/* DingusPPC - The Experimental PowerPC Macintosh emulator Copyright (C) 2018-24 divingkatae and maximum (theweirdo) spatium (Contact divingkatae#1017 or powermax#2286 on Discord for more info) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /** ATI Mach64 GX emulation. It emulates an ATI88800GX controller with an IBM RGB514 style RAMDAC. Emulation is limited to a basic frame buffer for now. */ #include #include #include #include #include #include #include #include /* Human readable Mach64 HW register names for easier debugging. */ static const std::map mach64_reg_names = { #define one_reg_name(x) {ATI_ ## x, #x} one_reg_name(CRTC_H_TOTAL_DISP), one_reg_name(CRTC_H_SYNC_STRT_WID), one_reg_name(CRTC_V_TOTAL_DISP), one_reg_name(CRTC_V_SYNC_STRT_WID), one_reg_name(CRTC_VLINE_CRNT_VLINE), one_reg_name(CRTC_OFF_PITCH), one_reg_name(CRTC_INT_CNTL), one_reg_name(CRTC_GEN_CNTL), one_reg_name(DSP_CONFIG), one_reg_name(DSP_ON_OFF), one_reg_name(MEM_BUF_CNTL), one_reg_name(MEM_ADDR_CFG), one_reg_name(OVR_CLR), one_reg_name(OVR_WID_LEFT_RIGHT), one_reg_name(OVR_WID_TOP_BOTTOM), one_reg_name(CUR_CLR0), one_reg_name(CUR_CLR1), one_reg_name(CUR_OFFSET), one_reg_name(CUR_HORZ_VERT_POSN), one_reg_name(CUR_HORZ_VERT_OFF), one_reg_name(GP_IO), one_reg_name(HW_DEBUG), one_reg_name(SCRATCH_REG0), one_reg_name(SCRATCH_REG1), one_reg_name(SCRATCH_REG2), one_reg_name(SCRATCH_REG3), one_reg_name(CLOCK_CNTL), one_reg_name(BUS_CNTL), one_reg_name(EXT_MEM_CNTL), one_reg_name(MEM_CNTL), one_reg_name(DAC_REGS), one_reg_name(DAC_CNTL), one_reg_name(GEN_TEST_CNTL), one_reg_name(CUSTOM_MACRO_CNTL), one_reg_name(CONFIG_CNTL), one_reg_name(CONFIG_CHIP_ID), one_reg_name(CONFIG_STAT0), one_reg_name(DST_OFF_PITCH), one_reg_name(DST_X), one_reg_name(DST_Y), one_reg_name(DST_WIDTH), one_reg_name(DST_HEIGHT), one_reg_name(SRC_CNTL), one_reg_name(SCALE_3D_CNTL), one_reg_name(PAT_REG0), one_reg_name(PAT_REG1), one_reg_name(SC_LEFT), one_reg_name(SC_RIGHT), one_reg_name(SC_TOP), one_reg_name(SC_BOTTOM), one_reg_name(DP_BKGD_CLR), one_reg_name(DP_FRGD_CLR), // also DP_FOG_CLR for GT one_reg_name(DP_WRITE_MSK), one_reg_name(DP_PIX_WIDTH), one_reg_name(DP_MIX), one_reg_name(DP_SRC), one_reg_name(CLR_CMP_CNTL), one_reg_name(FIFO_STAT), one_reg_name(GUI_TRAJ_CNTL), one_reg_name(GUI_STAT), one_reg_name(MPP_CONFIG), one_reg_name(MPP_STROBE_SEQ), one_reg_name(MPP_ADDR), one_reg_name(MPP_DATA), one_reg_name(TVO_CNTL), one_reg_name(SETUP_CNTL), #undef one_reg_name }; static const std::map rgb514_reg_names = { #define one_reg_name(x) {Rgb514::x, #x} one_reg_name(MISC_CLK_CNTL), one_reg_name(HOR_SYNC_POS), one_reg_name(PWR_MNMGMT), one_reg_name(PIX_FORMAT), one_reg_name(PLL_CTL_1), one_reg_name(F0_M0), one_reg_name(F1_N0), one_reg_name(MISC_CNTL_1), one_reg_name(MISC_CNTL_2), one_reg_name(VRAM_MASK_LO), one_reg_name(VRAM_MASK_HI), #undef one_reg_name }; AtiMach64Gx::AtiMach64Gx() : PCIDevice("ati-mach64-gx"), VideoCtrlBase() { supports_types(HWCompType::MMIO_DEV | HWCompType::PCI_DEV); // set up