEntries = false; bool gTLBFlushPatEntries = false; // Forward declarations. void tlb_flush_bat_entries(); void tlb_flush_pat_entries(); void ibat_update(uint32_t bat_reg) { int upper_reg_num; uint32_t bl, hi_mask; PPC_BAT_entry* bat_entry; upper_reg_num = bat_reg & 0xFFFFFFFE; if (ppc_state.spr[upper_reg_num] & 3) { // is that BAT pair valid? bat_entry = &ibat_array[(bat_reg - 528) >> 1]; bl = (ppc_state.spr[upper_reg_num] >> 2) & 0x7FF; hi_mask = ~((bl << 17) | 0x1FFFF); bat_entry->access = ppc_state.spr[upper_reg_num] & 3; bat_entry->prot = ppc_state.spr[upper_reg_num + 1] & 3; bat_entry->hi_mask = hi_mask; bat_entry->phys_hi = ppc_state.spr[upper_reg_num + 1] & hi_mask; bat_entry->bepi = ppc_state.spr[upper_reg_num] & hi_mask; } } void dbat_update(uint32_t bat_reg) { int upper_reg_num; uint32_t bl, hi_mask; PPC_BAT_entry* bat_entry; upper_reg_num = bat_reg & 0xFFFFFFFE; if (ppc_state.spr[upper_reg_num] & 3) { // is that BAT pair valid? bat_entry = &dbat_array[(bat_reg - 536) >> 1]; bl = (ppc_state.spr[upper_reg_num] >> 2) & 0x7FF; hi_mask = ~((bl << 17) | 0x1FFFF); bat_entry->access = ppc_state.spr[upper_reg_num] & 3; bat_entry->prot = ppc_state.spr[upper_reg_num + 1] & 3; bat_entry->hi_mask = hi_mask; bat_entry->phys_hi = ppc_state.spr[upper_reg_num + 1] & hi_mask; bat_entry->bepi = ppc_state.spr[upper_reg_num] & hi_mask; if (!gTLBFlushBatEntries) { gTLBFlushBatEntries = true; add_ctx_sync_action(&tlb_flush_bat_entries); } } } void mmu_pat_ctx_changed() { if (!gTLBFlushPatEntries) { gTLBFlushPatEntries = true; add_ctx_sync_action(&tlb_flush_pat_entries); } } /** PowerPC-style block address translation. */ template static BATResult ppc_block_address_translation(uint32_t la) { uint32_t pa; // translated physical address uint8_t prot; // protection bits for the translated address PPC_BAT_entry *bat_array; bool bat_hit = false; unsigned msr_pr = !!(ppc_state.msr & 0x4000); bat_array = (type == BATType::Instruction) ? ibat_array : dbat_array; // Format: %XY // X - supervisor access bit, Y - problem/user access bit // Those bits are mutually exclusive unsigned access_bits = ((msr_pr ^ 1) << 1) | msr_pr; for (int bat_index = 0; bat_index < 4; bat_index++) { PPC_BAT_entry* bat_entry = &bat_array[bat_index]; if ((bat_entry->access & access_bits) && ((la & bat_entry->hi_mask) == bat_entry->bepi)) { bat_hit = true; #ifdef MMU_PROFILING bat_transl_total++; #endif // logical to physical translation pa = bat_entry->phys_hi | (la & ~bat_entry->hi_mask); prot = bat_entry->prot; break; } } return BATResult{bat_hit, prot, pa}; } static inline uint8_t* calc_pteg_addr(uint32_t hash) { uint32_t sdr1_val, pteg_addr; sdr1_val = ppc_state.spr[SPR::SDR1]; pteg_addr = sdr1_val & 0xFE000000; pteg_addr |= (sdr1_val & 0x01FF0000) | (((sdr1_val & 0x1FF) << 16) & ((hash & 0x7FC00) << 6)); pteg_addr |= (hash & 0x3FF) << 6; if (pteg_addr >= last_ptab_area.start && pteg_addr <= last_ptab_area.end) { return last_ptab_area.mem_ptr + (pteg_addr - last_ptab_area.start); } else { AddressMapEntry* entry = mem_ctrl_instance->find_range(pteg_addr); if (entry && entry->type & (RT_ROM | RT_RAM)) { last_ptab_area.start = entry->start; last_ptab_area.end = entry->end; last_ptab_area.mem_ptr = entry->mem_ptr; return last_ptab_area.mem_ptr + (pteg_addr - last_ptab_area.start); } else { LOG_F(ERROR, "SOS: no page table region was found at %08X!\n", pteg_addr); exit(-1); // FIXME: ugly error handling, must be the proper exception! } } } static bool search_pteg( uint8_t* pteg_addr, uint8_t** ret_pte_addr, uint32_t vsid, uint16_t page_index, uint8_t pteg_num) { /* construct PTE matching word */ uint32_t pte_check = 0x80000000 | (vsid << 7) | (pteg_num << 6) | (page_index >> 10); #ifdef MMU_INTEGRITY_CHECKS /* PTEG integrity check that ensures that all matching PTEs have identical RPN, WIMG and PP bits (PPC PEM 32-bit 7.6.2, rule 5). */ uint32_t pte_word2_check; bool match_found = false; for (int i = 0; i < 8; i++, pteg_addr += 8) { if (pte_check == READ_DWORD_BE_A(pteg_addr)) { if (match_found) { if ((READ_DWORD_BE_A(pteg_addr) & 0xFFFFF07B) != pte_word2_check) { LOG_F(ERROR, "Multiple PTEs with different RPN/WIMG/PP found!