/*
DingusPPC - The Experimental PowerPC Macintosh emulator
Copyright (C) 2018-24 divingkatae and maximum
(theweirdo) spatium
(Contact divingkatae#1017 or powermax#2286 on Discord for more info)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/** ATI Mach64 GX emulation.
It emulates an ATI88800GX controller with an IBM RGB514 style RAMDAC.
Emulation is limited to a basic frame buffer for now.
*/
#include
#include
#include
#include
#include
#include
#include
#include
/* Human readable Mach64 HW register names for easier debugging. */
static const std::map mach64_reg_names = {
#define one_reg_name(x) {ATI_ ## x, #x}
one_reg_name(CRTC_H_TOTAL_DISP),
one_reg_name(CRTC_H_SYNC_STRT_WID),
one_reg_name(CRTC_V_TOTAL_DISP),
one_reg_name(CRTC_V_SYNC_STRT_WID),
one_reg_name(CRTC_VLINE_CRNT_VLINE),
one_reg_name(CRTC_OFF_PITCH),
one_reg_name(CRTC_INT_CNTL),
one_reg_name(CRTC_GEN_CNTL),
one_reg_name(DSP_CONFIG),
one_reg_name(DSP_ON_OFF),
one_reg_name(MEM_BUF_CNTL),
one_reg_name(MEM_ADDR_CFG),
one_reg_name(OVR_CLR),
one_reg_name(OVR_WID_LEFT_RIGHT),
one_reg_name(OVR_WID_TOP_BOTTOM),
one_reg_name(CUR_CLR0),
one_reg_name(CUR_CLR1),
one_reg_name(CUR_OFFSET),
one_reg_name(CUR_HORZ_VERT_POSN),
one_reg_name(CUR_HORZ_VERT_OFF),
one_reg_name(GP_IO),
one_reg_name(HW_DEBUG),
one_reg_name(SCRATCH_REG0),
one_reg_name(SCRATCH_REG1),
one_reg_name(SCRATCH_REG2),
one_reg_name(SCRATCH_REG3),
one_reg_name(CLOCK_CNTL),
one_reg_name(BUS_CNTL),
one_reg_name(EXT_MEM_CNTL),
one_reg_name(MEM_CNTL),
one_reg_name(DAC_REGS),
one_reg_name(DAC_CNTL),
one_reg_name(GEN_TEST_CNTL),
one_reg_name(CUSTOM_MACRO_CNTL),
one_reg_name(CONFIG_CNTL),
one_reg_name(CONFIG_CHIP_ID),
one_reg_name(CONFIG_STAT0),
one_reg_name(DST_OFF_PITCH),
one_reg_name(DST_X),
one_reg_name(DST_Y),
one_reg_name(DST_WIDTH),
one_reg_name(DST_HEIGHT),
one_reg_name(SRC_CNTL),
one_reg_name(SCALE_3D_CNTL),
one_reg_name(PAT_REG0),
one_reg_name(PAT_REG1),
one_reg_name(SC_LEFT),
one_reg_name(SC_RIGHT),
one_reg_name(SC_TOP),
one_reg_name(SC_BOTTOM),
one_reg_name(DP_BKGD_CLR),
one_reg_name(DP_FRGD_CLR), // also DP_FOG_CLR for GT
one_reg_name(DP_WRITE_MSK),
one_reg_name(DP_PIX_WIDTH),
one_reg_name(DP_MIX),
one_reg_name(DP_SRC),
one_reg_name(CLR_CMP_CNTL),
one_reg_name(FIFO_STAT),
one_reg_name(GUI_TRAJ_CNTL),
one_reg_name(GUI_STAT),
one_reg_name(MPP_CONFIG),
one_reg_name(MPP_STROBE_SEQ),
one_reg_name(MPP_ADDR),
one_reg_name(MPP_DATA),
one_reg_name(TVO_CNTL),
one_reg_name(SETUP_CNTL),
#undef one_reg_name
};
static const std::map rgb514_reg_names = {
#define one_reg_name(x) {Rgb514::x, #x}
one_reg_name(MISC_CLK_CNTL),
one_reg_name(HOR_SYNC_POS),
one_reg_name(PWR_MNMGMT),
one_reg_name(PIX_FORMAT),
one_reg_name(PLL_CTL_1),
one_reg_name(F0_M0),
one_reg_name(F1_N0),
one_reg_name(MISC_CNTL_1),
one_reg_name(MISC_CNTL_2),
one_reg_name(VRAM_MASK_LO),
one_reg_name(VRAM_MASK_HI),
#undef one_reg_name
};
AtiMach64Gx::AtiMach64Gx()
: PCIDevice("ati-mach64-gx"), VideoCtrlBase()
{
supports_types(HWCompType::MMIO_DEV | HWCompType::PCI_DEV);