PCI configuration space header this->vendor_id = PCI_VENDOR_ATI; this->device_id = ATI_MACH64_GX_DEV_ID; this->class_rev = (0x030000 << 8) | 0x03; this->irq_pin = 1; for (int i = 0; i < this->aperture_count; i++) { this->bars_cfg[i] = (uint32_t)(-this->aperture_size[i] | this->aperture_flag[i]); } this->finish_config_bars(); this->pci_notify_bar_change = [this](int bar_num) { this->notify_bar_change(bar_num); }; // declare expansion ROM containing FCode and Mac OS drivers if (this->attach_exp_rom_image(std::string("113-32900-004_Apple_MACH64.bin"))) { LOG_F(WARNING, "%s: could not load ROM - this device may not work properly!", this->name.c_str()); } // initialize display identification this->disp_id = std::unique_ptr (new DisplayID()); // allocate video RAM this->vram_size = GET_INT_PROP("gfxmem_size") << 20; // convert MBs to bytes this->vram_ptr = std::unique_ptr (new uint8_t[this->vram_size]); // set up RAMDAC identification this->regs[ATI_CONFIG_STAT0] = 1 << 9; // stuff default values into chip registers // this->regs[ATI_CONFIG_CHIP_ID] = (asic_id << ATI_CFG_CHIP_MAJOR) | (dev_id << ATI_CFG_CHIP_TYPE); // set the FIFO insert_bits(this->regs[ATI_GUI_STAT], 32, ATI_FIFO_CNT, ATI_FIFO_CNT_size); set_bit(regs[ATI_CRTC_GEN_CNTL], ATI_CRTC_DISPLAY_DIS); // because blank_on is true this->draw_fb_is_dynamic = true; } void AtiMach64Gx::change_one_bar(uint32_t &aperture, uint32_t aperture_size, uint32_t aperture_new, int bar_num) { if (aperture != aperture_new) { if (aperture) this->host_instance->pci_unregister_mmio_region(aperture, aperture_size, this); aperture = aperture_new; if (aperture) this->host_instance->pci_register_mmio_region(aperture, aperture_size, this); LOG_F(INFO, "%s: aperture[%d] set to 0x%08X", this->name.c_str(), bar_num, aperture); } } void AtiMach64Gx::notify_bar_change(int bar_num) { if (bar_num) // only BAR0 is supported return; change_one_bar(this->aperture_base[bar_num], this->aperture_size[bar_num], this->bars[bar_num] & ~15, bar_num); // copy aperture address to CONFIG_CNTL:CFG_MEM_AP_LOC insert_bits(this->config_cntl[0], this->aperture_base[0] >> 22, ATI_CFG_MEM_AP_LOC, ATI_CFG_MEM_AP_LOC_size); } #if 0 uint32_t AtiMach64Gx::pci_cfg_read(uint32_t reg_offs, AccessDetails &details) { if (reg_offs < 64) { return PCIDevice::pci_cfg_read(reg_offs, details); } switch (reg_offs) { default: LOG_READ_UNIMPLEMENTED_CONFIG_REGISTER(); } return 0; } void AtiMach64Gx::pci_cfg_write(uint32_t reg_offs, uint32_t value, AccessDetails &details) { if (reg_offs < 64) { PCIDevice::pci_cfg_write(reg_offs, value, details); return; } switch (reg_offs) { default: LOG_WRITE_UNIMPLEMENTED_CONFIG_REGISTER(); } } #endif // map I/O register index to MMIO register offset static const uint32_t