/* DingusPPC - The Experimental PowerPC Macintosh emulator Copyright (C) 2018-24 divingkatae and maximum (theweirdo) spatium (Contact divingkatae#1017 or powermax#2286 on Discord for more info) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <https://www.gnu.org/licenses/>. */ #include <cpu/ppc/ppcemu.h> #include <devices/deviceregistry.h> #include <devices/common/ata/idechannel.h> #include <devices/common/dbdma.h> #include <devices/common/hwcomponent.h> #include <devices/common/viacuda.h> #include <devices/floppy/swim3.h> #include <devices/ioctrl/macio.h> #include <devices/serial/escc.h> #include <devices/sound/awacs.h> #include <endianswap.h> #include <loguru.hpp> #include <machines/machinebase.h> #include <cinttypes> #include <functional> #include <memory> /** Heathrow Mac I/O device emulation. Author: Max Poliakovski */ using namespace std; HeathrowIC::HeathrowIC() : PCIDevice("mac-io/heathrow"), InterruptCtrl() { supports_types(HWCompType::MMIO_DEV | HWCompType::PCI_DEV | HWCompType::INT_CTRL); // populate my PCI config header this->vendor_id = PCI_VENDOR_APPLE; this->device_id = 0x0010; this->class_rev = 0xFF000001; this->cache_ln_sz = 8; this->setup_bars({{0, 0xFFF80000UL}}); // declare 512Kb of memory-mapped I/O space this->pci_notify_bar_change = [this](int bar_num) { this->notify_bar_change(bar_num); }; // NVRAM connection this->nvram = dynamic_cast<NVram*>(gMachineObj->get_comp_by_name("NVRAM")); // connect Cuda this->viacuda = dynamic_cast<ViaCuda*>(gMachineObj->get_comp_by_name("ViaCuda")); // find appropriate sound chip, create a DMA output channel for sound, // then wire everything together this->snd_codec = dynamic_cast<MacioSndCodec*>(gMachineObj->get_comp_by_type(HWCompType::SND_CODEC)); this->snd_out_dma = std::unique_ptr<DMAChannel> (new DMAChannel("snd_out")); this->snd_out_dma->register_dma_int(this, this->register_dma_int(IntSrc::DMA_DAVBUS_Tx)); this->snd_codec->set_dma_out(this->snd_out_dma.get()); this->snd_out_dma->set_callbacks( std::bind(&AwacsScreamer::dma_out_start, this->snd_codec), std::bind(&AwacsScreamer::dma_out_stop, this->snd_codec) ); // connect SCSI HW and the corresponding DMA channel this->mesh = dynamic_cast<MeshController*>(gMachineObj->get_comp_by_name("MeshHeathrow")); this->mesh_dma = std::unique_ptr<DMAChannel> (new DMAChannel("mesh")); // connect IDE HW this->ide_0 = dynamic_cast<IdeChannel*>(gMachineObj->get_comp_by_name("Ide0")); this->ide_1 = dynamic_cast<IdeChannel*>(gMachineObj->get_comp_by_name("Ide1")); // connect serial HW this->escc = dynamic_cast<EsccController*>(gMachineObj->get_comp_by_name("Escc")); // connect floppy disk HW and initialize its DMA channel this->swim3 = dynamic_cast<Swim3::Swim3Ctrl*>(gMachineObj->get_comp_by_name("Swim3")); this->floppy_dma = std::unique_ptr<DMAChannel> (new DMAChannel("floppy")); this->swim3->set_dma_channel(this->floppy_dma.get()); this->floppy_dma->register_dma_int(this, this->register_dma_int(IntSrc::DMA_SWIM3)); // connect Ethernet HW this->bmac = dynamic_cast<BigMac*>(gMachineObj->get_comp_by_type(HWCompType::ETHER_MAC)); this->enet_xmit_dma = std::unique_ptr<DMAChannel> (new