// set up PCI configuration space header
this->vendor_id = PCI_VENDOR_ATI;
this->device_id = ATI_MACH64_GX_DEV_ID;
this->class_rev = (0x030000 << 8) | 0x03;
this->irq_pin = 1;
for (int i = 0; i < this->aperture_count; i++) {
this->bars_cfg[i] = (uint32_t)(-this->aperture_size[i] | this->aperture_flag[i]);
}
this->finish_config_bars();
this->pci_notify_bar_change = [this](int bar_num) {
this->notify_bar_change(bar_num);
};
// declare expansion ROM containing FCode and Mac OS drivers
if (this->attach_exp_rom_image(std::string("113-32900-004_Apple_MACH64.bin"))) {
LOG_F(WARNING, "%s: could not load ROM - this device may not work properly!",
this->name.c_str());
}
// initialize display identification
this->disp_id = std::unique_ptr (new DisplayID());
// allocate video RAM
this->vram_size = GET_INT_PROP("gfxmem_size") << 20; // convert MBs to bytes
this->vram_ptr = std::unique_ptr (new uint8_t[this->vram_size]);
// set up RAMDAC identification
this->regs[ATI_CONFIG_STAT0] = 1 << 9;
// stuff default values into chip registers
// this->regs[ATI_CONFIG_CHIP_ID] = (asic_id << ATI_CFG_CHIP_MAJOR) | (dev_id << ATI_CFG_CHIP_TYPE);
// set the FIFO
insert_bits(this->regs[ATI_GUI_STAT], 32, ATI_FIFO_CNT, ATI_FIFO_CNT_size);
set_bit(regs[ATI_CRTC_GEN_CNTL], ATI_CRTC_DISPLAY_DIS); // because blank_on is true
this->draw_fb_is_dynamic = true;
}
void AtiMach64Gx::change_one_bar(uint32_t &aperture, uint32_t aperture_size,
uint32_t aperture_new, int bar_num)
{
if (aperture != aperture_new) {
if (aperture)
this->host_instance->pci_unregister_mmio_region(aperture, aperture_size, this);
aperture = aperture_new;
if (aperture)
this->host_instance->pci_register_mmio_region(aperture, aperture_size, this);
LOG_F(INFO, "%s: aperture[%d] set to 0x%08X", this->name.c_str(), bar_num, aperture);
}
}
void AtiMach64Gx::notify_bar_change(int bar_num)
{
if (bar_num) // only BAR0 is supported
return;
change_one_bar(this->aperture_base[bar_num], this->aperture_size[bar_num],
this->bars[bar_num] & ~15, bar_num);
// copy aperture address to CONFIG_CNTL:CFG_MEM_AP_LOC
insert_bits(this->config_cntl[0], this->aperture_base[0] >> 22,
ATI_CFG_MEM_AP_LOC, ATI_CFG_MEM_AP_LOC_size);
}
#if 0
uint32_t AtiMach64Gx::pci_cfg_read(uint32_t reg_offs, AccessDetails &details)
{
if (reg_offs < 64) {
return PCIDevice::pci_cfg_read(reg_offs, details);
}
switch (reg_offs) {
default:
LOG_READ_UNIMPLEMENTED_CONFIG_REGISTER();
}
return 0;
}
void AtiMach64Gx::pci_cfg_write(uint32_t reg_offs, uint32_t value, AccessDetails &details)
{
if (reg_offs < 64) {
PCIDevice::pci_cfg_write(reg_offs, value, details);
return;
}
switch (reg_offs) {
default:
LOG_WRITE_UNIMPLEMENTED_CONFIG_REGISTER();
}
}
#endif
// map I/O register index to MMIO register offset
static const uint32_t io_idx_to_reg_offset[32] = {
ATI_CRTC_H_TOTAL_DISP,
ATI_CRTC_H_SYNC_STRT_WID,
ATI_CRTC_V_TOTAL_DISP,
ATI_CRTC_V_SYNC_STRT_WID,
ATI_CRTC_VLINE_CRNT_VLINE,
ATI_CRTC_OFF_PITCH,
ATI_CRTC_INT_CNTL,
ATI_CRTC_GEN_CNTL,
ATI_OVR_CLR,
ATI_OVR_WID_LEFT_RIGHT,
