dingusppc/devices/common/viacuda.cpp
2022-02-13 03:02:17 +01:00

712 lines
24 KiB
C++

/*
DingusPPC - The Experimental PowerPC Macintosh emulator
Copyright (C) 2018-22 divingkatae and maximum
(theweirdo) spatium
(Contact divingkatae#1017 or powermax#2286 on Discord for more info)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
/** High-level VIA-CUDA combo device emulation.
*/
#include <core/timermanager.h>
#include <devices/common/adb/adb.h>
#include <devices/common/hwinterrupt.h>
#include <devices/common/viacuda.h>
#include <loguru.hpp>
#include <machines/machinebase.h>
#include <memaccess.h>
#include <cinttypes>
#include <memory>
using namespace std;
ViaCuda::ViaCuda() {
this->name = "ViaCuda";
supports_types(HWCompType::ADB_HOST | HWCompType::I2C_HOST);
// VIA reset clears all internal registers to logic 0
// except timers/counters and the shift register
// as stated in the 6522 datasheet
this->via_regs[VIA_A] = 0;
this->via_regs[VIA_B] = 0;
this->via_regs[VIA_DIRB] = 0;
this->via_regs[VIA_DIRA] = 0;
this->via_regs[VIA_IER] = 0;
this->via_regs[VIA_ACR] = 0;
this->via_regs[VIA_PCR] = 0;
this->via_regs[VIA_IFR] = 0;
// load maximum value into the timer registers for safety
// (not prescribed in the 6522 datasheet)
this->via_regs[VIA_T1LL] = 0xFF;
this->via_regs[VIA_T1LH] = 0xFF;
this->via_regs[VIA_T2CL] = 0xFF;
this->via_regs[VIA_T2CH] = 0xFF;
this->_via_ifr = 0; // all flags cleared
this->_via_ier = 0; // all interrupts disabled
this->irq = 0; // IRQ is not active
// intialize counters/timers
this->t1_counter = 0xFFFF;
this->t1_active = false;
this->t2_counter = 0xFFFF;
this->t2_active = false;
// calculate VIA clock duration in ns
this->via_clk_dur = 1.0f / VIA_CLOCK_HZ * NS_PER_SEC;
// PRAM is part of Cuda
this->pram_obj = std::unique_ptr<NVram> (new NVram("pram.bin", 256));
// ADB bus is driven by Cuda
this->adb_bus = std::unique_ptr<ADB_Bus> (new ADB_Bus());
this->cuda_init();
this->int_ctrl = nullptr;
}
int ViaCuda::device_postinit()
{
this->int_ctrl = dynamic_cast<InterruptCtrl*>(
gMachineObj->get_comp_by_type(HWCompType::INT_CTRL));
this->irq_id = this->int_ctrl->register_dev_int(IntSrc::VIA_CUDA);
return 0;
}
void ViaCuda::cuda_init() {
this->old_tip = 0;
this->old_byteack = 0;
this->treq = 1;
this->in_count = 0;
this->out_count = 0;
this->poll_rate = 11;
}
uint8_t ViaCuda::read(int reg) {
/* reading from some VIA registers triggers special actions */
switch (reg & 0xF) {
case VIA_B:
return (this->via_regs[VIA_B]);
case VIA_A:
case VIA_ANH:
LOG_F(WARNING, "Attempted read from VIA Port A!");
break;
case VIA_IER:
return (this->_via_ier | 0x80); // bit 7 always reads as "1"
case VIA_IFR:
return this->_via_ifr;
case VIA_T1CL:
this->_via_ifr &= ~VIA_IF_T1;
update_irq();
return this->calc_counter_val(this->t1_counter, this->t1_start_time) & 0xFFU;
case VIA_T1CH:
return this->calc_counter_val(this->t1_counter, this->t1_start_time) >> 8;
case VIA_T2CL:
this->_via_ifr &= ~VIA_IF_T2;
update_irq();
return this->calc_counter_val(this->t2_counter, this->t2_start_time) & 0xFFU;
case VIA_T2CH:
return this->calc_counter_val(this->t2_counter, this->t2_start_time) >> 8;
case VIA_SR:
this->_via_ifr &= ~VIA_IF_SR;
update_irq();
break;
}
return (this->via_regs[reg & 0xF]);
}
void ViaCuda::write(int reg, uint8_t value) {
this->via_regs[reg & 0xF] = value;
switch (reg & 0xF) {
case VIA_B:
write(value);
break;
case VIA_A:
case VIA_ANH:
LOG_F(WARNING, "Attempted write to VIA Port A!");