io_idx_to_reg_offset[32] = { ATI_CRTC_H_TOTAL_DISP, ATI_CRTC_H_SYNC_STRT_WID, ATI_CRTC_V_TOTAL_DISP, ATI_CRTC_V_SYNC_STRT_WID, ATI_CRTC_VLINE_CRNT_VLINE, ATI_CRTC_OFF_PITCH, ATI_CRTC_INT_CNTL, ATI_CRTC_GEN_CNTL, ATI_OVR_CLR, ATI_OVR_WID_LEFT_RIGHT, ATI_OVR_WID_TOP_BOTTOM, ATI_CUR_CLR0, ATI_CUR_CLR1, ATI_CUR_OFFSET, ATI_CUR_HORZ_VERT_POSN, ATI_CUR_HORZ_VERT_OFF, ATI_SCRATCH_REG0, ATI_SCRATCH_REG1, ATI_CLOCK_CNTL, ATI_BUS_CNTL, ATI_MEM_CNTL, ATI_MEM_VGA_WP_SEL, ATI_MEM_VGA_RP_SEL, ATI_DAC_REGS, ATI_DAC_CNTL, ATI_GEN_TEST_CNTL, ATI_CONFIG_CNTL, ATI_CONFIG_CHIP_ID, ATI_CONFIG_STAT0, ATI_GX_CONFIG_STAT1, ATI_INVALID, ATI_CRTC_H_TOTAL_DISP, }; enum { SPARSE_IO_BASE = 0x2EC }; bool AtiMach64Gx::io_access_allowed(uint32_t offset) { if ((offset & 0xFFFF03FC) == SPARSE_IO_BASE) { if (this->command & 1) { return true; } LOG_F(WARNING, "ATI I/O space disabled in the command reg"); } return false; } bool AtiMach64Gx::pci_io_read(uint32_t offset, uint32_t size, uint32_t* res) { if (!this->io_access_allowed(offset)) { return false; } uint32_t result = 0; // convert ISA-style I/O address to MMIO register offset offset = io_idx_to_reg_offset[(offset >> 10) & 0x1F] * 4 + (offset & 3); // CONFIG_CNTL is accessible from I/O space only if ((offset >> 2) == ATI_CONFIG_CNTL) { result = read_mem(((uint8_t *)&this->config_cntl) + (offset & 3), size); } else { result = BYTESWAP_SIZED(this->read_reg(offset, size), size); } *res = result; return true; } bool AtiMach64Gx::pci_io_write(uint32_t offset, uint32_t value, uint32_t size) { if (!this->io_access_allowed(offset)) { return false; } // convert ISA-style I/O address to MMIO register offset offset = io_idx_to_reg_offset[(offset >> 10) & 0x1F] * 4 + (offset & 3); // CONFIG_CNTL is accessible from I/O space only if ((offset >> 2) == ATI_CONFIG_CNTL) { if (size + (offset & 3) > 4) LOG_F(ERROR, "%s: size + offset > 4!", this->name.c_str()); write_mem(((uint8_t *)&this->config_cntl) + (offset & 3), value, size); if (offset == ATI_CONFIG_CNTL << 2) { switch (extract_bits(this->config_cntl[0], ATI_CFG_MEM_AP_SIZE, ATI_CFG_MEM_AP_SIZE_size)) { case 0: LOG_F(WARNING, "%s: CONFIG_CNTL linear aperture disabled!", this->name.c_str()); break; case 1: LOG_F(INFO, "%s: CONFIG_CNTL aperture size set to 4MB", this->name.c_str()); this->mm_regs_offset = MM_REGS_2_OFF; break; case 2: LOG_F(INFO, "%s: CONFIG_CNTL aperture size set to 8MB", this->name.c_str()); this->mm_regs_offset = MM_REGS_0_OFF; break; default: LOG_F(ERROR, "%s: CONFIG_CNTL invalid aperture size", this->name.c_str()); } } LOG_F(INFO, "%s: write %s %04x.%c = %0*x = %08x", this->name.c_str(), get_reg_name(offset >> 2), offset, SIZE_ARG(size), size * 2, value, this->config_cntl[0] ); } else { this->write_reg(offset, BYTESWAP_SIZED(value, size), size); } return true; } const char* AtiMach64Gx::get_reg_name(uint32_t reg_num) { auto iter = mach64_reg_names.find(reg_num); if (iter != mach64_reg_names.end()) { return iter->second.c_str(); } else { return "unknown Mach64 register"; } } uint32_t AtiMach64Gx::read_reg(uint32_t reg_offset, uint32_t size) { uint32_t reg_num = reg_offset >> 2; uint32_t offset = reg_offset & 3; uint64_t result = this->regs[reg_num]; if (offset || size != 4) { // slow path if ((offset + size) > 4) { result |= (uint64_t)(this->regs[reg_num + 1]) << 32; } result = extract_bits(result, offset * 8, size * 8); } return static_cast(result); } #define WRITE_VALUE_AND_LOG() \ do { \ this->regs[reg_num] = new_value; \ LOG_F(9, "%s: write %s %04x.