ATI_OVR_WID_TOP_BOTTOM,
ATI_CUR_CLR0,
ATI_CUR_CLR1,
ATI_CUR_OFFSET,
ATI_CUR_HORZ_VERT_POSN,
ATI_CUR_HORZ_VERT_OFF,
ATI_SCRATCH_REG0,
ATI_SCRATCH_REG1,
ATI_CLOCK_CNTL,
ATI_BUS_CNTL,
ATI_MEM_CNTL,
ATI_MEM_VGA_WP_SEL,
ATI_MEM_VGA_RP_SEL,
ATI_DAC_REGS,
ATI_DAC_CNTL,
ATI_GEN_TEST_CNTL,
ATI_CONFIG_CNTL,
ATI_CONFIG_CHIP_ID,
ATI_CONFIG_STAT0,
ATI_GX_CONFIG_STAT1,
ATI_INVALID,
ATI_CRTC_H_TOTAL_DISP,
};
enum {
SPARSE_IO_BASE = 0x2EC
};
bool AtiMach64Gx::io_access_allowed(uint32_t offset) {
if ((offset & 0xFFFF03FC) == SPARSE_IO_BASE) {
if (this->command & 1) {
return true;
}
LOG_F(WARNING, "ATI I/O space disabled in the command reg");
}
return false;
}
bool AtiMach64Gx::pci_io_read(uint32_t offset, uint32_t size, uint32_t* res)
{
if (!this->io_access_allowed(offset)) {
return false;
}
uint32_t result = 0;
// convert ISA-style I/O address to MMIO register offset
offset = io_idx_to_reg_offset[(offset >> 10) & 0x1F] * 4 + (offset & 3);
// CONFIG_CNTL is accessible from I/O space only
if ((offset >> 2) == ATI_CONFIG_CNTL) {
result = read_mem(((uint8_t *)&this->config_cntl) + (offset & 3), size);
} else {
result = BYTESWAP_SIZED(this->read_reg(offset, size), size);
}
*res = result;
return true;
}
bool AtiMach64Gx::pci_io_write(uint32_t offset, uint32_t value, uint32_t size)
{
if (!this->io_access_allowed(offset)) {
return false;
}
// convert ISA-style I/O address to MMIO register offset
offset = io_idx_to_reg_offset[(offset >> 10) & 0x1F] * 4 + (offset & 3);
// CONFIG_CNTL is accessible from I/O space only
if ((offset >> 2) == ATI_CONFIG_CNTL) {
if (size + (offset & 3) > 4)
LOG_F(ERROR, "%s: size + offset > 4!", this->name.c_str());
write_mem(((uint8_t *)&this->config_cntl) + (offset & 3), value, size);
if (offset == ATI_CONFIG_CNTL << 2) {
switch (extract_bits(this->config_cntl[0], ATI_CFG_MEM_AP_SIZE, ATI_CFG_MEM_AP_SIZE_size)) {
case 0:
LOG_F(WARNING, "%s: CONFIG_CNTL linear aperture disabled!", this->name.c_str());
break;
case 1:
LOG_F(INFO, "%s: CONFIG_CNTL aperture size set to 4MB", this->name.c_str());
this->mm_regs_offset = MM_REGS_2_OFF;
break;
case 2:
LOG_F(INFO, "%s: CONFIG_CNTL aperture size set to 8MB", this->name.c_str());
this->mm_regs_offset = MM_REGS_0_OFF;
break;
default:
LOG_F(ERROR, "%s: CONFIG_CNTL invalid aperture size", this->name.c_str());
}
}
LOG_F(INFO, "%s: write %s %04x.%c = %0*x = %08x", this->name.c_str(),
get_reg_name(offset >> 2), offset, SIZE_ARG(size), size * 2,
value, this->config_cntl[0]
);
} else {
this->write_reg(offset, BYTESWAP_SIZED(value, size), size);
}
return true;
}
const char* AtiMach64Gx::get_reg_name(uint32_t reg_num) {
auto iter = mach64_reg_names.find(reg_num);
if (iter != mach64_reg_names.end()) {
return iter->second.c_str();
} else {
return "unknown Mach64 register";
}
}
uint32_t AtiMach64Gx::read_reg(uint32_t reg_offset, uint32_t size)
{
uint32_t reg_num = reg_offset >> 2;
uint32_t offset = reg_offset & 3;
uint64_t result = this->regs[reg_num];
if (offset || size != 4) { // slow path
if ((offset + size) > 4) {
