dingusppc/cpu/ppc/ppcemu.h
Mihai Parparita b759f25d87 ppc: Use a unified opcode lookup table
Instead of a primary opcode lookup table with 64 entries and a few
smaller tables with 4-2048 entries, use a single 64 * 2048 (128K)
entry table to dispatch opcodes.

Helps with performance, since we avoid the function call overhead for
some frequently-used instructions (e.g. branch, integer, floating point).
Saves ~2 seconds from the time to Welcome to Macintosh (same measurement
methodology as #125)

Secondarily also makes opcode registration/decoding a bit more uniform,
and scannable, since it's now all in initialize_ppc_opcode_table.
2024-11-30 20:37:26 +01:00

654 lines
21 KiB
C++

/*
DingusPPC - The Experimental PowerPC Macintosh emulator
Copyright (C) 2018-24 divingkatae and maximum
(theweirdo) spatium
(Contact divingkatae#1017 or powermax#2286 on Discord for more info)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef PPCEMU_H
#define PPCEMU_H
#include <devices/memctrl/memctrlbase.h>
#include <endianswap.h>
#include <memaccess.h>
#include <atomic>
#include <cinttypes>
#include <functional>
#include <setjmp.h>
#include <string>
// Uncomment this to have a more graceful approach to illegal opcodes
//#define ILLEGAL_OP_SAFE 1
//#define CPU_PROFILING // enable CPU profiling
/** type of compiler used during execution */
enum EXEC_MODE:uint32_t {
interpreter = 0,
debugger = 1,
threaded_int = 2,
jit = 3
};
enum endian_switch { big_end = 0, little_end = 1 };
typedef void (*PPCOpcode)(uint32_t opcode);
union FPR_storage {
double dbl64_r; // double floating-point representation
uint64_t int64_r; // double integer representation
};
/**
Except for the floating-point registers, all registers require
32 bits for representation. Floating-point registers need 64 bits.
gpr = General Purpose Register
fpr = Floating Point (FP) Register
cr = Condition Register
tbr = Time Base Register
fpscr = FP Status and Condition Register
spr = Special Register
msr = Machine State Register
sr = Segment Register
**/
typedef struct struct_ppc_state {
FPR_storage fpr[32];
uint32_t pc; // Referred as the CIA in the PPC manual
uint32_t gpr[32];
uint32_t cr;
uint32_t fpscr;
uint32_t tbr[2];
uint32_t spr[1024];
uint32_t msr;
uint32_t sr[16];
bool reserve; // reserve bit used for lwarx and stcwx
} SetPRS;
extern SetPRS ppc_state;
/** symbolic names for frequently used SPRs */
enum SPR : int {
MQ = 0, // MQ (601)
XER = 1,
RTCU_U = 4, // user mode RTCU (601)
RTCL_U = 5, // user mode RTCL (601)
DEC_U = 6, // user mode decrementer (601)
LR = 8,
CTR = 9,
DSISR = 18,
DAR = 19,
RTCU_S = 20, // supervisor RTCU (601)
RTCL_S = 21, // supervisor RTCL (601)
DEC_S = 22, // supervisor decrementer
SDR1 = 25,
SRR0 = 26,
SRR1 = 27,
TBL_U = 268, // user mode TBL
TBU_U = 269, // user mode TBU
SPRG0 = 272,
SPRG1 = 273,
SPRG2 = 274,
SPRG3 = 275,
TBL_S = 284, // supervisor TBL
TBU_S = 285, // supervisor TBU
PVR = 287,
MMCR0 = 952,
PMC1 = 953,
PMC2 = 954,
SIA = 955,
MMCR1 = 956,
SDA = 959,
HID0 = 1008,
HID1 = 1009,
};
/** symbolic names for common PPC processors */
enum PPC_VER : uint32_t {
MPC601 = 0x00010001,
MPC603 = 0x00030001,
MPC604 = 0x00040001,
MPC603E = 0x00060101,
MPC603EV = 0x00070101,
MPC750 = 0x00080200,
MPC604E = 0x00090202,
MPC970MP = 0x00440100,
};
/**
typedef struct struct_ppc64_state {
FPR_storage fpr [32];
uint64_t pc; //Referred as the CIA in the PPC manual
uint64_t gpr [32];
uint32_t cr;
uint32_t fpscr;
uint32_t tbr [2];
uint64_t spr [1024];
uint32_t msr;
uint32_t sr [16];
bool reserve; //reserve bit used for lwarx and stcwx
} SetPRS64;
extern SetPRS64 ppc_state64;
**/
/**
Specific SPRS to be weary of:
USER MODEL
SPR 1 - XER
SPR 8 - Link Register / Branch
b0 - Summary Overflow
b1 - Overflow
b2 - Carry
b25-31 - Number of bytes to transfer
SPR 9 - Count
SUPERVISOR MODEL
19 is the Data Address Register
22 is the Decrementer
26, 27 are the Save and Restore Registers (SRR0, SRR1)
272 - 275 are the SPRGs
284 - 285 for writing to the TBR's.