DMAChannel("BmacTx")); this->enet_rcv_dma = std::unique_ptr<DMAChannel> (new DMAChannel("BmacRx")); // set EMMO pin status (active low) this->emmo_pin = GET_BIN_PROP("emmo") ^ 1; } void HeathrowIC::notify_bar_change(int bar_num) { if (bar_num) // only BAR0 is supported return; if (this->base_addr != (this->bars[bar_num] & 0xFFFFFFF0UL)) { if (this->base_addr) { this->host_instance->pci_unregister_mmio_region(this->base_addr, 0x80000, this); } this->base_addr = this->bars[0] & 0xFFFFFFF0UL; this->host_instance->pci_register_mmio_region(this->base_addr, 0x80000, this); LOG_F(INFO, "%s: base address set to 0x%X", this->pci_name.c_str(), this->base_addr); } } uint32_t HeathrowIC::dma_read(uint32_t offset, int size) { switch (offset >> 8) { case MIO_OHARE_DMA_MESH: if (this->mesh_dma) return this->mesh_dma->reg_read(offset & 0xFF, size); else return 0; case MIO_OHARE_DMA_FLOPPY: return this->floppy_dma->reg_read(offset & 0xFF, size); case MIO_OHARE_DMA_ETH_XMIT: return this->enet_xmit_dma->reg_read(offset & 0xFF, size); case MIO_OHARE_DMA_ETH_RCV: return this->enet_rcv_dma->reg_read(offset & 0xFF, size); case MIO_OHARE_DMA_AUDIO_OUT: return this->snd_out_dma->reg_read(offset & 0xFF, size); default: LOG_F(WARNING, "Unsupported DMA channel read, offset=0x%X", offset); } return 0; } void HeathrowIC::dma_write(uint32_t offset, uint32_t value, int size) { switch (offset >> 8) { case MIO_OHARE_DMA_MESH: if (this->mesh_dma) this->mesh_dma->reg_write(offset & 0xFF, value, size); break; case MIO_OHARE_DMA_FLOPPY: this->floppy_dma->reg_write(offset & 0xFF, value, size); break; case MIO_OHARE_DMA_ETH_XMIT: this->enet_xmit_dma->reg_write(offset & 0xFF, value, size); break; case MIO_OHARE_DMA_ETH_RCV: this->enet_rcv_dma->reg_write(offset & 0xFF, value, size); break; case MIO_OHARE_DMA_AUDIO_OUT: this->snd_out_dma->reg_write(offset & 0xFF, value, size); break; default: LOG_F(WARNING, "Unsupported DMA channel write, offset=0x%X, val=0x%X", offset, value); } } uint32_t HeathrowIC::read(uint32_t rgn_start, uint32_t offset, int size) { uint32_t res = 0; LOG_F(9, "%s: reading from offset %x", this->name.c_str(), offset); unsigned sub_addr = (offset >> 12) & 0x7F; switch (sub_addr) { case 0: res = mio_ctrl_read(offset, size); break; case 8: res = dma_read(offset - 0x8000, size); break; case 0x10: // SCSI res = this->mesh->read((offset >> 4) & 0xF); break; case 0x11: // Ethernet res = BYTESWAP_SIZED(this->bmac->read(offset & 0xFFFU), size); break; case 0x12: // ESCC compatible addressing if ((offset & 0xFF) < 16) { return this->escc->read(compat_to_macrisc[(offset >> 1) & 0xF]); } // fallthrough case 0x13: // ESCC MacRISC addressing return this->escc->read((offset >> 4) & 0xF); case 0x14: res = this->snd_codec->snd_ctrl_read(offset - 0x14000, size); break; case 0x15: // SWIM3 return this->swim3->read((offset >> 4 )& 0xF); case 0x16: // VIA-CUDA case 0x17: res = this->viacuda->read((offset - 0x16000) >> 9); break; case 0x20: // IDE 0 res = this->ide_0->read((offset >> 4) & 0x1F, size); break; case 0x21: // IDE 1 res = this->ide_1->read((offset >> 4) & 0x1F, size); break; default: if (sub_addr >= 0x60) { res = this->nvram->read_byte((offset - 0x60000) >> 4); } else { LOG_F(WARNING, "Attempting to read from unmapped I/O space: %x", offset); } } return res; } void HeathrowIC::write(uint32_t rgn_start, uint32_t offset, uint32_t value, int size) { LOG_F(9, "%s: writing to offset %x", this->name.c_str(), offset); unsigned sub_addr = (offset >> 12) & 0x7F; switch (sub_addr) { case 0: mio_ctrl_write(offset, value, size); break; case 8: dma_write(offset - 0x8000, value, size); break; case 0x10: // SCSI this->mesh->write((offset >> 4) & 0xF, value); break; case 0x11: // Ethernet this->bmac->write(offset & 0xFFFU, BYTESWAP_SIZED(value, size)); break; case 0x12: // ESCC compatible addressing if ((offset & 0xFF) < 16) { this->escc->write(compat_to_macrisc[(offset >> 1) & 0xF], value); break; } // fallthrough case 0x13: // ESCC MacRISC addressing this->escc->write((offset >> 4) & 0xF, value); break; case 0x14: this->snd_codec->snd_ctrl_write(offset - 0x14000, value, size); break; case 0x15: // SWIM3 this->swim3->write((offset >> 4) & 0xF, value); break; case 0x16: // VIA-CUDA case 0x17: this->viacuda->write((offset - 0x16000) >> 9, value); break; case 0x20: // IDE O this->ide_0->write((offset >> 4) & 0x1F, value, size); break; case 0x21: // IDE 1 this->ide_1->write((offset >> 4) & 0x1F, value, size); break; default: if (sub_addr >= 0x60) { this->nvram->write_byte((offset - 0x60000) >> 4, value); } else { LOG_F(WARNING, "Attempting to write to unmapped I/O space: %x", offset); } } } uint32_t HeathrowIC::mio_ctrl_read(uint32_t offset, int size) { uint32_t res = 0; switch (offset & 0xFC) { case MIO_INT_EVENTS2: res = this->int_events2; break; case MIO_INT_MASK2: res = this->int_mask2; break; case MIO_INT_LEVELS2: res = this->int_levels2; break; case MIO_INT_EVENTS1: res = this->int_events1; break; case MIO_INT_MASK1: res = this->int_mask1; break; case MIO_INT_LEVELS1: res = this->int_levels1; break; case MIO_INT_CLEAR1: case MIO_INT_CLEAR2: // some Mac OS drivers reads from those write-only registers // so we return zero here as real HW does break; case MIO_OHARE_ID: LOG_F(9, "read from MIO:ID register at Address %x", ppc_state.pc); res = (this->fp_id << 24) | (this->mon_id << 16) | (this->mb_id << 8) | (this->cpu_id | (this->emmo_pin << 4)); break; case MIO_OHARE_FEAT_CTRL: LOG_F(9, "read from MIO:Feat_Ctrl register"); res = this->feat_ctrl; break; default: LOG_F(WARNING, "read from unknown MIO register at %x", offset); break; } return BYTESWAP_32(res); } void HeathrowIC::mio_ctrl_write(uint32_t offset, uint32_t value, int size) { switch (offset & 0xFC) { case MIO_INT_MASK2: this->int_mask2 |= BYTESWAP_32(value) & ~MACIO_INT_MODE; break; case MIO_INT_CLEAR2: this->int_events2 &= ~(BYTESWAP_32(value) & 0x7FFFFFFFUL); clear_cpu_int(); break; case MIO_INT_MASK1: this->int_mask1 = BYTESWAP_32(value); // copy IntMode bit to InterruptMask2 register this->int_mask2 = (this->int_mask2 & ~MACIO_INT_MODE) | (this->int_mask1 & MACIO_INT_MODE); break; case MIO_INT_CLEAR1: if ((this->int_mask1 & MACIO_INT_MODE) && (value & MACIO_INT_CLR)) { this->int_events1 = 