%c = %0*x = %08x", this->name.c_str(), \ get_reg_name(reg_num), reg_offset, SIZE_ARG(size), size * 2, \ (uint32_t)extract_bits(value, offset * 8, size * 8), new_value \ ); \ } while (0) void AtiMach64Gx::write_reg(uint32_t reg_offset, uint32_t value, uint32_t size) { uint32_t reg_num = reg_offset >> 2; uint32_t offset = reg_offset & 3; uint32_t old_value = this->regs[reg_num]; uint32_t new_value; if (offset || size != 4) { // slow path if ((offset + size) > 4) { ABORT_F("%s: unaligned DWORD writes not implemented", this->name.c_str()); } uint64_t val = old_value; insert_bits(val, value, offset * 8, size * 8); value = static_cast(val); } switch (reg_num) { case ATI_CRTC_H_TOTAL_DISP: new_value = value; LOG_F(9, "%s: ATI_CRTC_H_TOTAL_DISP set to 0x%08X", this->name.c_str(), value); break; case ATI_CRTC_VLINE_CRNT_VLINE: new_value = old_value; insert_bits(new_value, value, ATI_CRTC_VLINE, ATI_CRTC_VLINE_size); break; case ATI_CRTC_OFF_PITCH: new_value = value; WRITE_VALUE_AND_LOG(); this->crtc_update(); return; case ATI_CRTC_INT_CNTL: { uint32_t bits_read_only = (1 << ATI_CRTC_VBLANK) | (1 << ATI_CRTC_VLINE_SYNC) | (1 << ATI_CRTC_FRAME) | #if 1 #else (1 << ATI_CRTC2_VBLANK) | (1 << ATI_CRTC2_VLINE_SYNC) | #endif 0; uint32_t bits_AK = (1 << ATI_CRTC_VBLANK_INT_AK) | (1 << ATI_CRTC_VLINE_INT_AK) | #if 1 (1 << ATI_VIDEOIN_EVEN_INT_AK) | (1 << ATI_VIDEOIN_ODD_INT_AK) | (1 << ATI_OVERLAY_EOF_INT_AK) | (1 << ATI_VMC_EC_INT_AK) | #else (1 << ATI_SNAPSHOT_INT_AK) | (1 << ATI_I2C_INT_AK) | (1 << ATI_CRTC2_VBLANK_INT_AK) | (1 << ATI_CRTC2_VLINE_INT_AK) | (1 << ATI_CUPBUF0_INT_AK) | (1 << ATI_CUPBUF1_INT_AK) | (1 << ATI_OVERLAY_EOF_INT_AK) | (1 << ATI_ONESHOT_CAP_INT_AK) | (1 << ATI_BUSMASTER_EOL_INT_AK) | (1 << ATI_GP_INT_AK) | (1 << ATI_SNAPSHOT2_INT_AK) | (1 << ATI_VBLANK_BIT2_INT_AK) | #endif 0; /* uint32_t bits_EN = (1 << ATI_CRTC_VBLANK_INT_EN) | (1 << ATI_CRTC_VLINE_INT_EN) | #if 1 (1 << ATI_VIDEOIN_EVEN_INT_EN) | (1 << ATI_VIDEOIN_ODD_INT_EN) | (1 << ATI_OVERLAY_EOF_INT_EN) | (1 << ATI_VMC_EC_INT_EN) | #else (1 << ATI_SNAPSHOT_INT_EN) | (1 << ATI_I2C_INT_EN) | (1 << ATI_CRTC2_VBLANK_INT_EN) | (1 << ATI_CRTC2_VLINE_INT_EN) | (1 << ATI_CUPBUF0_INT_EN) | (1 << ATI_CUPBUF1_INT_EN) | (1 << ATI_OVERLAY_EOF_INT_EN) | (1 << ATI_ONESHOT_CAP_INT_EN) | (1 << ATI_BUSMASTER_EOL_INT_EN) | (1 << ATI_GP_INT_EN) | (1 << ATI_SNAPSHOT2_INT_EN) | #endif 0; */ uint32_t bits_AKed = bits_AK & value; // AK bits that are to be AKed uint32_t bits_not_AKed = bits_AK & ~value; // AK bits that are not to be AKed new_value = value & ~bits_AKed; // clear the AKed bits bits_read_only |= bits_not_AKed; // the not AKed bits will remain unchanged new_value = (old_value & bits_read_only) | (new_value & ~bits_read_only); break; } case ATI_CRTC_GEN_CNTL: { uint32_t bits_AK = #if 1 #else (1 << ATI_CRTC_VSYNC_INT_AK) | (1 << ATI_CRTC2_VSYNC_INT_AK) | #endif 0; /* uint32_t bits_EN = #if 1 #else (1 << ATI_CRTC_VSYNC_INT_EN) | (1 << ATI_CRTC2_VSYNC_INT_EN) | #endif 0; */ uint32_t bits_AKed = bits_AK & value; // AK bits that are to be AKed uint32_t bits_not_AKed = bits_AK & ~value; // AK bits that are not to be AKed new_value = value & ~bits_AKed; // clear the AKed bits uint32_t bits_read_only = bits_not_AKed; // the not AKed bits will remain unchanged new_value = (old_value & bits_read_only) | (new_value & ~bits_read_only); this->regs[reg_num] = new_value; if (bit_changed(old_value, new_value, ATI_CRTC_DISPLAY_DIS)) { if (bit_set(new_value, ATI_CRTC_DISPLAY_DIS)) { this->blank_on = true; this->blank_display(); } else { this->blank_on = false; } } if (bit_changed(old_value, new_value, ATI_CRTC_ENABLE)) { this->crtc_update(); } break; } case ATI_OVR_CLR: case ATI_OVR_WID_LEFT_RIGHT: case ATI_OVR_WID_TOP_BOTTOM: new_value = value; WRITE_VALUE_AND_LOG(); if (value != 0) { LOG_F(ERROR, "%s: Unhandled value 0x%08x.", this->name.c_str(), value); } return; case ATI_CUR_CLR0: case ATI_CUR_CLR1: new_value = value; this->cursor_dirty = true; draw_fb = true; WRITE_VALUE_AND_LOG(); return; case ATI_CUR_OFFSET: new_value = value; if (old_value != new_value) this->cursor_dirty = true; draw_fb = true; WRITE_VALUE_AND_LOG(); return; case ATI_CUR_HORZ_VERT_OFF: new_value = value; if ( extract_bits(new_value, ATI_CUR_VERT_OFF, ATI_CUR_VERT_OFF_size) != extract_bits(old_value, ATI_CUR_VERT_OFF, ATI_CUR_VERT_OFF_size) ) this->cursor_dirty = true; draw_fb = true; WRITE_VALUE_AND_LOG(); return; case ATI_CUR_HORZ_VERT_POSN: new_value = value; draw_fb = true; WRITE_VALUE_AND_LOG(); return; case ATI_DAC_REGS: new_value = old_value; // no change if (size == 1) { // only byte accesses are allowed for DAC registers int dac_reg_addr = ((this->regs[ATI_DAC_CNTL] & 1) << 2) | offset; rgb514_write_reg(dac_reg_addr, extract_bits(value, offset * 8, 8)); } break; case ATI_DAC_CNTL: new_value = value; // monitor ID is usually accessed using 8bit writes if (offset <= 3 && offset + size > 3) { uint8_t gpio_dirs = extract_bits(new_value, ATI_DAC_GIO_DIR, ATI_DAC_GIO_DIR_size); uint8_t gpio_levels = extract_bits(new_value, ATI_DAC_GIO_STATE, ATI_DAC_GIO_STATE_size); gpio_levels = this->disp_id->read_monitor_sense(gpio_levels, gpio_dirs); insert_bits(new_value, gpio_levels, ATI_DAC_GIO_STATE, ATI_DAC_GIO_STATE_size); } break; case ATI_CONFIG_STAT0: new_value = old_value; // prevent writes to this read-only register break; default: new_value = value; break; } this->regs[reg_num] = new_value; } uint32_t AtiMach64Gx::read(uint32_t rgn_start, uint32_t offset, int size) { if (rgn_start == this->aperture_base[0]) { if (offset < this->vram_size) { return read_mem(&this->vram_ptr[offset], size); } if (offset >= this->mm_regs_offset && offset < this->mm_regs_offset + 0x400) { return BYTESWAP_SIZED(read_reg(offset - this->mm_regs_offset, size), size); } return 