/*
DingusPPC - The Experimental PowerPC Macintosh emulator
Copyright (C) 2018-22 divingkatae and maximum
(theweirdo) spatium
(Contact divingkatae#1017 or powermax#2286 on Discord for more info)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/** @file Macintosh Superdrive emulation. */
#include
#include
#include
#include
#include
using namespace MacSuperdrive;
MacSuperDrive::MacSuperDrive()
{
this->name = "Superdrive";
this->supported_types = HWCompType::FLOPPY_DRV;
this->eject_latch = 0; // eject latch is off
this->reset_params();
}
void MacSuperDrive::reset_params()
{
this->media_kind = MediaKind::high_density;
this->has_disk = 0; // drive is empty
this->motor_stat = 0; // spindle motor is off
this->motor_on_time = 0;
this->cur_track = 0; // current head position
this->is_ready = 0; // drive not ready
// come up in the MFM mode by default
this->switch_drive_mode(RecMethod::MFM);
}
void MacSuperDrive::command(uint8_t addr, uint8_t value)
{
uint8_t new_motor_stat;
LOG_F(9, "Superdrive: command addr=0x%X, value=%d", addr, value);
switch(addr) {
case CommandAddr::Step_Direction:
this->step_dir = value ? -1 : 1;
break;
case CommandAddr::Do_Step:
if (!value) {
this->cur_track += this->step_dir;
if (this->cur_track < 0)
this->cur_track = 0;
this->track_zero = this->cur_track == 0;
}
break;
case CommandAddr::Motor_On_Off:
new_motor_stat = value ^ 1;
if (this->motor_stat != new_motor_stat) {
this->motor_stat = new_motor_stat;
if (new_motor_stat) {
this->motor_on_time = TimerManager::get_instance()->current_time_ns();
this->track_start_time = 0;
this->sector_start_time = 0;
this->init_track_search(-1);
this->is_ready = 1;
LOG_F(INFO, "Superdrive: turn spindle motor on");
} else {
this->motor_on_time = 0;
this->is_ready = 0;
LOG_F(INFO, "Superdrive: turn spindle motor off");
}
}
break;
case CommandAddr::Eject_Disk:
if (value) {
LOG_F(INFO, "Superdrive: disk ejected");
this->eject_latch = 1;
this->reset_params();
}
case CommandAddr::Reset_Eject_Latch:
if (value) {
this->eject_latch = 0;
}
break;
case CommandAddr::Switch_Drive_Mode:
if (this->drive_mode != (value ^ 1)) {
switch_drive_mode(value ^ 1); // reverse logic
this->is_ready = 1;
}
break;
default:
LOG_F(WARNING, "Superdrive: unimplemented command, addr=0x%X", addr);
}
}
uint8_t MacSuperDrive::status(uint8_t addr)
{
LOG_F(9, "Superdrive: status request, addr = 0x%X", addr);
switch(addr) {
case StatusAddr::Step_Status:
return 1; // not sure what should be returned here
case StatusAddr::Motor_Status:
return this->motor_stat ^ 1; // reverse logic
case StatusAddr::Eject_Latch:
return this->eject_latch;
case StatusAddr::Select_Head_0:
return this->cur_head = 0;
case StatusAddr::MFM_Support:
return 1; // Superdrive does support MFM encoding scheme
case StatusAddr::Double_Sided:
return 1; // yes, Superdrive is double sided
case StatusAddr::Drive_Exists:
return 0; // tell the world I'm here
case StatusAddr::Disk_In_Drive:
return this->has_disk ^ 1; // reverse logic (active low)!
case StatusAddr::Write_Protect:
return this->wr_protect ^ 1; // reverse logic
case StatusAddr::Track_Zero:
return this->track_zero ^ 1; // reverse logic
case StatusAddr::Select_Head_1:
return this->cur_head = 1;
case StatusAddr::Drive_Mode:
return this->drive_mode;
case StatusAddr::Drive_Ready:
return this->is_ready ^ 1; // reverse logic
case StatusAddr::Media_Kind:
return this->media_kind ^ 1; // reverse logic!
default:
LOG_F(WARNING, "Superdrive: unimplemented status request, addr=0x%X", addr);
return 0;
}
}
int MacSuperDrive::insert_disk(std::string& img_path, int write_flag = 0)
{
if (this->has_disk) {
LOG_F(ERROR, "Superdrive: drive is not empty!");
return -1;
}
FloppyImgConverter* img_conv = open_floppy_image(img_path);
if (img_conv != nullptr) {
this->img_conv = std::unique_ptr(img_conv);
set_disk_phys_params();
// allocate memory for raw disk data
this->disk_data = std::unique_ptr(new char[this->img_conv->get_data_size()]);
// swallow all raw disk data at once!