528 - 535 are the Instruction BAT registers
536 - 543 are the Data BAT registers
**/
extern uint64_t timebase_counter;
extern uint64_t tbr_wr_timestamp;
extern uint64_t dec_wr_timestamp;
extern uint64_t rtc_timestamp;
extern uint64_t tbr_wr_value;
extern uint32_t dec_wr_value;
extern uint32_t tbr_freq_ghz;
extern uint64_t tbr_period_ns;
extern uint32_t rtc_lo, rtc_hi;
/* Flags for controlling interpreter execution. */
enum {
EXEF_BRANCH = 1 << 0,
EXEF_EXCEPTION = 1 << 1,
EXEF_RFI = 1 << 2,
};
enum CR_select : int32_t {
CR0_field = (0xF << 28),
CR1_field = (0xF << 24),
};
// Define bit masks for CR0.
// To use them in other CR fields, just right shift it by 4*CR_num bits.
enum CRx_bit : uint32_t {
CR_SO = 1UL << 28,
CR_EQ = 1UL << 29,
CR_GT = 1UL << 30,
CR_LT = 1UL << 31
};
enum CR1_bit : uint32_t {
CR1_OX = 24,
CR1_VX,
CR1_FEX,
CR1_FX,
};
enum FPSCR : uint32_t {
RN_MASK = 0x3,
NI = 1UL << 2,
XE = 1UL << 3,
ZE = 1UL << 4,
UE = 1UL << 5,
OE = 1UL << 6,
VE = 1UL << 7,
VXCVI = 1UL << 8,
VXSQRT = 1UL << 9,
VXSOFT = 1UL << 10,
FPCC_FUNAN = 1UL << 12,
FPCC_ZERO = 1UL << 13,
FPCC_POS = 1UL << 14,
FPCC_NEG = 1UL << 15,
FPCC_MASK = FPCC_NEG | FPCC_POS | FPCC_ZERO | FPCC_FUNAN,
FPRCD = 1UL << 16,
FPRF_MASK = FPRCD | FPCC_MASK,
FI = 1UL << 17,
FR = 1UL << 18,
VXVC = 1UL << 19,
VXIMZ = 1UL << 20,
VXZDZ = 1UL << 21,
VXIDI = 1UL << 22,
VXISI = 1UL << 23,
VXSNAN = 1UL << 24,
XX = 1UL << 25,
ZX = 1UL << 26,
UX = 1UL << 27,
OX = 1UL << 28,
VX = 1UL << 29,
FEX = 1UL << 30,
FX = 1UL << 31
};
enum MSR : int {
LE = 0x1, //little endian mode
RI = 0x2,
DR = 0x10,
IR = 0x20,
IP = 0x40,
FE1 = 0x100,
BE = 0x200,
SE = 0x400,
FE0 = 0x800,
ME = 0x1000,
FP = 0x2000,
PR = 0x4000,
EE = 0x8000, //external interrupt
ILE = 0x10000,
POW = 0x40000
};
enum XER : uint32_t {
CA = 1UL << 29,
OV = 1UL << 30,
SO = 1UL << 31
};
//for inf and nan checks
enum FPOP : int {
DIV = 0x12,
SUB = 0x14,
ADD = 0x15,
SQRT = 0x16,
MUL = 0x19
};
/** PowerPC exception types. */
enum class Except_Type {
EXC_SYSTEM_RESET = 1,
EXC_MACHINE_CHECK,
EXC_DSI,
EXC_ISI,
EXC_EXT_INT,
EXC_ALIGNMENT,
EXC_PROGRAM,
EXC_NO_FPU,
EXC_DECR,
EXC_SYSCALL = 12,
EXC_TRACE = 13
};
/** Program Exception subclasses. */
enum Exc_Cause : uint32_t {
FPU_OFF = 1 << (31 - 11),
ILLEGAL_OP = 1 << (31 - 12),
NOT_ALLOWED = 1 << (31 - 13),
TRAP = 1 << (31 - 14),
};
extern unsigned exec_flags;
extern jmp_buf exc_env;
enum Po_Cause : int {
po_none,
po_starting_up,
po_quit,
po_quitting,
po_shut_down,
po_shutting_down,
po_restart,
po_restarting,
po_disassemble_on,
po_disassemble_off,
po_enter_debugger,
po_entered_debugger,
po_signal_interrupt,
};
extern bool power_on;
extern Po_Cause power_off_reason;
extern bool int_pin;
extern bool dec_exception_pending;
extern bool is_601; // For PowerPC 601 Emulation
extern bool include_601; // For non-PowerPC 601 emulation with 601 extras (matches Mac OS 9 environment which can emulate MPC 601 instructions)
extern bool is_altivec; // For Altivec Emulation
extern bool is_64bit; // For PowerPC G5 Emulation
// Make execution deterministic (ignore external input, used a fixed date, etc.)
extern bool is_deterministic;
// Important Addressing Integers