result |= (uint64_t)(this->regs[reg_num + 1]) << 32;
}
result = extract_bits(result, offset * 8, size * 8);
}
return static_cast(result);
}
#define WRITE_VALUE_AND_LOG() \
do { \
this->regs[reg_num] = new_value; \
LOG_F(9, "%s: write %s %04x.%c = %0*x = %08x", this->name.c_str(), \
get_reg_name(reg_num), reg_offset, SIZE_ARG(size), size * 2, \
(uint32_t)extract_bits(value, offset * 8, size * 8), new_value \
); \
} while (0)
void AtiMach64Gx::write_reg(uint32_t reg_offset, uint32_t value, uint32_t size)
{
uint32_t reg_num = reg_offset >> 2;
uint32_t offset = reg_offset & 3;
uint32_t old_value = this->regs[reg_num];
uint32_t new_value;
if (offset || size != 4) { // slow path
if ((offset + size) > 4) {
ABORT_F("%s: unaligned DWORD writes not implemented", this->name.c_str());
}
uint64_t val = old_value;
insert_bits(val, value, offset * 8, size * 8);
value = static_cast(val);
}
switch (reg_num) {
case ATI_CRTC_H_TOTAL_DISP:
new_value = value;
LOG_F(9, "%s: ATI_CRTC_H_TOTAL_DISP set to 0x%08X", this->name.c_str(), value);
break;
case ATI_CRTC_VLINE_CRNT_VLINE:
new_value = old_value;
insert_bits(new_value, value, ATI_CRTC_VLINE, ATI_CRTC_VLINE_size);
break;
case ATI_CRTC_OFF_PITCH:
new_value = value;
WRITE_VALUE_AND_LOG();
this->crtc_update();
return;
case ATI_CRTC_INT_CNTL:
{
uint32_t bits_read_only =
(1 << ATI_CRTC_VBLANK) |
(1 << ATI_CRTC_VLINE_SYNC) |
(1 << ATI_CRTC_FRAME) |
#if 1
#else
(1 << ATI_CRTC2_VBLANK) |
(1 << ATI_CRTC2_VLINE_SYNC) |
#endif
0;
uint32_t bits_AK =
(1 << ATI_CRTC_VBLANK_INT_AK) |
(1 << ATI_CRTC_VLINE_INT_AK) |
#if 1
(1 << ATI_VIDEOIN_EVEN_INT_AK) |
(1 << ATI_VIDEOIN_ODD_INT_AK) |
(1 << ATI_OVERLAY_EOF_INT_AK) |
(1 << ATI_VMC_EC_INT_AK) |
#else
(1 << ATI_SNAPSHOT_INT_AK) |
(1 << ATI_I2C_INT_AK) |
(1 << ATI_CRTC2_VBLANK_INT_AK) |
(1 << ATI_CRTC2_VLINE_INT_AK) |
(1 << ATI_CUPBUF0_INT_AK) |
(1 << ATI_CUPBUF1_INT_AK) |
(1 << ATI_OVERLAY_EOF_INT_AK) |
(1 << ATI_ONESHOT_CAP_INT_AK) |
(1 << ATI_BUSMASTER_EOL_INT_AK) |
(1 << ATI_GP_INT_AK) |
(1 << ATI_SNAPSHOT2_INT_AK) |
(1 << ATI_VBLANK_BIT2_INT_AK) |
#endif
0;
/*
uint32_t bits_EN =
(1 << ATI_CRTC_VBLANK_INT_EN) |
(1 << ATI_CRTC_VLINE_INT_EN) |
#if 1
(1 << ATI_VIDEOIN_EVEN_INT_EN) |
(1 << ATI_VIDEOIN_ODD_INT_EN) |
(1 << ATI_OVERLAY_EOF_INT_EN) |
(1 << ATI_VMC_EC_INT_EN) |
#else
(1 << ATI_SNAPSHOT_INT_EN) |
(1 << ATI_I2C_INT_EN) |
(1 << ATI_CRTC2_VBLANK_INT_EN) |
(1 << ATI_CRTC2_VLINE_INT_EN) |
(1 << ATI_CUPBUF0_INT_EN) |
(1 << ATI_CUPBUF1_INT_EN) |
(1 << ATI_OVERLAY_EOF_INT_EN) |
(1 << ATI_ONESHOT_CAP_INT_EN) |
(1 << ATI_BUSMASTER_EOL_INT_EN) |
(1 << ATI_GP_INT_EN) |
(1 << ATI_SNAPSHOT2_INT_EN) |
#endif
0;
*/
uint32_t bits_AKed = bits_AK & value; // AK bits that are to be AKed
uint32_t bits_not_AKed = bits_AK & ~value; // AK bits that are not to be AKed
new_value = value & ~bits_AKed; // clear the AKed bits
bits_read_only |= bits_not_AKed; // the not AKed bits will remain unchanged
new_value = (old_value & bits_read_only) | (new_value & ~bits_read_only);
break;
}
case ATI_CRTC_GEN_CNTL:
{