\n"); exit(-1); } } else { /* isolate RPN, WIMG and PP fields */ pte_word2_check = READ_DWORD_BE_A(pteg_addr) & 0xFFFFF07B; *ret_pte_addr = pteg_addr; } } } #else for (int i = 0; i < 8; i++, pteg_addr += 8) { if (pte_check == READ_DWORD_BE_A(pteg_addr)) { *ret_pte_addr = pteg_addr; return true; } } #endif return false; } static PATResult page_address_translation(uint32_t la, bool is_instr_fetch, unsigned msr_pr, int is_write) { uint32_t sr_val, page_index, pteg_hash1, vsid, pte_word2; unsigned key, pp; uint8_t* pte_addr; sr_val = ppc_state.sr[(la >> 28) & 0x0F]; if (sr_val & 0x80000000) { LOG_F(ERROR, "Direct-store segments not supported, LA=%0xX\n", la); exit(-1); // FIXME: ugly error handling, must be the proper exception! } /* instruction fetch from a no-execute segment will cause ISI exception */ if ((sr_val & 0x10000000) && is_instr_fetch) { mmu_exception_handler(Except_Type::EXC_ISI, 0x10000000); } page_index = (la >> 12) & 0xFFFF; pteg_hash1 = (sr_val & 0x7FFFF) ^ page_index; vsid = sr_val & 0x0FFFFFF; if (!search_pteg(calc_pteg_addr(pteg_hash1), &pte_addr, vsid, page_index, 0)) { if (!search_pteg(calc_pteg_addr(~pteg_hash1), &pte_addr, vsid, page_index, 1)) { if (is_instr_fetch) { mmu_exception_handler(Except_Type::EXC_ISI, 0x40000000); } else { ppc_state.spr[SPR::DSISR] = 0x40000000 | (is_write << 25); ppc_state.spr[SPR::DAR] = la; mmu_exception_handler(Except_Type::EXC_DSI, 0); } } } pte_word2 = READ_DWORD_BE_A(pte_addr + 4); key = (((sr_val >> 29) & 1) & msr_pr) | (((sr_val >> 30) & 1) & (msr_pr ^ 1)); /* check page access */ pp = pte_word2 & 3; // the following scenarios cause DSI/ISI exception: // any access with key = 1 and PP = %00 // write access with key = 1 and PP = %01 // write access with PP = %11 if ((key && (!pp || (pp == 1 && is_write))) || (pp == 3 && is_write)) { if (is_instr_fetch) { mmu_exception_handler(Except_Type::EXC_ISI, 0x08000000); } else { ppc_state.spr[SPR::DSISR] = 0x08000000 | (is_write << 25); ppc_state.spr[SPR::DAR] = la; mmu_exception_handler(Except_Type::EXC_DSI, 0); } } /* update R and C bits */ /* For simplicity, R is set on each access, C is set only for writes */ pte_addr[6] |= 0x01; if (is_write) { pte_addr[7] |= 0x80; } /* return physical address, access protection and C status */ return PATResult{ ((pte_word2 & 0xFFFFF000) | (la & 0x00000FFF)), static_cast((key << 2) | pp), static_cast(pte_word2 & 0x80) }; } /** PowerPC-style MMU instruction address translation. */ static uint32_t mmu_instr_translation(uint32_t la) { uint32_t pa; /* translated physical address */ bool bat_hit = false; unsigned msr_pr = !!(ppc_state.msr & 0x4000); // Format: %XY // X - supervisor access bit, Y - problem/user access bit // Those bits are mutually exclusive unsigned access_bits = ((msr_pr ^ 1) << 1) | msr_pr; for (int bat_index = 0; bat_index < 4; bat_index++) { PPC_BAT_entry* bat_entry = &ibat_array[bat_index]; if ((bat_entry->access & access_bits) && ((la & bat_entry->hi_mask) == bat_entry->bepi)) { bat_hit = true; #ifdef MMU_PROFILING bat_transl_total++; #endif if (!bat_entry->prot) { mmu_exception_handler(Except_Type::EXC_ISI, 0x08000000); } // logical to physical translation pa = bat_entry->phys_hi | (la & ~bat_entry->hi_mask); break; } } /* page address translation */ if (!bat_hit) { PATResult pat_res = page_address_translation(la, true, msr_pr, 0); pa = pat_res.phys; #ifdef MMU_PROFILING ptab_transl_total++; #endif } return pa; } /** PowerPC-style MMU data address translation. */ static uint32_t ppc_mmu_addr_translate(uint32_t la, int is_write) { uint32_t pa; /* translated physical address */ bool bat_hit = false; unsigned msr_pr = !!