extern uint32_t ppc_next_instruction_address;
inline uint32_t ppc_read_instruction(const uint8_t* ptr) {
return READ_DWORD_BE_A(ptr);
}
// Profiling Stats
#ifdef CPU_PROFILING
extern uint64_t num_executed_instrs;
extern uint64_t num_supervisor_instrs;
extern uint64_t num_int_loads;
extern uint64_t num_int_stores;
extern uint64_t exceptions_processed;
#endif
// instruction enums
typedef enum {
ppc_and = 1,
ppc_andc = 2,
ppc_eqv = 3,
ppc_nand = 4,
ppc_nor = 5,
ppc_or = 6,
ppc_orc = 7,
ppc_xor = 8,
} logical_fun;
typedef enum {
LK0,
LK1,
} field_lk;
typedef enum {
AA0,
AA1,
} field_aa;
typedef enum {
SHFT0,
SHFT1,
} field_shift;
typedef enum {
RIGHT0,
LEFT1,
} field_direction;
typedef enum {
RC0,
RC1,
} field_rc;
typedef enum {
OV0,
OV1,
} field_ov;
typedef enum {
CARRY0,
CARRY1,
} field_carry;
typedef enum {
NOT601,
IS601,
} field_601;
// Placeholder value for cases where we don't have a currently-executing instruction.
constexpr uint32_t NO_OPCODE = 0;
// Function prototypes
extern void ppc_cpu_init(MemCtrlBase* mem_ctrl, uint32_t cpu_version, bool include_601, uint64_t tb_freq);
extern void ppc_mmu_init();
void ppc_illegalop(uint32_t opcode);
void ppc_assert_int();
void ppc_release_int();
void initialize_ppc_opcode_table();
void ppc_changecrf0(uint32_t set_result);
void set_host_rounding_mode(uint8_t mode);
void update_fpscr(uint32_t new_fpscr);
/* Exception handlers. */
void ppc_exception_handler(Except_Type exception_type, uint32_t srr1_bits);
[[noreturn]] void dbg_exception_handler(Except_Type exception_type, uint32_t srr1_bits);
void ppc_floating_point_exception(uint32_t opcode);
void ppc_alignment_exception(uint32_t opcode, uint32_t ea);
// MEMORY DECLARATIONS
extern MemCtrlBase* mem_ctrl_instance;
extern void add_ctx_sync_action(const std::function<void()> &);
extern void do_ctx_sync(void);
// The functions used by the PowerPC processor
namespace dppc_interpreter {
template <field_lk l, field_601 for601> extern void ppc_bcctr(uint32_t opcode);
template <field_lk l> extern void ppc_bclr(uint32_t opcode);
extern void ppc_crand(uint32_t opcode);
extern void ppc_crandc(uint32_t opcode);
extern void ppc_creqv(uint32_t opcode);
extern void ppc_crnand(uint32_t opcode);
extern void ppc_crnor(uint32_t opcode);
extern void ppc_cror(uint32_t opcode);
extern void ppc_crorc(uint32_t opcode);
extern void ppc_crxor(uint32_t opcode);
extern void ppc_isync(uint32_t opcode);
template <logical_fun logical_op, field_rc rec> extern void ppc_logical(uint32_t opcode);
template <field_carry carry, field_rc rec, field_ov ov> extern void ppc_add(uint32_t opcode);
template <field_rc rec, field_ov ov> extern void ppc_adde(uint32_t opcode);
template <field_rc rec, field_ov ov> extern void ppc_addme(uint32_t opcode);
template <field_rc rec, field_ov ov> extern void ppc_addze(uint32_t opcode);
extern void ppc_cmp(uint32_t opcode);
extern void ppc_cmpl(uint32_t opcode);
template <field_rc rec> extern void ppc_cntlzw(uint32_t opcode);
extern void ppc_dcbf(uint32_t opcode);
extern void ppc_dcbi(uint32_t opcode);
extern void ppc_dcbst(uint32_t opcode);
extern void ppc_dcbt(uint32_t opcode);
extern void ppc_dcbtst(uint32_t opcode);