uint32_t bits_AK =
#if 1
#else
(1 << ATI_CRTC_VSYNC_INT_AK) |
(1 << ATI_CRTC2_VSYNC_INT_AK) |
#endif
0;
/*
uint32_t bits_EN =
#if 1
#else
(1 << ATI_CRTC_VSYNC_INT_EN) |
(1 << ATI_CRTC2_VSYNC_INT_EN) |
#endif
0;
*/
uint32_t bits_AKed = bits_AK & value; // AK bits that are to be AKed
uint32_t bits_not_AKed = bits_AK & ~value; // AK bits that are not to be AKed
new_value = value & ~bits_AKed; // clear the AKed bits
uint32_t bits_read_only = bits_not_AKed; // the not AKed bits will remain unchanged
new_value = (old_value & bits_read_only) | (new_value & ~bits_read_only);
this->regs[reg_num] = new_value;
if (bit_changed(old_value, new_value, ATI_CRTC_DISPLAY_DIS)) {
if (bit_set(new_value, ATI_CRTC_DISPLAY_DIS)) {
this->blank_on = true;
this->blank_display();
} else {
this->blank_on = false;
}
}
if (bit_changed(old_value, new_value, ATI_CRTC_ENABLE)) {
this->crtc_update();
}
break;
}
case ATI_OVR_CLR:
case ATI_OVR_WID_LEFT_RIGHT:
case ATI_OVR_WID_TOP_BOTTOM:
new_value = value;
WRITE_VALUE_AND_LOG();
if (value != 0) {
LOG_F(ERROR, "%s: Unhandled value 0x%08x.", this->name.c_str(), value);
}
return;
case ATI_CUR_CLR0:
case ATI_CUR_CLR1:
new_value = value;
this->cursor_dirty = true;
draw_fb = true;
WRITE_VALUE_AND_LOG();
return;
case ATI_CUR_OFFSET:
new_value = value;
if (old_value != new_value)
this->cursor_dirty = true;
draw_fb = true;
WRITE_VALUE_AND_LOG();
return;
case ATI_CUR_HORZ_VERT_OFF:
new_value = value;
if (
extract_bits(new_value, ATI_CUR_VERT_OFF, ATI_CUR_VERT_OFF_size) !=
extract_bits(old_value, ATI_CUR_VERT_OFF, ATI_CUR_VERT_OFF_size)
)
this->cursor_dirty = true;
draw_fb = true;
WRITE_VALUE_AND_LOG();
return;
case ATI_CUR_HORZ_VERT_POSN:
new_value = value;
draw_fb = true;
WRITE_VALUE_AND_LOG();
return;
case ATI_DAC_REGS:
new_value = old_value; // no change
if (size == 1) { // only byte accesses are allowed for DAC registers
int dac_reg_addr = ((this->regs[ATI_DAC_CNTL] & 1) << 2) | offset;
rgb514_write_reg(dac_reg_addr, extract_bits(value, offset * 8, 8));
}
break;
case ATI_DAC_CNTL:
new_value = value;
// monitor ID is usually accessed using 8bit writes
if (offset <= 3 && offset + size > 3) {
uint8_t gpio_dirs = extract_bits(new_value, ATI_DAC_GIO_DIR,
ATI_DAC_GIO_DIR_size);
uint8_t gpio_levels = extract_bits(new_value, ATI_DAC_GIO_STATE,
ATI_DAC_GIO_STATE_size);
gpio_levels = this->disp_id->read_monitor_sense(gpio_levels, gpio_dirs);
insert_bits(new_value, gpio_levels, ATI_DAC_GIO_STATE,
ATI_DAC_GIO_STATE_size);
}
break;
case ATI_CONFIG_STAT0:
new_value = old_value; // prevent writes to this read-only register
break;
default:
new_value = value;
break;
}
this->regs[reg_num] = new_value;
}
uint32_t AtiMach64Gx::read(uint32_t rgn_start, uint32_t offset, int size)
{
if (rgn_start == this->aperture_base[0]) {
if (offset < this->vram_size) {
return read_mem(&this->vram_ptr[offset], size);
}
if (offset >= this->mm_regs_offset && offset < this->mm_regs_offset + 0x400) {
return BYTESWAP_SIZED(read_reg(offset - this->mm_regs_offset, size), size);