(ppc_state.msr & 0x4000); // Format: %XY // X - supervisor access bit, Y - problem/user access bit // Those bits are mutually exclusive unsigned access_bits = ((msr_pr ^ 1) << 1) | msr_pr; for (int bat_index = 0; bat_index < 4; bat_index++) { PPC_BAT_entry* bat_entry = &dbat_array[bat_index]; if ((bat_entry->access & access_bits) && ((la & bat_entry->hi_mask) == bat_entry->bepi)) { bat_hit = true; #ifdef MMU_PROFILING bat_transl_total++; #endif if (!bat_entry->prot || ((bat_entry->prot & 1) && is_write)) { ppc_state.spr[SPR::DSISR] = 0x08000000 | (is_write << 25); ppc_state.spr[SPR::DAR] = la; mmu_exception_handler(Except_Type::EXC_DSI, 0); } // logical to physical translation pa = bat_entry->phys_hi | (la & ~bat_entry->hi_mask); break; } } /* page address translation */ if (!bat_hit) { PATResult pat_res = page_address_translation(la, false, msr_pr, is_write); pa = pat_res.phys; #ifdef MMU_PROFILING ptab_transl_total++; #endif } return pa; } static void mem_write_unaligned(uint32_t addr, uint32_t value, uint32_t size) { #ifdef MMU_DEBUG LOG_F(WARNING, "Attempt to write unaligned %d bytes to 0x%08X\n", size, addr); #endif if (((addr & 0xFFF) + size) > 0x1000) { // Special case: unaligned cross-page writes #ifdef MMU_PROFILING unaligned_crossp_w++; #endif uint32_t phys_addr; uint32_t shift = (size - 1) * 8; // Break misaligned memory accesses into multiple, bytewise accesses // and retranslate on page boundary. // Because such accesses suffer a performance penalty, they will be // presumably very rare so don't care much about performance. for (int i = 0; i < size; shift -= 8, addr++, phys_addr++, i++) { if ((ppc_state.msr & 0x10) && (!i || !(addr & 0xFFF))) { phys_addr = ppc_mmu_addr_translate(addr, 1); } write_phys_mem(&last_write_area, phys_addr, (value >> shift) & 0xFF); } } else { // data address translation if enabled if (ppc_state.msr & 0x10) { addr = ppc_mmu_addr_translate(addr, 1); } if (size == 2) { write_phys_mem(&last_write_area, addr, value); } else { write_phys_mem(&last_write_area, addr, value); } #ifdef MMU_PROFILING unaligned_writes++; #endif } } // primary TLB for all MMU modes static std::array mode1_tlb1; static std::array mode2_tlb1; static std::array mode3_tlb1; // secondary TLB for all MMU modes static std::array mode1_tlb2; static std::array mode2_tlb2; static std::array mode3_tlb2; TLBEntry *pCurTLB1; // current primary TLB TLBEntry *pCurTLB2; // current secondary TLB uint32_t tlb_size_mask = TLB_SIZE - 1; // fake TLB entry for handling of unmapped memory accesses uint64_t UnmappedVal = -1ULL; TLBEntry UnmappedMem = {TLB_INVALID_TAG, 0, 0, 0}; uint8_t CurMMUMode = {0xFF}; // current MMU mode void mmu_change_mode() { uint8_t mmu_mode = ((ppc_state.msr >> 3) & 0x2) | ((ppc_state.msr >> 14) & 1); if (CurMMUMode != mmu_mode) { switch(mmu_mode) { case 0: // real address mode pCurTLB1 = &mode1_tlb1[0]; pCurTLB2 = &mode1_tlb2[0]; break; case 2: // supervisor mode with data translation enabled pCurTLB1 = &mode2_tlb1[0]; pCurTLB2 = &mode2_tlb2[0]; break; case 3: // user mode with data translation enabled pCurTLB1 = &mode3_tlb1[0]; pCurTLB2 = &mode3_tlb2[0]; break; } CurMMUMode = mmu_mode; } } static TLBEntry* tlb2_target_entry(uint32_t gp_va) { TLBEntry *tlb_entry; tlb_entry = &pCurTLB2[((gp_va >> PAGE_SIZE_BITS) & tlb_size_mask) * TLB2_WAYS]; // select the target from invalid blocks first if (tlb_entry[0].tag == TLB_INVALID_TAG) { // update LRU bits tlb_entry[0].lru_bits = 0x3; tlb_entry[1].lru_bits = 0x2; tlb_entry[2].lru_bits &= 0x1; tlb_entry[3].lru_bits &= 0x1; return tlb_entry; } else if (tlb_entry[1].tag == TLB_INVALID_TAG) { // update LRU bits tlb_entry[0].lru_bits = 0x2; tlb_entry[1].lru_bits = 0x3; tlb_entry[2].lru_bits &= 0x1; tlb_entry[3].lru_bits &= 0x1; return &tlb_entry[1]; } else if (tlb_entry[2].tag == TLB_INVALID_TAG) { // update LRU bits tlb_entry[0].lru_bits &= 0x1; tlb_entry[1].lru_bits &= 0x1; tlb_entry[2].lru_bits = 0x3; tlb_entry[3].lru_bits = 0x2; return &tlb_entry[2]; } else if (tlb_entry[3].tag == TLB_INVALID_TAG) { // update LRU bits tlb_entry[0].lru_bits &= 0x1; tlb_entry[1].lru_bits &= 0x1; tlb_entry[2].lru_bits = 0x2; tlb_entry[3].lru_bits = 0x3; return &tlb_entry[3]; } else { // no free entries, replace an existing one according with the hLRU policy #ifdef TLB_PROFILING num_entry_replacements++; #endif if (tlb_entry[0].lru_bits == 0) { // update LRU bits tlb_entry[0].lru_bits = 0x3; tlb_entry[1].lru_bits = 0x2; tlb_entry[2].lru_bits &= 0x1; tlb_entry[3].lru_bits &= 0x1; return tlb_entry; } else if (tlb_entry[1].lru_bits == 0) { // update LRU bits tlb_entry[0].lru_bits = 0x2; tlb_entry[1].lru_bits = 0x3; tlb_entry[2].lru_bits &= 0x1; tlb_entry[3].lru_bits &= 0x1; return &tlb_entry[1]; } else if (tlb_entry[2].lru_bits == 0) { // update LRU bits tlb_entry[0].lru_bits &= 0x1; tlb_entry[1].lru_bits &= 0x1; tlb_entry[2].lru_bits = 0x3; tlb_entry[3].lru_bits = 0x2; return &tlb_entry[2]; } else { // update LRU bits tlb_entry[0].lru_bits &= 0x1; tlb_entry[1].lru_bits &= 0x1; tlb_entry[2].lru_bits = 0x2; tlb_entry[3].lru_bits = 0x3; return &tlb_entry[3]; } } } static TLBEntry* tlb2_refill(uint32_t guest_va, int is_write) { uint32_t phys_addr; uint16_t flags = 0; TLBEntry *tlb_entry; const uint32_t tag = guest_va & ~0xFFFUL; /* data address translation if enabled */ if (ppc_state.msr & 0x10) { // attempt block address translation first BATResult bat_res = ppc_block_address_translation(guest_va); if (bat_res.hit) { // check block protection if (!bat_res.prot || ((bat_res.prot & 1) && is_write)) { LOG_F(WARNING, "BAT DSI exception in TLB2 refill!"); LOG_F(WARNING, "Attempt to write to read-only region, LA=0x%08X, PC=0x%08X!", guest_va, ppc_state.pc); //UnmappedMem.tag = tag; //UnmappedMem.host_va_offset = (int64_t)(&UnmappedVal) - guest_va; //return &UnmappedMem; ppc_state.spr[SPR::DSISR] = 0x08000000 | (is_write << 25); ppc_state.spr[SPR::DAR] = guest_va; mmu_exception_handler(Except_Type::EXC_DSI, 0); } phys_addr = bat_res.phys; flags = TLBFlags::PTE_SET_C; // prevent PTE.C updates for BAT flags |= TLBFlags::TLBE_FROM_BAT; // tell the world we come from if (bat_res.prot == 2) { flags |= TLBFlags::PAGE_WRITABLE; } } else { // page address translation PATResult pat_res = page_address_translation(guest_va, false, !!(ppc_state.msr & 0x4000), is_write); phys_addr = pat_res.phys; flags = TLBFlags::TLBE_FROM_PAT; // tell the world we come from if (pat_res.prot <= 2 || pat_res.prot == 6) { flags |= TLBFlags::PAGE_WRITABLE; } if (is_write || pat_res.pte_c_status) { // C-bit of the PTE is already set so the TLB logic // doesn't need to update it anymore flags |= TLBFlags::PTE_SET_C; } } } else { // data translation disabled phys_addr = guest_va; flags = TLBFlags::PTE_SET_C; // no PTE.C updates in real addressing mode flags |= TLBFlags::PAGE_WRITABLE; // assume physical pages are writable } // look up host virtual address AddressMapEntry* reg_desc = mem_ctrl_instance->find_range(phys_addr); if (reg_desc) { // refill the secondary TLB tlb_entry = tlb2_target_entry(tag); tlb_entry->tag = tag; if (reg_desc->type & RT_MMIO) { // MMIO region tlb_entry->flags = flags | TLBFlags::PAGE_IO; tlb_entry->reg_desc = reg_desc; } else { // memory region backed by host memory tlb_entry->flags = flags | TLBFlags::PAGE_MEM; tlb_entry->host_va_offset = (int64_t)reg_desc->mem_ptr - guest_va + (phys_addr - reg_desc->start); } return tlb_entry; } else { LOG_F(ERROR, "Read from unmapped memory at 0x%08X!\n", phys_addr); UnmappedMem.tag = tag; UnmappedMem.host_va_offset = (int64_t)(&UnmappedVal) - guest_va; return &UnmappedMem; } } void tlb_flush_entry(uint32_t ea) { TLBEntry *tlb_entry, *tlb1, *tlb2; const uint32_t tag = ea & ~0xFFFUL; for (int m = 0; m < 3; m++) { switch (m) { case 0: tlb1 = &mode1_tlb1[0]; tlb2 = &mode1_tlb2[0]; break; case 1: tlb1 = &mode2_tlb1[0]; tlb2 = &mode2_tlb2[0]; break; case 2: tlb1 = &mode3_tlb1[0]; tlb2 = &mode3_tlb2[0]; break; } // flush primary TLB tlb_entry = &tlb1[(ea >> PAGE_SIZE_BITS) & tlb_size_mask]; if (tlb_entry->tag == tag) { tlb_entry->tag = TLB_INVALID_TAG; //LOG_F(INFO, "Invalidated primary TLB entry at 0x%X", ea); } // flush secondary TLB tlb_entry = &tlb2[((ea >> PAGE_SIZE_BITS) & tlb_size_mask) * TLB2_WAYS]; for (int i = 0; i < TLB2_WAYS; i++) { if (tlb_entry[i].tag == tag) { tlb_entry[i].tag = TLB_INVALID_TAG; //LOG_F(INFO, "Invalidated secondary TLB entry at 0x%X", ea); } } } } void tlb_flush_entries(TLBFlags type) { int i; // Flush BAT entries from the primary TLBs for (i = 0; i < TLB_SIZE; i++) { if (mode2_tlb1[i].flags & type) { mode2_tlb1[i].tag = TLB_INVALID_TAG; } if (mode3_tlb1[i].flags & type) { mode3_tlb1[i].tag = TLB_INVALID_TAG; } } // Flush BAT entries from the secondary TLBs for (i = 0; i < TLB_SIZE * TLB2_WAYS; i++) { if (mode2_tlb2[i].flags & type) { mode2_tlb2[i].tag = TLB_INVALID_TAG; } if (mode3_tlb2[i].flags & type) { mode3_tlb2[i].tag = TLB_INVALID_TAG; } } } void