extern void ppc_dcbz(uint32_t opcode);
template <field_rc rec, field_ov ov> extern void ppc_divw(uint32_t opcode);
template <field_rc rec, field_ov ov> extern void ppc_divwu(uint32_t opcode);
extern void ppc_eciwx(uint32_t opcode);
extern void ppc_ecowx(uint32_t opcode);
extern void ppc_eieio(uint32_t opcode);
template <class T, field_rc rec>extern void ppc_exts(uint32_t opcode);
extern void ppc_icbi(uint32_t opcode);
extern void ppc_mftb(uint32_t opcode);
extern void ppc_lhaux(uint32_t opcode);
extern void ppc_lhax(uint32_t opcode);
extern void ppc_lhbrx(uint32_t opcode);
extern void ppc_lwarx(uint32_t opcode);
extern void ppc_lwbrx(uint32_t opcode);
template <class T> extern void ppc_lzx(uint32_t opcode);
template <class T> extern void ppc_lzux(uint32_t opcode);
extern void ppc_mcrxr(uint32_t opcode);
extern void ppc_mfcr(uint32_t opcode);
template <field_rc rec> extern void ppc_mulhwu(uint32_t opcode);
template <field_rc rec> extern void ppc_mulhw(uint32_t opcode);
template <field_rc rec, field_ov ov> extern void ppc_mullw(uint32_t opcode);
template <field_rc rec, field_ov ov> extern void ppc_neg(uint32_t opcode);
template <field_direction shift, field_rc rec> extern void ppc_shift(uint32_t opcode);
template <field_rc rec> extern void ppc_sraw(uint32_t opcode);
template <field_rc rec> extern void ppc_srawi(uint32_t opcode);
template <class T> extern void ppc_stx(uint32_t opcode);
template <class T> extern void ppc_stux(uint32_t opcode);
extern void ppc_stfiwx(uint32_t opcode);
extern void ppc_sthbrx(uint32_t opcode);
extern void ppc_stwcx(uint32_t opcode);
extern void ppc_stwbrx(uint32_t opcode);
template <field_carry carry, field_rc rec, field_ov ov> extern void ppc_subf(uint32_t opcode);
template <field_rc rec, field_ov ov> extern void ppc_subfe(uint32_t opcode);
template <field_rc rec, field_ov ov> extern void ppc_subfme(uint32_t opcode);
template <field_rc rec, field_ov ov> extern void ppc_subfze(uint32_t opcode);
extern void ppc_sync(uint32_t opcode);
extern void ppc_tlbia(uint32_t opcode);
extern void ppc_tlbie(uint32_t opcode);
extern void ppc_tlbli(uint32_t opcode);
extern void ppc_tlbld(uint32_t opcode);
extern void ppc_tlbsync(uint32_t opcode);
extern void ppc_tw(uint32_t opcode);
extern void ppc_lswi(uint32_t opcode);
extern void ppc_lswx(uint32_t opcode);
extern void ppc_stswi(uint32_t opcode);
extern void ppc_stswx(uint32_t opcode);
extern void ppc_mfsr(uint32_t opcode);
extern void ppc_mfsrin(uint32_t opcode);
extern void ppc_mtsr(uint32_t opcode);
extern void ppc_mtsrin(uint32_t opcode);
extern void ppc_mcrf(uint32_t opcode);
extern void ppc_mtcrf(uint32_t opcode);
extern void ppc_mfmsr(uint32_t opcode);
extern void ppc_mfspr(uint32_t opcode);
extern void ppc_mtmsr(uint32_t opcode);
extern void ppc_mtspr(uint32_t opcode);
template <field_rc rec> extern void ppc_mtfsb0(uint32_t opcode);
template <field_rc rec> extern void ppc_mtfsb1(uint32_t opcode);
extern void ppc_mcrfs(uint32_t opcode);
template <field_rc rec> extern void ppc_fmr(uint32_t opcode);
template <field_601 for601, field_rc rec> extern void ppc_mffs(uint32_t opcode);