}
return 0;
}
// memory mapped expansion ROM region
if (rgn_start == this->exp_rom_addr) {
if (offset < this->exp_rom_size)
return read_mem(&this->exp_rom_data[offset], size);
return 0;
}
return 0;
}
void AtiMach64Gx::write(uint32_t rgn_start, uint32_t offset, uint32_t value, int size)
{
if (rgn_start == this->aperture_base[0]) {
if (offset < this->vram_size) {
draw_fb = true;
return write_mem(&this->vram_ptr[offset], value, size);
}
if (offset >= this->mm_regs_offset && offset < this->mm_regs_offset + 0x400) {
return write_reg(offset - this->mm_regs_offset, BYTESWAP_SIZED(value, size), size);
}
return;
}
}
void AtiMach64Gx::verbose_pixel_format(int crtc_index) {
if (crtc_index) {
LOG_F(ERROR, "CRTC2 not supported yet");
return;
}
int pix_fmt = this->pixel_format;
const char* what = "Pixel format:";
switch (pix_fmt) {
case 2:
LOG_F(INFO, "%s 4 bpp with DAC palette", what);
break;
case 3:
LOG_F(INFO, "%s 8 bpp with DAC palette", what);
break;
case 4:
LOG_F(INFO, "%s 15 bpp direct color (RGB555)", what);
break;
case 5:
LOG_F(INFO, "%s 24 bpp direct color (RGB888)", what);
break;
case 6:
LOG_F(INFO, "%s 32 bpp direct color (ARGB8888)", what);
break;
default:
LOG_F(ERROR, "%s: CRTC pixel format %d not supported", this->name.c_str(), pix_fmt);
}
}
void AtiMach64Gx::crtc_update()
{
uint32_t new_width, new_height;
if (!bit_set(this->regs[ATI_CRTC_GEN_CNTL], ATI_CRTC_ENABLE) ||
bit_set(this->regs[ATI_CRTC_GEN_CNTL], ATI_CRTC_DISPLAY_DIS)
) {
return;
}
// check for unsupported modes and fail early
if (!bit_set(this->regs[ATI_CRTC_GEN_CNTL], ATI_CRTC_EXT_DISP_EN))
ABORT_F("%s: Current mode is VGA which is not supported", this->name.c_str());
bool need_recalc = false;
new_width = (extract_bits(this->regs[ATI_CRTC_H_TOTAL_DISP],
ATI_CRTC_H_DISP, ATI_CRTC_H_DISP_size) + 1) * 8;
new_height = extract_bits(this->regs[ATI_CRTC_V_TOTAL_DISP],
ATI_CRTC_V_DISP, ATI_CRTC_V_DISP_size) + 1;
if (new_width != this->active_width || new_height != this->active_height) {
this->create_display_window(new_width, new_height);
need_recalc = true;
}
uint32_t new_htotal, new_vtotal;
new_htotal = (extract_bits(this->regs[ATI_CRTC_H_TOTAL_DISP],
ATI_CRTC_H_TOTAL, ATI_CRTC_H_TOTAL_size) + 1) * 8;
new_vtotal = extract_bits(this->regs[ATI_CRTC_V_TOTAL_DISP],
ATI_CRTC_V_TOTAL, ATI_CRTC_V_TOTAL_size) + 1;
if (new_htotal != this->hori_total || new_vtotal != this->vert_total) {
this->hori_total = new_htotal;
this->vert_total = new_vtotal;
need_recalc = true;
}
uint32_t new_vert_blank = new_vtotal - new_height;
if (new_vert_blank != this->vert_blank) {
this->vert_blank = new_vert_blank;
need_recalc = true;
}
int new_pixel_format = this->dac_regs[Rgb514::PIX_FORMAT];
if (new_pixel_format != this->pixel_format) {
this->pixel_format = new_pixel_format;
need_recalc = true;
}
static uint8_t bits_per_pixel[8] = {0, 0, 4, 8, 16, 24, 32, 0};
int new_fb_pitch = extract_bits(this->regs[ATI_CRTC_OFF_PITCH],
ATI_CRTC_PITCH, ATI_CRTC_PITCH_size) * bits_per_pixel[this->pixel_format];
if (new_fb_pitch != this->fb_pitch) {