0; } // memory mapped expansion ROM region if (rgn_start == this->exp_rom_addr) { if (offset < this->exp_rom_size) return read_mem(&this->exp_rom_data[offset], size); return 0; } return 0; } void AtiMach64Gx::write(uint32_t rgn_start, uint32_t offset, uint32_t value, int size) { if (rgn_start == this->aperture_base[0]) { if (offset < this->vram_size) { draw_fb = true; return write_mem(&this->vram_ptr[offset], value, size); } if (offset >= this->mm_regs_offset && offset < this->mm_regs_offset + 0x400) { return write_reg(offset - this->mm_regs_offset, BYTESWAP_SIZED(value, size), size); } return; } } void AtiMach64Gx::verbose_pixel_format(int crtc_index) { if (crtc_index) { LOG_F(ERROR, "CRTC2 not supported yet"); return; } int pix_fmt = this->pixel_format; const char* what = "Pixel format:"; switch (pix_fmt) { case 2: LOG_F(INFO, "%s 4 bpp with DAC palette", what); break; case 3: LOG_F(INFO, "%s 8 bpp with DAC palette", what); break; case 4: LOG_F(INFO, "%s 15 bpp direct color (RGB555)", what); break; case 5: LOG_F(INFO, "%s 24 bpp direct color (RGB888)", what); break; case 6: LOG_F(INFO, "%s 32 bpp direct color (ARGB8888)", what); break; default: LOG_F(ERROR, "%s: CRTC pixel format %d not supported", this->name.c_str(), pix_fmt); } } void AtiMach64Gx::crtc_update() { uint32_t new_width, new_height; if (!bit_set(this->regs[ATI_CRTC_GEN_CNTL], ATI_CRTC_ENABLE) || bit_set(this->regs[ATI_CRTC_GEN_CNTL], ATI_CRTC_DISPLAY_DIS) ) { return; } // check for unsupported modes and fail early if (!bit_set(this->regs[ATI_CRTC_GEN_CNTL], ATI_CRTC_EXT_DISP_EN)) ABORT_F("%s: Current mode is VGA which is not supported", this->name.c_str()); bool need_recalc = false; new_width = (extract_bits(this->regs[ATI_CRTC_H_TOTAL_DISP], ATI_CRTC_H_DISP, ATI_CRTC_H_DISP_size) + 1) * 8; new_height = extract_bits(this->regs[ATI_CRTC_V_TOTAL_DISP], ATI_CRTC_V_DISP, ATI_CRTC_V_DISP_size) + 1; if (new_width != this->active_width || new_height != this->active_height) { this->create_display_window(new_width, new_height); need_recalc = true; } uint32_t new_htotal, new_vtotal; new_htotal = (extract_bits(this->regs[ATI_CRTC_H_TOTAL_DISP], ATI_CRTC_H_TOTAL, ATI_CRTC_H_TOTAL_size) + 1) * 8; new_vtotal = extract_bits(this->regs[ATI_CRTC_V_TOTAL_DISP], ATI_CRTC_V_TOTAL, ATI_CRTC_V_TOTAL_size) + 1; if (new_htotal != this->hori_total || new_vtotal != this->vert_total) { this->hori_total = new_htotal; this->vert_total = new_vtotal; need_recalc = true; } uint32_t new_vert_blank = new_vtotal - new_height; if (new_vert_blank != this->vert_blank) { this->vert_blank = new_vert_blank; need_recalc = true; } int new_pixel_format = this->dac_regs[Rgb514::PIX_FORMAT]; if (new_pixel_format != this->pixel_format) { this->pixel_format = new_pixel_format; need_recalc = true; } static uint8_t bits_per_pixel[8] = {0, 0, 4, 8, 16, 24, 32, 0}; int new_fb_pitch = extract_bits(this->regs[ATI_CRTC_OFF_PITCH], ATI_CRTC_PITCH, ATI_CRTC_PITCH_size) * bits_per_pixel[this->pixel_format]; if (new_fb_pitch != this->fb_pitch) { this->fb_pitch = new_fb_pitch; need_recalc = true; } uint8_t* new_fb_ptr = &this->vram_ptr[extract_bits(this->regs[ATI_CRTC_OFF_PITCH], ATI_CRTC_OFFSET, ATI_CRTC_OFFSET_size) * 8]; if (new_fb_ptr != this->fb_ptr) { this->fb_ptr = new_fb_ptr; need_recalc = true; } // pixel clock = source_freq / post_div int m = 8 >> (this->dac_regs[Rgb514::F0_M0] >> 6); int vco_div = (this->dac_regs[Rgb514::F0_M0] & 0x3F) + 65; int ref_div = (this->dac_regs[Rgb514::F1_N0] & 0x1F) * m; float new_pixel_clock = ATI_XTAL * vco_div / ref_div; if (new_pixel_clock != this->pixel_clock) { this->pixel_clock = new_pixel_clock; need_recalc = true; } if (!need_recalc) return; this->draw_fb = true; // calculate display refresh rate this->refresh_rate = this->pixel_clock / this->hori_total / this->vert_total; if (this->refresh_rate < 24 || this->refresh_rate > 120) { LOG_F(ERROR, "%s: Refresh rate is weird. Will try 60 Hz", this->name.c_str()); this->refresh_rate = 60; this->pixel_clock = this->refresh_rate * this->hori_total / this->vert_total; } // set up frame buffer converter switch (this->pixel_format) { case 2: this->convert_fb_cb = [this](uint8_t *dst_buf, int dst_pitch) { draw_fb = false; this->convert_frame_4bpp_indexed(dst_buf, dst_pitch); }; break; case 3: this->convert_fb_cb = [this](uint8_t *dst_buf, int dst_pitch) { draw_fb = false; this->convert_frame_8bpp_indexed(dst_buf, dst_pitch); }; break; case 4: this->convert_fb_cb = [this](uint8_t *dst_buf, int dst_pitch) { draw_fb = false; this->convert_frame_15bpp_BE(dst_buf, dst_pitch); }; break; case 5: this->convert_fb_cb = [this](uint8_t *dst_buf, int dst_pitch) { draw_fb = false; this->convert_frame_24bpp(dst_buf, dst_pitch); }; break; case 6: this->convert_fb_cb = [this](uint8_t *dst_buf, int dst_pitch) { draw_fb = false; this->convert_frame_32bpp_BE(dst_buf, dst_pitch); }; break; default: LOG_F(ERROR, "%s: unsupported pixel format %d", this->name.c_str(), this->pixel_format); } this->stop_refresh_task(); this->start_refresh_task(); this->crtc_on = true; } void AtiMach64Gx::draw_hw_cursor(uint8_t *dst_row, int dst_pitch) { int vert_offset = extract_bits(this->regs[ATI_CUR_HORZ_VERT_OFF], ATI_CUR_VERT_OFF, ATI_CUR_VERT_OFF_size); int cur_height = 64 - vert_offset; uint32_t color0 = this->regs[ATI_CUR_CLR0] | 0x000000FFUL; uint32_t color1 = this->regs[ATI_CUR_CLR1] | 0x000000FFUL; uint64_t *src_row = (uint64_t *)&this->vram_ptr[this->regs[ATI_CUR_OFFSET] * 8]; dst_pitch -= 64 * 4; for (int h = cur_height; h > 0; h--) { for (int x = 2; x > 0; x--) { uint64_t px = *src_row++; for (int p = 32; p > 0; p--, px >>= 2, dst_row += 4) { switch(px & 3) { case 0: // cursor color 0 WRITE_DWORD_BE_A(dst_row, color0); break; case 1: // cursor color 1 WRITE_DWORD_BE_A(dst_row, color1); break; case 2: // transparent WRITE_DWORD_BE_A(dst_row, 0); break; case 3: // 1's complement of display pixel WRITE_DWORD_BE_A(dst_row, 0x0000007F); break; } } } dst_row += dst_pitch; } } void AtiMach64Gx::get_cursor_position(int& x, int& y) { x = extract_bits(this->regs[ATI_CUR_HORZ_VERT_POSN], ATI_CUR_HORZ_POSN, ATI_CUR_HORZ_POSN_size) - extract_bits(this->regs[ATI_CUR_HORZ_VERT_OFF ], ATI_CUR_HORZ_OFF , ATI_CUR_HORZ_OFF_size ); y = extract_bits(this->regs[ATI_CUR_HORZ_VERT_POSN], ATI_CUR_VERT_POSN, ATI_CUR_VERT_POSN_size); } int AtiMach64Gx::device_postinit() { this->vbl_cb = [this](uint8_t irq_line_state) { insert_bits(this->regs[ATI_CRTC_INT_CNTL], irq_line_state, ATI_CRTC_VBLANK, irq_line_state); if (irq_line_state) { set_bit(this->regs[ATI_CRTC_INT_CNTL], ATI_CRTC_VBLANK_INT); set_bit(this->regs[ATI_CRTC_INT_CNTL], ATI_CRTC_VLINE_INT); #if 1 #else set_bit(this->regs[ATI_CRTC_GEN_CNTL], ATI_CRTC_VSYNC_INT); #endif } bool do_interrupt = bit_set(this->regs[ATI_CRTC_INT_CNTL], ATI_CRTC_VBLANK_INT_EN) || bit_set(this->regs[ATI_CRTC_INT_CNTL], ATI_CRTC_VLINE_INT_EN) || #if 1 #else bit_set(this->regs[ATI_CRTC_GEN_CNTL], ATI_CRTC_VSYNC_INT_EN) || #endif 0; LOG_F(WARNING, "%s: irq_line_state:%d do_interrupt:%d CRTC_INT_CNTL:%08x", this->name.c_str(), irq_line_state, do_interrupt, this->regs[ATI_CRTC_INT_CNTL]); if (do_interrupt) { this->pci_interrupt(irq_line_state); } }; return 0; } // ========================== IBM RGB514 related code ========================== void AtiMach64Gx::rgb514_write_reg(uint8_t reg_addr, uint8_t value) { switch (reg_addr) { case Rgb514::CLUT_ADDR_WR: this->clut_index = value; this->comp_index = 0; break; case Rgb514::CLUT_DATA: this->clut_color[this->comp_index++] = value; if (this->comp_index >= 3) { this->set_palette_color(this->clut_index, clut_color[0], clut_color[1], clut_color[2], 0xFF); this->clut_index++; this->comp_index = 0; draw_fb = true; } break; case Rgb514::CLUT_MASK: if (value != 0xFF) { LOG_F(WARNING, "RGB514: pixel mask set to 0x%X", value); } break; case Rgb514::INDEX_LOW: this->dac_idx_lo = value; break; case Rgb514::INDEX_HIGH: this->dac_idx_hi = value; break; case Rgb514::INDEX_DATA: this->rgb514_write_ind_reg((this->dac_idx_hi << 8) + this->dac_idx_lo, value); break; default: ABORT_F("RGB514: access to unimplemented register at 0x%X", reg_addr); } } const char* AtiMach64Gx::rgb514_get_reg_name(uint32_t reg_addr) { auto iter = rgb514_reg_names.find(reg_addr); if (iter != rgb514_reg_names.end()) { return iter->second.c_str(); } else { return "unknown rgb514 register"; } } void AtiMach64Gx::rgb514_write_ind_reg(uint8_t reg_addr, uint8_t value) { this->dac_regs[reg_addr] = value; switch (reg_addr) { case Rgb514::MISC_CLK_CNTL: if (value & PLL_ENAB) { if ((this->dac_regs[Rgb514::PLL_CTL_1] & 3) != 1) ABORT_F("RGB514: unsupported PLL source"); this->crtc_update(); } break; case Rgb514::PIX_FORMAT: this->crtc_update(); break; } } static const PropMap AtiMach64gx_Properties = { {"gfxmem_size", new IntProperty( 2, vector({2, 4, 6}))}, {"mon_id", new StrProperty("")}, }; static const DeviceDescription AtiMach64Gx_Descriptor = { AtiMach64Gx::create, {}, AtiMach64gx_Properties }; REGISTER_DEVICE(AtiMach64Gx, AtiMach64Gx_Descriptor);