tlb_flush_bat_entries() { if (!gTLBFlushBatEntries) return; tlb_flush_entries(TLBE_FROM_BAT); gTLBFlushBatEntries = false; } void tlb_flush_pat_entries() { if (!gTLBFlushPatEntries) return; tlb_flush_entries(TLBE_FROM_PAT); gTLBFlushPatEntries = false; } static inline uint64_t tlb_translate_addr(uint32_t guest_va) { TLBEntry *tlb1_entry, *tlb2_entry; const uint32_t tag = guest_va & ~0xFFFUL; // look up address in the primary TLB tlb1_entry = &pCurTLB1[(guest_va >> PAGE_SIZE_BITS) & tlb_size_mask]; if (tlb1_entry->tag == tag) { // primary TLB hit -> fast path return tlb1_entry->host_va_offset + guest_va; } else { // primary TLB miss -> look up address in the secondary TLB tlb2_entry = &pCurTLB2[((guest_va >> PAGE_SIZE_BITS) & tlb_size_mask) * TLB2_WAYS]; if (tlb2_entry->tag == tag) { // update LRU bits tlb2_entry[0].lru_bits = 0x3; tlb2_entry[1].lru_bits = 0x2; tlb2_entry[2].lru_bits &= 0x1; tlb2_entry[3].lru_bits &= 0x1; } else if (tlb2_entry[1].tag == tag) { tlb2_entry = &tlb2_entry[1]; // update LRU bits tlb2_entry[0].lru_bits = 0x2; tlb2_entry[1].lru_bits = 0x3; tlb2_entry[2].lru_bits &= 0x1; tlb2_entry[3].lru_bits &= 0x1; } else if (tlb2_entry[2].tag == tag) { tlb2_entry = &tlb2_entry[2]; // update LRU bits tlb2_entry[0].lru_bits &= 0x1; tlb2_entry[1].lru_bits &= 0x1; tlb2_entry[2].lru_bits = 0x3; tlb2_entry[3].lru_bits = 0x2; } else if (tlb2_entry[3].tag == tag) { tlb2_entry = &tlb2_entry[3]; // update LRU bits tlb2_entry[0].lru_bits &= 0x1; tlb2_entry[1].lru_bits &= 0x1; tlb2_entry[2].lru_bits = 0x2; tlb2_entry[3].lru_bits = 0x3; } else { // secondary TLB miss -> // perform full address translation and refill the secondary TLB tlb2_entry = tlb2_refill(guest_va, 0); } if (tlb2_entry->flags & TLBFlags::PAGE_MEM) { // is it a real memory region? // refill the primary TLB tlb1_entry->tag = tag; tlb1_entry->flags = tlb2_entry->flags; tlb1_entry->host_va_offset = tlb2_entry->host_va_offset; return tlb1_entry->host_va_offset + guest_va; } else { // an attempt to access a memory-mapped device return guest_va - tlb2_entry->reg_desc->start; } } } static uint32_t mem_grab_unaligned(uint32_t addr, uint32_t size) { uint32_t ret = 0; #ifdef MMU_DEBUG LOG_F(WARNING, "Attempt to read unaligned %d bytes from 0x%08X\n", size, addr); #endif if (((addr & 0xFFF) + size) > 0x1000) { // Special case: misaligned cross-page reads #ifdef MMU_PROFILING unaligned_crossp_r++; #endif uint32_t phys_addr; uint32_t res = 0; // Break misaligned memory accesses into multiple, bytewise accesses // and retranslate on page boundary. // Because such accesses suffer a performance penalty, they will be // presumably very rare so don't care much about performance. for (int i = 0; i < size; addr++, phys_addr++, i++) { tlb_translate_addr(addr); if ((ppc_state.msr & 0x10) && (!i || !(addr & 0xFFF))) { phys_addr = ppc_mmu_addr_translate(addr, 0); } res = (res << 8) | read_phys_mem(&last_read_area, phys_addr); } return res; } else { /* data address translation if enabled */ if (ppc_state.msr & 0x10) { addr = ppc_mmu_addr_translate(addr, 0); } if (size == 2) { return read_phys_mem(&last_read_area, addr); } else { return read_phys_mem(&last_read_area, addr); } #ifdef MMU_PROFILING unaligned_reads++; #endif } return ret; } static inline TLBEntry * lookup_secondary_tlb(uint32_t guest_va, uint32_t tag) { TLBEntry *tlb_entry; tlb_entry = &pCurTLB2[((guest_va >> PAGE_SIZE_BITS) & tlb_size_mask) * TLB2_WAYS]; if (tlb_entry->tag == tag) { // update LRU bits tlb_entry[0].lru_bits = 0x3; tlb_entry[1].lru_bits = 0x2; tlb_entry[2].lru_bits &= 0x1; tlb_entry[3].lru_bits &= 0x1; } else if (tlb_entry[1].tag == tag) { tlb_entry = &tlb_entry[1]; // update LRU bits tlb_entry[0].lru_bits = 0x2; tlb_entry[1].lru_bits = 0x3; tlb_entry[2].lru_bits &= 0x1; tlb_entry[3].lru_bits &= 0x1; } else if (tlb_entry[2].tag == tag) { tlb_entry = &tlb_entry[2]; // update LRU bits tlb_entry[0].lru_bits &= 0x1; tlb_entry[1].lru_bits &= 0x1; tlb_entry[2].lru_bits = 0x3; tlb_entry[3].lru_bits = 0x2; } else if (tlb_entry[3].tag == tag) { tlb_entry = &tlb_entry[3]; // update LRU bits tlb_entry[0].lru_bits &= 0x1; tlb_entry[1].lru_bits &= 0x1; tlb_entry[2].lru_bits = 0x2; tlb_entry[3].lru_bits = 0x3; } else { return nullptr; } return tlb_entry; } // Forward declarations. static uint32_t read_unaligned(uint32_t guest_va, uint8_t *host_va, uint32_t size); static void write_unaligned(uint32_t guest_va, uint8_t *host_va, uint32_t value, uint32_t size); template inline T mmu_read_vmem(uint32_t guest_va) { TLBEntry *tlb1_entry, *tlb2_entry; uint8_t *host_va; const uint32_t tag = guest_va & ~0xFFFUL; // look up guest virtual address in the primary TLB tlb1_entry = &pCurTLB1[(guest_va >> PAGE_SIZE_BITS) & tlb_size_mask]; if (tlb1_entry->tag == tag) { // primary TLB hit -> fast path #ifdef TLB_PROFILING num_primary_tlb_hits++; #endif host_va = (uint8_t *)(tlb1_entry->host_va_offset + guest_va); } else { // primary TLB miss -> look up address in the secondary TLB tlb2_entry = lookup_secondary_tlb(guest_va, tag); if (tlb2_entry == nullptr) { #ifdef TLB_PROFILING num_tlb_refills++; #endif // secondary TLB miss -> // perform full address translation and refill the secondary TLB tlb2_entry = tlb2_refill(guest_va, 0); } #ifdef TLB_PROFILING else { num_secondary_tlb_hits++; } #endif if (tlb2_entry->flags & TLBFlags::PAGE_MEM) { // is it a real memory region? // refill the primary TLB tlb1_entry->tag = tag; tlb1_entry->flags = tlb2_entry->flags; tlb1_entry->host_va_offset = tlb2_entry->host_va_offset; host_va = (uint8_t *)(tlb1_entry->host_va_offset + guest_va); } else { // otherwise, it's an access to a memory-mapped device #ifdef MMU_PROFILING iomem_reads_total++; #endif return ( tlb2_entry->reg_desc->devobj->read(tlb2_entry->reg_desc->start, guest_va - tlb2_entry->reg_desc->start, sizeof(T)) ); } } #ifdef MMU_PROFILING dmem_reads_total++; #endif // handle unaligned memory accesses if (sizeof(T) > 1 && (guest_va & (sizeof(T) - 1))) { return read_unaligned(guest_va, host_va, sizeof(T)); } // handle aligned memory accesses switch(sizeof(T)) { case 1: return *host_va; case 2: return READ_WORD_BE_A(host_va); case 4: return READ_DWORD_BE_A(host_va); case 8: return READ_QWORD_BE_A(host_va); } } // explicitely instantiate all required mmu_read_vmem variants template uint8_t mmu_read_vmem(uint32_t guest_va); template uint16_t mmu_read_vmem(uint32_t guest_va); template uint32_t mmu_read_vmem(uint32_t guest_va); template uint64_t mmu_read_vmem(uint32_t guest_va); template inline void mmu_write_vmem(uint32_t guest_va, T value) { TLBEntry *tlb1_entry, *tlb2_entry; uint8_t *host_va; const uint32_t tag = guest_va & ~0xFFFUL; // look up guest virtual address in the primary TLB tlb1_entry = &pCurTLB1[(guest_va >> PAGE_SIZE_BITS) & tlb_size_mask]; if (tlb1_entry->tag == tag) { // primary TLB hit -> fast path #ifdef TLB_PROFILING num_primary_tlb_hits++; #endif if (!(tlb1_entry->flags & TLBFlags::PAGE_WRITABLE)) { ppc_state.spr[SPR::DSISR] = 0x08000000 | (1 << 25); ppc_state.spr[SPR::DAR] = guest_va; mmu_exception_handler(Except_Type::EXC_DSI, 0); } if (!(tlb1_entry->flags & TLBFlags::PTE_SET_C)) { // perform full page address translation to update PTE.C bit PATResult pat_res = page_address_translation(guest_va, false, !!(ppc_state.msr & 0x4000), true); tlb1_entry->flags |= TLBFlags::PTE_SET_C; // don't forget to update the secondary TLB as well tlb2_entry = lookup_secondary_tlb(guest_va, tag); if (tlb2_entry != nullptr) { tlb2_entry->flags |= TLBFlags::PTE_SET_C; } } host_va = (uint8_t *)(tlb1_entry->host_va_offset + guest_va); } else { // primary TLB miss -> look up address in the secondary TLB tlb2_entry = lookup_secondary_tlb(guest_va, tag); if (tlb2_entry == nullptr) { #ifdef TLB_PROFILING num_tlb_refills++; #endif // secondary TLB miss -> // perform full address translation and refill the secondary TLB tlb2_entry = tlb2_refill(guest_va, 1); } #ifdef TLB_PROFILING else { num_secondary_tlb_hits++; } #endif if (!(tlb2_entry->flags & TLBFlags::PAGE_WRITABLE)) { ppc_state.spr[SPR::DSISR] = 0x08000000 | (1 << 25); ppc_state.spr[SPR::DAR] = guest_va; mmu_exception_handler(Except_Type::EXC_DSI, 0); } if (!(tlb2_entry->flags & TLBFlags::PTE_SET_C)) { // perform full page address translation to update PTE.C bit PATResult pat_res = page_address_translation(guest_va, false, !!