this->fb_pitch = new_fb_pitch;
need_recalc = true;
}
uint8_t* new_fb_ptr = &this->vram_ptr[extract_bits(this->regs[ATI_CRTC_OFF_PITCH],
ATI_CRTC_OFFSET, ATI_CRTC_OFFSET_size) * 8];
if (new_fb_ptr != this->fb_ptr) {
this->fb_ptr = new_fb_ptr;
need_recalc = true;
}
// pixel clock = source_freq / post_div
int m = 8 >> (this->dac_regs[Rgb514::F0_M0] >> 6);
int vco_div = (this->dac_regs[Rgb514::F0_M0] & 0x3F) + 65;
int ref_div = (this->dac_regs[Rgb514::F1_N0] & 0x1F) * m;
float new_pixel_clock = ATI_XTAL * vco_div / ref_div;
if (new_pixel_clock != this->pixel_clock) {
this->pixel_clock = new_pixel_clock;
need_recalc = true;
}
if (!need_recalc)
return;
this->draw_fb = true;
// calculate display refresh rate
this->refresh_rate = this->pixel_clock / this->hori_total / this->vert_total;
if (this->refresh_rate < 24 || this->refresh_rate > 120) {
LOG_F(ERROR, "%s: Refresh rate is weird. Will try 60 Hz", this->name.c_str());
this->refresh_rate = 60;
this->pixel_clock = this->refresh_rate * this->hori_total / this->vert_total;
}
// set up frame buffer converter
switch (this->pixel_format) {
case 2:
this->convert_fb_cb = [this](uint8_t *dst_buf, int dst_pitch) {
draw_fb = false;
this->convert_frame_4bpp_indexed(dst_buf, dst_pitch);
};
break;
case 3:
this->convert_fb_cb = [this](uint8_t *dst_buf, int dst_pitch) {
draw_fb = false;
this->convert_frame_8bpp_indexed(dst_buf, dst_pitch);
};
break;
case 4:
this->convert_fb_cb = [this](uint8_t *dst_buf, int dst_pitch) {
draw_fb = false;
this->convert_frame_15bpp_BE(dst_buf, dst_pitch);
};
break;
case 5:
this->convert_fb_cb = [this](uint8_t *dst_buf, int dst_pitch) {
draw_fb = false;
this->convert_frame_24bpp(dst_buf, dst_pitch);
};
break;
case 6:
this->convert_fb_cb = [this](uint8_t *dst_buf, int dst_pitch) {
draw_fb = false;
this->convert_frame_32bpp_BE(dst_buf, dst_pitch);
};
break;
default:
LOG_F(ERROR, "%s: unsupported pixel format %d", this->name.c_str(), this->pixel_format);
}
this->stop_refresh_task();
this->start_refresh_task();
this->crtc_on = true;
}
void AtiMach64Gx::draw_hw_cursor(uint8_t *dst_row, int dst_pitch) {
int vert_offset = extract_bits(this->regs[ATI_CUR_HORZ_VERT_OFF],
ATI_CUR_VERT_OFF, ATI_CUR_VERT_OFF_size);
int cur_height = 64 - vert_offset;
uint32_t color0 = this->regs[ATI_CUR_CLR0] | 0x000000FFUL;
uint32_t color1 = this->regs[ATI_CUR_CLR1] | 0x000000FFUL;
uint64_t *src_row = (uint64_t *)&this->vram_ptr[this->regs[ATI_CUR_OFFSET] * 8];
dst_pitch -= 64 * 4;
for (int h = cur_height; h > 0; h--) {
for (int x = 2; x > 0; x--) {
uint64_t px = *src_row++;
for (int p = 32; p > 0; p--, px >>= 2, dst_row += 4) {
switch(px & 3) {
case 0: // cursor color 0
WRITE_DWORD_BE_A(dst_row, color0);
break;
case 1: // cursor color 1
WRITE_DWORD_BE_A(dst_row, color1);
break;
case 2: // transparent
WRITE_DWORD_BE_A(dst_row, 0);
break;
case 3: // 1's complement of display pixel
WRITE_DWORD_BE_A(dst_row, 0x0000007F);
break;
}
}
}
dst_row += dst_pitch;
}
}
void AtiMach64Gx::get_cursor_position(int& x, int& y) {