0; this->int_events2 = 0; } else { this->int_events1 &= ~(BYTESWAP_32(value) & 0x7FFFFFFFUL); } clear_cpu_int(); break; case MIO_OHARE_ID: LOG_F(WARNING, "Attempted to write %x to MIO:ID at %x; Address : %x", value, offset, ppc_state.pc); break; case MIO_OHARE_FEAT_CTRL: this->feature_control(BYTESWAP_32(value)); break; case MIO_AUX_CTRL: LOG_F(9, "write %x to MIO:Aux_Ctrl register", value); this->aux_ctrl = value; break; default: LOG_F(WARNING, "write %x to unknown MIO register at %x", value, offset); break; } } void HeathrowIC::feature_control(const uint32_t value) { LOG_F(9, "write %x to MIO:Feat_Ctrl register", value); this->feat_ctrl = value; if (!(this->feat_ctrl & 1)) { LOG_F(9, "Heathrow: Monitor sense enabled"); } else { LOG_F(9, "Heathrow: Monitor sense disabled"); } } #define FIRST_INT1_BIT 12 // The first ten are DMA, the next 2 appear to be unused. We'll map 1:1 the INT1 bits 31..12 (0x1F..0x0C) as IRQ_ID bits. #define FIRST_INT2_BIT 2 // Skip the first two which are Ethernet DMA. We'll map INT2 bits 13..2 (interrupts 45..34 or 0x2D..0x22) as IRQ_ID bits 11..0. #define FIRST_INT1_IRQ_ID_BIT 12 // Same as INT1_BIT so there won't be any shifting required. #define FIRST_INT2_IRQ_ID_BIT 0 #define INT1_TO_IRQ_ID(int1) (1 << (int1 - FIRST_INT1_BIT + FIRST_INT1_IRQ_ID_BIT)) #define INT2_TO_IRQ_ID(int2) (1 << (int2 - FIRST_INT2_BIT + FIRST_INT2_IRQ_ID_BIT - 32)) #define INT_TO_IRQ_ID(intx) (intx < 32 ? INT1_TO_IRQ_ID(intx) : INT2_TO_IRQ_ID(intx)) #define IS_INT1(irq_id) (irq_id >= 1 << FIRST_INT1_IRQ_ID_BIT) #define IRQ_ID_TO_INT1_MASK(irq_id) (irq_id <<= (FIRST_INT1_BIT - FIRST_INT1_IRQ_ID_BIT)) #define IRQ_ID_TO_INT2_MASK(irq_id) (irq_id <<= (FIRST_INT2_BIT - FIRST_INT2_IRQ_ID_BIT)) uint32_t HeathrowIC::register_dev_int(IntSrc src_id) { switch (src_id) { case IntSrc::SCSI_MESH : return INT_TO_IRQ_ID(0x0C); case IntSrc::IDE0 : return INT_TO_IRQ_ID(0x0D); case IntSrc::IDE1 : return INT_TO_IRQ_ID(0x0E); case IntSrc::SCCA : return INT_TO_IRQ_ID(0x0F); case IntSrc::SCCB : return INT_TO_IRQ_ID(0x10); case IntSrc::DAVBUS : return INT_TO_IRQ_ID(0x11); case IntSrc::VIA_CUDA : return INT_TO_IRQ_ID(0x12); case IntSrc::SWIM3 : return INT_TO_IRQ_ID(0x13); case IntSrc::NMI : return INT_TO_IRQ_ID(0x14); // nmiSource in AppleHeathrow/Heathrow.cpp case IntSrc::PERCH2 : return INT_TO_IRQ_ID(0x15); case IntSrc::PCI_GPU : return INT_TO_IRQ_ID(0x16); case IntSrc::PCI_A : return INT_TO_IRQ_ID(0x17); case IntSrc::PCI_B : return INT_TO_IRQ_ID(0x18); case IntSrc::PCI_C : return INT_TO_IRQ_ID(0x19); case IntSrc::PERCH1 : return INT_TO_IRQ_ID(0x1A); case IntSrc::PCI_PERCH : return INT_TO_IRQ_ID(0x1C); case IntSrc::ETHERNET : return INT_TO_IRQ_ID(0x2A); default: ABORT_F("Heathrow: unknown interrupt source %d", src_id); } return 0; } #define FIRST_DMA_INT1_BIT 0 // bit 0 is SCSI DMA #define FIRST_DMA_INT2_BIT 0 // bit 0 is Ethernet DMA Tx #define FIRST_DMA_INT1_IRQ_ID_BIT 0 #define FIRST_DMA_INT2_IRQ_ID_BIT 16 // There's only 10 INT1 DMA bits but we'll put INT2 DMA bits in the upper 16 bits #define DMA_INT1_TO_IRQ_ID(int1) (1 << (int1 - FIRST_DMA_INT1_BIT + FIRST_DMA_INT1_IRQ_ID_BIT)) #define