(ppc_state.msr & 0x4000), true); tlb2_entry->flags |= TLBFlags::PTE_SET_C; } if (tlb2_entry->flags & TLBFlags::PAGE_MEM) { // is it a real memory region? // refill the primary TLB tlb1_entry->tag = tag; tlb1_entry->flags = tlb2_entry->flags; tlb1_entry->host_va_offset = tlb2_entry->host_va_offset; host_va = (uint8_t *)(tlb1_entry->host_va_offset + guest_va); } else { // otherwise, it's an access to a memory-mapped device #ifdef MMU_PROFILING iomem_writes_total++; #endif tlb2_entry->reg_desc->devobj->write(tlb2_entry->reg_desc->start, guest_va - tlb2_entry->reg_desc->start, value, sizeof(T)); return; } } #ifdef MMU_PROFILING dmem_writes_total++; #endif // handle unaligned memory accesses if (sizeof(T) > 1 && (guest_va & (sizeof(T) - 1))) { write_unaligned(guest_va, host_va, value, sizeof(T)); return; } // handle aligned memory accesses switch(sizeof(T)) { case 1: *host_va = value; break; case 2: WRITE_WORD_BE_A(host_va, value); break; case 4: WRITE_DWORD_BE_A(host_va, value); break; case 8: WRITE_QWORD_BE_A(host_va, value); break; } } // explicitely instantiate all required mmu_write_vmem variants template void mmu_write_vmem(uint32_t guest_va, uint8_t value); template void mmu_write_vmem(uint32_t guest_va, uint16_t value); template void mmu_write_vmem(uint32_t guest_va, uint32_t value); template void mmu_write_vmem(uint32_t guest_va, uint64_t value); static uint32_t read_unaligned(uint32_t guest_va, uint8_t *host_va, uint32_t size) { uint32_t result = 0; // is it a misaligned cross-page read? if (((guest_va & 0xFFF) + size) > 0x1000) { #ifdef MMU_PROFILING unaligned_crossp_r++; #endif // Break such a memory access into multiple, bytewise accesses. // Because such accesses suffer a performance penalty, they will be // presumably very rare so don't waste time optimizing the code below. for (int i = 0; i < size; guest_va++, i++) { result = (result << 8) | mmu_read_vmem(guest_va); } } else { #ifdef MMU_PROFILING unaligned_reads++; #endif switch(size) { case 2: return READ_WORD_BE_U(host_va); case 4: return READ_DWORD_BE_U(host_va); case 8: // FIXME: should we raise alignment exception here? return READ_QWORD_BE_U(host_va); } } return result; } static void write_unaligned(uint32_t guest_va, uint8_t *host_va, uint32_t value, uint32_t size) { // is it a misaligned cross-page write? if (((guest_va & 0xFFF) + size) > 0x1000) { #ifdef MMU_PROFILING unaligned_crossp_w++; #endif // Break such a memory access into multiple, bytewise accesses. // Because such accesses suffer a performance penalty, they will be // presumably very rare so don't waste time optimizing the code below. uint32_t shift = (size - 1) * 8; for (int i = 0; i < size; shift -= 8, guest_va++, i++) { mmu_write_vmem(guest_va, (value >> shift) & 0xFF); } } else { #ifdef MMU_PROFILING unaligned_writes++; #endif switch(size) { case 2: WRITE_WORD_BE_U(host_va, value); break; case 4: WRITE_DWORD_BE_U(host_va, value); break; case 8: // FIXME: should we raise alignment exception here? WRITE_QWORD_BE_U(host_va, value); break; } } } void mem_write_byte(uint32_t addr, uint8_t value) { mmu_write_vmem(addr, value); /* data address translation if enabled */ if (ppc_state.msr & 0x10) { addr = ppc_mmu_addr_translate(addr, 1); } write_phys_mem(&last_write_area, addr, value); } void mem_write_word(uint32_t addr, uint16_t value) { mmu_write_vmem(addr, value); if (addr & 1) { mem_write_unaligned(addr, value, 2); return; } /* data address translation if enabled */ if (ppc_state.msr & 0x10) { addr = ppc_mmu_addr_translate(addr, 1); } write_phys_mem(&last_write_area, addr, value); } void mem_write_dword(uint32_t addr, uint32_t value) { mmu_write_vmem(addr, value); if (addr & 3) { mem_write_unaligned(addr, value, 4); return; } /* data address translation if enabled */ if (ppc_state.msr & 0x10) { addr = ppc_mmu_addr_translate(addr, 1); } write_phys_mem(&last_write_area, addr, value); } void mem_write_qword(uint32_t addr, uint64_t value) { mmu_write_vmem(addr, value); if (addr & 7) { LOG_F(ERROR, "SOS! Attempt to write unaligned QWORD to 0x%08X\n", addr); exit(-1); // FIXME! } /* data address translation if enabled */ if (ppc_state.msr & 0x10) { addr = ppc_mmu_addr_translate(addr, 1); } write_phys_mem(&last_write_area, addr, value); } /** Grab