this->img_conv->get_raw_disk_data(this->disk_data.get());
// disk is write-enabled by default
this->wr_protect = write_flag;
// everything is set up, let's say we got a disk
this->has_disk = 1;
} else {
this->has_disk = 0;
}
return 0;
}
void MacSuperDrive::set_disk_phys_params()
{
this->rec_method = this->img_conv->get_disk_rec_method();
this->num_tracks = this->img_conv->get_number_of_tracks();
this->num_sides = this->img_conv->get_number_of_sides();
this->media_kind = this->img_conv->get_rec_density();
this->format_byte = this->img_conv->get_format_byte();
switch_drive_mode(this->rec_method);
}
void MacSuperDrive::switch_drive_mode(int mode)
{
if (mode == RecMethod::GCR) {
// Apple GCR speeds per group of 16 tracks
static int gcr_rpm_per_group[5] = {394, 429, 472, 525, 590};
// initialize three lookup tables:
// sectors per track
// rpm per track
// logical block number of the first sector in each track
// for easier navigation
for (int grp = 0, blk_num = 0; grp < 5; grp++) {
for (int trk = 0; trk < 16; trk++) {
this->sectors_per_track[grp * 16 + trk] = 12 - grp;
this->rpm_per_track[grp * 16 + trk] = gcr_rpm_per_group[grp];
this->track2lblk[grp * 16 + trk] = blk_num;
blk_num += (12 - grp) * this->num_sides;
}
}
this->drive_mode = RecMethod::GCR;
} else {
int sectors_per_track = this->media_kind ? 18 : 9;
// MFM disks use constant number of sectors per track
// and the fixed rotational speed of 300 RPM
for (int trk = 0; trk < 80; trk++) {
this->sectors_per_track[trk] = sectors_per_track;
this->rpm_per_track[trk] = 300;
this->track2lblk[trk] = trk * sectors_per_track * 2;
}
// set up disk timing parameters
this->index_delay = MFM_INDX_MARK_DELAY;
this->addr_mark_delay = MFM_ADR_MARK_DELAY;
if (this->media_kind) {
this->sector_delay = MFM_HD_SECTOR_DELAY;
this->eot_delay = MFM_HD_EOT_DELAY;
} else {
this->sector_delay = MFM_DD_SECTOR_DELAY;
this->eot_delay = MFM_DD_EOT_DELAY;
}
this->drive_mode = RecMethod::MFM;
}
}
double MacSuperDrive::get_current_track_delay()
{
return 60.0f / this->rpm_per_track[this->cur_track];
}
void MacSuperDrive::init_track_search(int pos)
{
if (pos == -1) {
// pick random sector number
uint64_t seed = TimerManager::get_instance()->current_time_ns() >> 8;
this->cur_sector = seed % this->sectors_per_track[this->cur_track];
LOG_F(9, "Superdrive: current sector number set to %d", this->cur_sector);
} else {
this->cur_sector = pos;
}
}
uint64_t MacSuperDrive::sync_to_disk()
{
uint64_t cur_time_ns, track_time_ns;
uint64_t track_delay = this->get_current_track_delay() * NS_PER_SEC;
// look how much ns have been elapsed since the last motor enabling
cur_time_ns = TimerManager::get_instance()->current_time_ns() - this->motor_on_time;
if (!this->track_start_time ||
(cur_time_ns - this->track_start_time) >= track_delay) {
// subtract full disk revolutions
track_time_ns = cur_time_ns % track_delay;
this->track_start_time = cur_time_ns - track_time_ns;
// return delay until the first address mark if we're currently
// looking at the end of track
if (track_time_ns >= this->eot_delay) {
this->next_sector = 0;
// CHEAT: don't account for the remaining time of the current track
return this->index_delay + this->addr_mark_delay;
}
// return delay until the first address mark
// if the first address mark was not reached yet
if (track_time_ns < this->index_delay) {
this->next_sector = 0;
return this->index_delay + this->addr_mark_delay - track_time_ns;
}
} else {
track_time_ns = cur_time_ns - this->track_start_time;
}
// subtract index field delay
track_time_ns -= this->index_delay;
// calculate current sector number from timestamp
int cur_sect_num = this->cur_sector = (int)(track_time_ns / this->sector_delay);
this->sector_start_time = this->track_start_time + cur_sect_num * this->sector_delay +
this->index_delay;
if (this->cur_sector + 1 >= this->sectors_per_track[this->cur_track]) {
uint64_t diff = track_delay - (cur_time_ns - this->track_start_time);
this->next_sector = 0;
this->track_start_time = 0;
this->sector_start_time = 0;
return diff + this->index_delay + this->addr_mark_delay;
} else {
this->next_sector = this->cur_sector + 1;
uint64_t diff = cur_time_ns - this->sector_start_time;
this->sector_start_time += this->sector_delay;
return this->sector_delay - diff + this->addr_mark_delay;
}
}
uint64_t MacSuperDrive::next_addr_mark_delay(uint8_t *next_sect_num)
{
uint64_t delay;
if (this->cur_sector + 1 >= this->sectors_per_track[this->cur_track]) {
this->next_sector = 0;
delay = this->index_delay + this->addr_mark_delay;
} else {
this->next_sector = this->cur_sector + 1;
delay = this->addr_mark_delay;
}
if (next_sect_num) {
*next_sect_num = this->next_sector + ((this->rec_method == RecMethod::MFM) ? 1 : 0);
}
return delay;
}
uint64_t MacSuperDrive::next_sector_delay()
{
if (this->cur_sector + 1 >= this->sectors_per_track[this->cur_track]) {
this->next_sector = 0;
return this->sector_delay + this->index_delay + this->addr_mark_delay;
}
this->next_sector = this->cur_sector + 1;
return this->sector_delay - this->addr_mark_delay;
}
uint64_t MacSuperDrive::sector_data_delay()
{
return MFM_SECT_DATA_DELAY;
}
SectorHdr MacSuperDrive::current_sector_header()
{
this->cur_sector = this->next_sector;
// MFM sector numbering is 1-based so we need to bump sector number
uint8_t sector_num = this->cur_sector + ((this->rec_method == RecMethod::MFM) ? 1 : 0);
return SectorHdr {
this->cur_track,
this->cur_head,
sector_num,
this->format_byte
};
}
char* MacSuperDrive::get_sector_data_ptr(int sector_num)
{
return this->disk_data.get() +
((this->track2lblk[this->cur_track] +
(this->cur_head * this->sectors_per_track[this->cur_track]) +
sector_num - 1) * 512
);
}