template <field_rc rec> extern void ppc_mtfsf(uint32_t opcode);
template <field_rc rec> extern void ppc_mtfsfi(uint32_t opcode);
template <field_shift shift> extern void ppc_addi(uint32_t opcode);
template <field_rc rec> extern void ppc_addic(uint32_t opcode);
template <field_shift shift> extern void ppc_andirc(uint32_t opcode);
template <field_lk l, field_aa a> extern void ppc_b(uint32_t opcode);
template <field_lk l, field_aa a> extern void ppc_bc(uint32_t opcode);
extern void ppc_cmpi(uint32_t opcode);
extern void ppc_cmpli(uint32_t opcode);
template <class T> extern void ppc_lz(uint32_t opcode);
template <class T> extern void ppc_lzu(uint32_t opcode);
extern void ppc_lha(uint32_t opcode);
extern void ppc_lhau(uint32_t opcode);
extern void ppc_lmw(uint32_t opcode);
extern void ppc_mulli(uint32_t opcode);
template <field_shift shift> extern void ppc_ori(uint32_t opcode);
extern void ppc_rfi(uint32_t opcode);
extern void ppc_rlwimi(uint32_t opcode);
extern void ppc_rlwinm(uint32_t opcode);
extern void ppc_rlwnm(uint32_t opcode);
extern void ppc_sc(uint32_t opcode);
template <class T> extern void ppc_st(uint32_t opcode);
template <class T> extern void ppc_stu(uint32_t opcode);
extern void ppc_stmw(uint32_t opcode);
extern void ppc_subfic(uint32_t opcode);
extern void ppc_twi(uint32_t opcode);
template <field_shift shift> extern void ppc_xori(uint32_t opcode);
extern void ppc_lfs(uint32_t opcode);
extern void ppc_lfsu(uint32_t opcode);
extern void ppc_lfsx(uint32_t opcode);
extern void ppc_lfsux(uint32_t opcode);
extern void ppc_lfd(uint32_t opcode);
extern void ppc_lfdu(uint32_t opcode);
extern void ppc_lfdx(uint32_t opcode);
extern void ppc_lfdux(uint32_t opcode);
extern void ppc_stfs(uint32_t opcode);
extern void ppc_stfsu(uint32_t opcode);
extern void ppc_stfsx(uint32_t opcode);
extern void ppc_stfsux(uint32_t opcode);
extern void ppc_stfd(uint32_t opcode);
extern void ppc_stfdu(uint32_t opcode);
extern void ppc_stfdx(uint32_t opcode);
extern void ppc_stfdux(uint32_t opcode);
template <field_rc rec> extern void ppc_fadd(uint32_t opcode);
template <field_rc rec> extern void ppc_fsub(uint32_t opcode);
template <field_rc rec> extern void ppc_fmul(uint32_t opcode);
template <field_rc rec> extern void ppc_fdiv(uint32_t opcode);
template <field_rc rec> extern void ppc_fadds(uint32_t opcode);
template <field_rc rec> extern void ppc_fsubs(uint32_t opcode);
template <field_rc rec> extern void ppc_fmuls(uint32_t opcode);
template <field_rc rec> extern void ppc_fdivs(uint32_t opcode);
template <field_rc rec> extern void ppc_fmadd(uint32_t opcode);
template <field_rc rec> extern void ppc_fmsub(uint32_t opcode);
template <field_rc rec> extern void ppc_fnmadd(uint32_t opcode);
template <field_rc rec> extern void ppc_fnmsub(uint32_t opcode);
template <field_rc rec> extern void ppc_fmadds(uint32_t opcode);
template <field_rc rec> extern void ppc_fmsubs(uint32_t opcode);
template <field_rc rec> extern void ppc_fnmadds(uint32_t opcode);
template <field_rc rec> extern void ppc_fnmsubs(uint32_t opcode);
template <field_rc rec> extern void ppc_fabs(uint32_t opcode);
template <field_rc rec> extern void ppc_fnabs(uint32_t opcode);