a value from memory into a register */ uint8_t mem_grab_byte(uint32_t addr) { tlb_translate_addr(addr); /* data address translation if enabled */ if (ppc_state.msr & 0x10) { addr = ppc_mmu_addr_translate(addr, 0); } return read_phys_mem(&last_read_area, addr); } uint16_t mem_grab_word(uint32_t addr) { tlb_translate_addr(addr); if (addr & 1) { return mem_grab_unaligned(addr, 2); } /* data address translation if enabled */ if (ppc_state.msr & 0x10) { addr = ppc_mmu_addr_translate(addr, 0); } return read_phys_mem(&last_read_area, addr); } uint32_t mem_grab_dword(uint32_t addr) { tlb_translate_addr(addr); if (addr & 3) { return mem_grab_unaligned(addr, 4); } /* data address translation if enabled */ if (ppc_state.msr & 0x10) { addr = ppc_mmu_addr_translate(addr, 0); } return read_phys_mem(&last_read_area, addr); } uint64_t mem_grab_qword(uint32_t addr) { tlb_translate_addr(addr); if (addr & 7) { LOG_F(ERROR, "SOS! Attempt to read unaligned QWORD at 0x%08X\n", addr); exit(-1); // FIXME! } /* data address translation if enabled */ if (ppc_state.msr & 0x10) { addr = ppc_mmu_addr_translate(addr, 0); } return read_phys_mem(&last_read_area, addr); } uint8_t* quickinstruction_translate(uint32_t addr) { uint8_t* real_addr; #ifdef MMU_PROFILING exec_reads_total++; #endif /* perform instruction address translation if enabled */ if (ppc_state.msr & 0x20) { addr = mmu_instr_translation(addr); } if (addr >= last_exec_area.start && addr <= last_exec_area.end) { real_addr = last_exec_area.mem_ptr + (addr - last_exec_area.start); ppc_set_cur_instruction(real_addr); } else { AddressMapEntry* entry = mem_ctrl_instance->find_range(addr); if (entry && entry->type & (RT_ROM | RT_RAM)) { last_exec_area.start = entry->start; last_exec_area.end = entry->end; last_exec_area.mem_ptr = entry->mem_ptr; real_addr = last_exec_area.mem_ptr + (addr - last_exec_area.start); ppc_set_cur_instruction(real_addr); } else { LOG_F(WARNING, "attempt to execute code at %08X!\n", addr); exit(-1); // FIXME: ugly error handling, must be the proper exception! } } return real_addr; } uint64_t mem_read_dbg(uint32_t virt_addr, uint32_t size) { uint32_t save_dsisr, save_dar; uint64_t ret_val; /* save MMU-related CPU state */ save_dsisr = ppc_state.spr[SPR::DSISR]; save_dar = ppc_state.spr[SPR::DAR]; mmu_exception_handler = dbg_exception_handler; try { switch (size) { case 1: ret_val = mem_grab_byte(virt_addr); break; case 2: ret_val = mem_grab_word(virt_addr); break; case 4: ret_val = mem_grab_dword(virt_addr); break; case 8: ret_val = mem_grab_qword(virt_addr); break; default: ret_val = mem_grab_byte(virt_addr); } } catch (std::invalid_argument& exc) { /* restore MMU-related CPU state */ mmu_exception_handler = ppc_exception_handler; ppc_state.spr[SPR::DSISR] = save_dsisr; ppc_state.spr[SPR::DAR] = save_dar; /* rethrow MMU exception */ throw exc; } /* restore MMU-related CPU state */ mmu_exception_handler = ppc_exception_handler; ppc_state.spr[SPR::DSISR] = save_dsisr; ppc_state.spr[SPR::DAR] = save_dar; return ret_val; } void ppc_mmu_init() { mmu_exception_handler = ppc_exception_handler; // invalidate all TLB entries for(auto &tlb_el : mode1_tlb1) { tlb_el.tag = TLB_INVALID_TAG; tlb_el.flags = 0; tlb_el.lru_bits = 0; tlb_el.host_va_offset = 0; } for(auto &tlb_el : mode2_tlb1) { tlb_el.tag = TLB_INVALID_TAG; tlb_el.flags = 0; tlb_el.lru_bits = 0; tlb_el.host_va_offset = 0; } for(auto &tlb_el : mode3_tlb1) { tlb_el.tag = TLB_INVALID_TAG; tlb_el.flags = 0; tlb_el.lru_bits = 0; tlb_el.host_va_offset = 0; } for(auto &tlb_el : mode1_tlb2) { tlb_el.tag = TLB_INVALID_TAG; tlb_el.flags = 0; tlb_el.lru_bits = 0; tlb_el.host_va_offset = 0; } for(auto &tlb_el : mode2_tlb2) { tlb_el.tag = TLB_INVALID_TAG; tlb_el.flags = 0; tlb_el.lru_bits = 0; tlb_el.host_va_offset = 0; } for(auto &tlb_el : mode3_tlb2) { tlb_el.tag = TLB_INVALID_TAG; tlb_el.flags = 0; tlb_el.lru_bits = 0; tlb_el.host_va_offset = 0; } mmu_change_mode(); #ifdef MMU_PROFILING gProfilerObj->register_profile("PPC:MMU", std::unique_ptr(new MMUProfile())); #endif #ifdef TLB_PROFILING gProfilerObj->register_profile("PPC:MMU:TLB", std::unique_ptr(new TLBProfile())); #endif }