x = extract_bits(this->regs[ATI_CUR_HORZ_VERT_POSN], ATI_CUR_HORZ_POSN, ATI_CUR_HORZ_POSN_size) -
extract_bits(this->regs[ATI_CUR_HORZ_VERT_OFF ], ATI_CUR_HORZ_OFF , ATI_CUR_HORZ_OFF_size );
y = extract_bits(this->regs[ATI_CUR_HORZ_VERT_POSN], ATI_CUR_VERT_POSN, ATI_CUR_VERT_POSN_size);
}
int AtiMach64Gx::device_postinit()
{
this->vbl_cb = [this](uint8_t irq_line_state) {
insert_bits(this->regs[ATI_CRTC_INT_CNTL], irq_line_state, ATI_CRTC_VBLANK, irq_line_state);
if (irq_line_state) {
set_bit(this->regs[ATI_CRTC_INT_CNTL], ATI_CRTC_VBLANK_INT);
set_bit(this->regs[ATI_CRTC_INT_CNTL], ATI_CRTC_VLINE_INT);
#if 1
#else
set_bit(this->regs[ATI_CRTC_GEN_CNTL], ATI_CRTC_VSYNC_INT);
#endif
}
bool do_interrupt =
bit_set(this->regs[ATI_CRTC_INT_CNTL], ATI_CRTC_VBLANK_INT_EN) ||
bit_set(this->regs[ATI_CRTC_INT_CNTL], ATI_CRTC_VLINE_INT_EN) ||
#if 1
#else
bit_set(this->regs[ATI_CRTC_GEN_CNTL], ATI_CRTC_VSYNC_INT_EN) ||
#endif
0;
LOG_F(WARNING, "%s: irq_line_state:%d do_interrupt:%d CRTC_INT_CNTL:%08x",
this->name.c_str(), irq_line_state, do_interrupt,
this->regs[ATI_CRTC_INT_CNTL]);
if (do_interrupt) {
this->pci_interrupt(irq_line_state);
}
};
return 0;
}
// ========================== IBM RGB514 related code ==========================
void AtiMach64Gx::rgb514_write_reg(uint8_t reg_addr, uint8_t value)
{
switch (reg_addr) {
case Rgb514::CLUT_ADDR_WR:
this->clut_index = value;
this->comp_index = 0;
break;
case Rgb514::CLUT_DATA:
this->clut_color[this->comp_index++] = value;
if (this->comp_index >= 3) {
this->set_palette_color(this->clut_index, clut_color[0],
clut_color[1], clut_color[2], 0xFF);
this->clut_index++;
this->comp_index = 0;
draw_fb = true;
}
break;
case Rgb514::CLUT_MASK:
if (value != 0xFF) {
LOG_F(WARNING, "RGB514: pixel mask set to 0x%X", value);
}
break;
case Rgb514::INDEX_LOW:
this->dac_idx_lo = value;
break;
case Rgb514::INDEX_HIGH:
this->dac_idx_hi = value;
break;
case Rgb514::INDEX_DATA:
this->rgb514_write_ind_reg((this->dac_idx_hi << 8) + this->dac_idx_lo, value);
break;
default:
ABORT_F("RGB514: access to unimplemented register at 0x%X", reg_addr);
}
}
const char* AtiMach64Gx::rgb514_get_reg_name(uint32_t reg_addr)
{
auto iter = rgb514_reg_names.find(reg_addr);
if (iter != rgb514_reg_names.end()) {
return iter->second.c_str();
} else {
return "unknown rgb514 register";
}
}
void AtiMach64Gx::rgb514_write_ind_reg(uint8_t reg_addr, uint8_t value)
{
this->dac_regs[reg_addr] = value;
switch (reg_addr) {
case Rgb514::MISC_CLK_CNTL:
if (value & PLL_ENAB) {
if ((this->dac_regs[Rgb514::PLL_CTL_1] & 3) != 1)
ABORT_F("RGB514: unsupported PLL source");
this->crtc_update();
}
break;
case Rgb514::PIX_FORMAT:
this->crtc_update();
break;
}
}
static const PropMap AtiMach64gx_Properties = {
{"gfxmem_size",
new IntProperty( 2, vector({2, 4, 6}))},
{"mon_id",
new StrProperty("")},
};
static const DeviceDescription AtiMach64Gx_Descriptor = {
AtiMach64Gx::create, {}, AtiMach64gx_Properties
};
REGISTER_DEVICE(AtiMach64Gx, AtiMach64Gx_Descriptor);