DMA_INT2_TO_IRQ_ID(int2) (1 << (int2 - FIRST_DMA_INT2_BIT + FIRST_DMA_INT2_IRQ_ID_BIT - 32)) #define DMA_INT_TO_IRQ_ID(intx) (intx < 32 ? DMA_INT1_TO_IRQ_ID(intx) : DMA_INT2_TO_IRQ_ID(intx)) #define IS_DMA_INT1(irq_id) (irq_id < 1 << FIRST_DMA_INT2_IRQ_ID_BIT) #define DMA_IRQ_ID_TO_INT1_MASK(irq_id) (irq_id <<= (FIRST_DMA_INT1_BIT - FIRST_DMA_INT1_IRQ_ID_BIT)) #define DMA_IRQ_ID_TO_INT2_MASK(irq_id) (irq_id >>= (FIRST_DMA_INT2_IRQ_ID_BIT - FIRST_DMA_INT2_BIT)) uint32_t HeathrowIC::register_dma_int(IntSrc src_id) { switch (src_id) { case IntSrc::DMA_SCSI_MESH : return DMA_INT_TO_IRQ_ID(0x00); case IntSrc::DMA_SWIM3 : return DMA_INT_TO_IRQ_ID(0x01); case IntSrc::DMA_IDE0 : return DMA_INT_TO_IRQ_ID(0x02); case IntSrc::DMA_IDE1 : return DMA_INT_TO_IRQ_ID(0x03); case IntSrc::DMA_SCCA_Tx : return DMA_INT_TO_IRQ_ID(0x04); case IntSrc::DMA_SCCA_Rx : return DMA_INT_TO_IRQ_ID(0x05); case IntSrc::DMA_SCCB_Tx : return DMA_INT_TO_IRQ_ID(0x06); case IntSrc::DMA_SCCB_Rx : return DMA_INT_TO_IRQ_ID(0x07); case IntSrc::DMA_DAVBUS_Tx : return DMA_INT_TO_IRQ_ID(0x08); case IntSrc::DMA_DAVBUS_Rx : return DMA_INT_TO_IRQ_ID(0x09); case IntSrc::DMA_ETHERNET_Tx : return DMA_INT_TO_IRQ_ID(0x20); case IntSrc::DMA_ETHERNET_Rx : return DMA_INT_TO_IRQ_ID(0x21); default: ABORT_F("Heathrow: unknown DMA interrupt source %d", src_id); } return 0; } void HeathrowIC::ack_int(uint32_t irq_id, uint8_t irq_line_state) { #if 1 if (!IS_INT1(irq_id)) { // does this irq_id belong to the second set? IRQ_ID_TO_INT2_MASK(irq_id); #if 0 LOG_F(INFO, "%s: native interrupt events:%08x.%08x levels:%08x.%08x change2:%08x state:%d", this->name.c_str(), this->int_events1 + 0, this->int_events2 + 0, this->int_levels1 + 0, this->int_levels2 + 0, irq_id, irq_line_state ); #endif // native mode: set IRQ bits in int_events2 on a 0-to-1 transition // emulated mode: set IRQ bits in int_events2 on all transitions if ((this->int_mask1 & MACIO_INT_MODE) || (irq_line_state && !(this->int_levels2 & irq_id))) { this->int_events2 |= irq_id; } else { this->int_events2 &= ~irq_id; } this->int_events2 &= this->int_mask2; // update IRQ line state if (irq_line_state) { this->int_levels2 |= irq_id; } else { this->int_levels2 &= ~irq_id; } } else { IRQ_ID_TO_INT1_MASK(irq_id); // native mode: set IRQ bits in int_events1 on a 0-to-1 transition // emulated mode: set IRQ bits in int_events1 on all transitions #if 0 LOG_F(INFO, "%s: native interrupt events:%08x.%08x levels:%08x.%08x change1:%08x state:%d", this->name.c_str(), this->int_events1 + 0, this->int_events2 + 0, this->int_levels1 + 0, this->int_levels2 + 0, irq_id, irq_line_state); #endif if ((this->int_mask1 & MACIO_INT_MODE) || (irq_line_state && !