template <field_rc rec> extern void ppc_fneg(uint32_t opcode);
template <field_rc rec> extern void ppc_fsel(uint32_t opcode);
template <field_rc rec> extern void ppc_fres(uint32_t opcode);
template <field_rc rec> extern void ppc_fsqrts(uint32_t opcode);
template <field_rc rec> extern void ppc_fsqrt(uint32_t opcode);
template <field_rc rec> extern void ppc_frsqrte(uint32_t opcode);
template <field_rc rec> extern void ppc_frsp(uint32_t opcode);
template <field_rc rec> extern void ppc_fctiw(uint32_t opcode);
template <field_rc rec> extern void ppc_fctiwz(uint32_t opcode);
extern void ppc_fcmpo(uint32_t opcode);
extern void ppc_fcmpu(uint32_t opcode);
// Power-specific instructions
template <field_rc rec, field_ov ov> extern void power_abs(uint32_t opcode);
extern void power_clcs(uint32_t opcode);
template <field_rc rec, field_ov ov> extern void power_div(uint32_t opcode);
template <field_rc rec, field_ov ov> extern void power_divs(uint32_t opcode);
template <field_rc rec, field_ov ov> extern void power_doz(uint32_t opcode);
extern void power_dozi(uint32_t opcode);
template <field_rc rec> extern void power_lscbx(uint32_t opcode);
template <field_rc rec> extern void power_maskg(uint32_t opcode);
template <field_rc rec> extern void power_maskir(uint32_t opcode);
template <field_rc rec, field_ov ov> extern void power_mul(uint32_t opcode);
template <field_rc rec, field_ov ov> extern void power_nabs(uint32_t opcode);
extern void power_rlmi(uint32_t opcode);
template <field_rc rec> extern void power_rrib(uint32_t opcode);
template <field_rc rec> extern void power_sle(uint32_t opcode);
template <field_rc rec> extern void power_sleq(uint32_t opcode);
template <field_rc rec> extern void power_sliq(uint32_t opcode);
template <field_rc rec> extern void power_slliq(uint32_t opcode);
template <field_rc rec> extern void power_sllq(uint32_t opcode);
template <field_rc rec> extern void power_slq(uint32_t opcode);
template <field_rc rec> extern void power_sraiq(uint32_t opcode);
template <field_rc rec> extern void power_sraq(uint32_t opcode);
template <field_rc rec> extern void power_sre(uint32_t opcode);
template <field_rc rec> extern void power_srea(uint32_t opcode);
template <field_rc rec> extern void power_sreq(uint32_t opcode);
template <field_rc rec> extern void power_sriq(uint32_t opcode);
template <field_rc rec> extern void power_srliq(uint32_t opcode);
template <field_rc rec> extern void power_srlq(uint32_t opcode);
template <field_rc rec> extern void power_srq(uint32_t opcode);
} // namespace dppc_interpreter
// AltiVec instructions
// 64-bit instructions
// G5+ instructions
extern uint64_t get_virt_time_ns(void);
extern void ppc_main_opcode(uint32_t opcode);
extern void ppc_exec(void);
extern void ppc_exec_single(void);
extern void ppc_exec_until(uint32_t goal_addr);
extern void ppc_exec_dbg(uint32_t start_addr, uint32_t size);
/* debugging support API */
void print_fprs(void); /* print content of the floating-point registers */
uint64_t get_reg(std::string reg_name); /* get content of the register reg_name */
void set_reg(std::string reg_name, uint64_t val); /* set reg_name to val */
#endif /* PPCEMU_H */