(this->int_levels1 & irq_id))) { this->int_events1 |= irq_id; } else { this->int_events1 &= ~irq_id; } this->int_events1 &= this->int_mask1; // update IRQ line state if (irq_line_state) { this->int_levels1 |= irq_id; } else { this->int_levels1 &= ~irq_id; } } this->signal_cpu_int(); #endif #if 0 if (this->int_mask1 & MACIO_INT_MODE) { // 68k interrupt emulation mode? if (!IS_INT1(irq_id)) { IRQ_ID_TO_INT2_MASK(irq_id); this->int_events2 |= irq_id; // signal IRQ line change this->int_events2 &= this->int_mask2; // update IRQ line state if (irq_line_state) { this->int_levels2 |= irq_id; } else { this->int_levels2 &= ~irq_id; } } else { IRQ_ID_TO_INT1_MASK(irq_id); this->int_events1 |= irq_id; // signal IRQ line change this->int_events1 &= this->int_mask1; // update IRQ line state if (irq_line_state) { this->int_levels1 |= irq_id; } else { this->int_levels1 &= ~irq_id; } } this->signal_cpu_int(); } else { LOG_F(WARNING, "%s: native interrupt mode not implemented", this->name.c_str()); } #endif } void HeathrowIC::ack_dma_int(uint32_t irq_id, uint8_t irq_line_state) { #if 1 if (!IS_DMA_INT1(irq_id)) { DMA_IRQ_ID_TO_INT2_MASK(irq_id); // native mode: set IRQ bits in int_events2 on a 0-to-1 transition // emulated mode: set IRQ bits in int_events2 on all transitions if ((this->int_mask1 & MACIO_INT_MODE) || (irq_line_state && !(this->int_levels2 & irq_id))) { this->int_events2 |= irq_id; } else { this->int_events2 &= ~irq_id; } this->int_events2 &= this->int_mask2; // update IRQ line state if (irq_line_state) { this->int_levels2 |= irq_id; } else { this->int_levels2 &= ~irq_id; } } else { DMA_IRQ_ID_TO_INT1_MASK(irq_id); // native mode: set IRQ bits in int_events1 on a 0-to-1 transition // emulated mode: set IRQ bits in int_events1 on all transitions if ((this->int_mask1 & MACIO_INT_MODE) || (irq_line_state && !(this->int_levels1 & irq_id))) { this->int_events1 |= irq_id; } else { this->int_events1 &= ~irq_id; } this->int_events1 &= this->int_mask1; // update IRQ line state if (irq_line_state) { this->int_levels1 |= irq_id; } else { this->int_levels1 &= ~irq_id; } } this->signal_cpu_int(); #endif #if 0 if (this->int_mask1 & MACIO_INT_MODE) { // 68k interrupt emulation mode? if (!IS_DMA_INT1(irq_id)) { DMA_IRQ_ID_TO_INT2_MASK(irq_id); this->int_events2 |= irq_id; // signal IRQ line change this->int_events2 &= this->int_mask2; // update IRQ line state if (irq_line_state) { this->int_levels2 |= irq_id; } else { this->int_levels2 &= ~irq_id; } } else { DMA_IRQ_ID_TO_INT1_MASK(irq_id); this->int_events1 |= irq_id; // signal IRQ line change this->int_events1 &= this->int_mask1; // update IRQ line state if (irq_line_state) { this->int_levels1 |= irq_id; } else { this->int_levels1 &= ~irq_id; } } this->signal_cpu_int(); } else { ABORT_F("%s: native interrupt mode not implemented", this->name.c_str()); } #endif } void HeathrowIC::signal_cpu_int() { if (this->int_events1 || this->int_events2) { if (!this->cpu_int_latch) { this->cpu_int_latch = true; ppc_assert_int(); } else { LOG_F(5, "%s: CPU INT already latched", this->name.c_str()); } } } void HeathrowIC::clear_cpu_int() { if (!this->int_events1 && !this->int_events2) { this->cpu_int_latch = false; ppc_release_int(); LOG_F(5, "Heathrow: CPU INT latch cleared"); } } static const vector<string> Heathrow_Subdevices = { "NVRAM", "ViaCuda", "ScsiMesh", "MeshHeathrow", "Escc", "Swim3", "Ide0", "Ide1", "BigMacHeathrow" }; static const DeviceDescription Heathrow_Descriptor = { HeathrowIC::create, Heathrow_Subdevices, {} }; REGISTER_DEVICE(Heathrow, Heathrow_Descriptor);