break;
case VIA_DIRB:
LOG_F(9, "VIA_DIRB = 0x%X", value);
break;
case VIA_DIRA:
LOG_F(9, "VIA_DIRA = 0x%X", value);
break;
case VIA_PCR:
LOG_F(9, "VIA_PCR = 0x%X", value);
break;
case VIA_ACR:
LOG_F(9, "VIA_ACR = 0x%X", value);
break;
case VIA_IFR:
// for each "1" in value clear the corresponding flags
this->_via_ifr &= ~value;
update_irq();
break;
case VIA_IER:
if (value & 0x80) {
this->_via_ier |= value & 0x7F;
} else {
this->_via_ier &= ~value;
}
update_irq();
print_enabled_ints();
break;
case VIA_T1CH:
if (this->via_regs[VIA_ACR] & 0xC0) {
ABORT_F("Unsupported VIA T1 mode, ACR=0x%X", this->via_regs[VIA_ACR]);
}
// cancel active T1 timer task
if (this->t1_active) {
TimerManager::get_instance()->cancel_timer(this->t1_timer_id);
this->t1_active = false;
}
// clear T1 flag in IFR
this->_via_ifr &= ~VIA_IF_T1;
update_irq();
// load initial value into counter 1
this->t1_counter = (value << 8) | this->via_regs[VIA_T1CL];
// TODO: delay for one phase 2 clock
// sample current vCPU time and remember it
this->t1_start_time = TimerManager::get_instance()->current_time_ns();
// set up timout timer for T1
this->t1_timer_id = TimerManager::get_instance()->add_oneshot_timer(
static_cast<uint64_t>(this->via_clk_dur * (this->t1_counter + 3) + 0.5f),
[this]() {
this->assert_t1_int();
}
);
this->t1_active = true;
break;
case VIA_T2CH:
if (this->via_regs[VIA_ACR] & 0x20) {
ABORT_F("VIA T2 pulse count mode not supported!");
}
// cancel active T2 timer task
if (this->t2_active) {
TimerManager::get_instance()->cancel_timer(this->t2_timer_id);
this->t2_active = false;
}
// clear T2 flag in IFR
this->_via_ifr &= ~VIA_IF_T2;
update_irq();
// load initial value into counter 2
this->t2_counter = (value << 8) | this->via_regs[VIA_T2CL];
// TODO: delay for one phase 2 clock
// sample current vCPU time and remember it
this->t2_start_time = TimerManager::get_instance()->current_time_ns();
// set up timeout timer for T2
this->t2_timer_id = TimerManager::get_instance()->add_oneshot_timer(
static_cast<uint64_t>(this->via_clk_dur * (this->t2_counter + 3) + 0.5f),
[this]() {
this->assert_t2_int();
}
);
this->t2_active = true;
break;
case VIA_SR:
this->_via_ifr &= ~VIA_IF_SR;
update_irq();
break;
}
}
uint16_t ViaCuda::calc_counter_val(const uint16_t last_val, const uint64_t& last_time)
{
// calcualte current counter value based on elapsed time and timer frequency
uint64_t cur_time = TimerManager::get_instance()->current_time_ns();
uint32_t diff = (cur_time - last_time) / this->via_clk_dur;
return last_val - diff;
}
void ViaCuda::print_enabled_ints() {
const char* via_int_src[] = {"CA2", "CA1", "SR", "CB2", "CB1", "T2", "T1"};
for (int i = 0; i < 7; i++) {
if (this->_via_ier & (1 << i))
LOG_F(INFO, "VIA %s interrupt enabled", via_int_src[i]);
}
}
inline void ViaCuda::update_irq() {
uint8_t new_irq = !!(this->_via_ifr & this->_via_ier & 0x7F);
this->_via_ifr = (this->_via_ifr & 0x7F) | (new_irq << 7);
if (new_irq != this->irq) {
this->irq = new_irq;
this->int_ctrl->ack_int(this->irq_id, new_irq);
}
}
inline bool ViaCuda::ready() {
return ((this->via_regs[VIA_DIRB] & 0x38) == 0x30);
}
void ViaCuda::assert_sr_int() {
this->sr_timer_on = false;
this->_via_ifr |= VIA_IF_SR;
update_irq();
}
void ViaCuda::assert_t1_int() {
this->_via_ifr |= VIA_IF_T1;
this->t1_active = false;
update_irq();
}
void ViaCuda::assert_t2_int() {
this->_via_ifr |= VIA_IF_T2;
this->t2_active = false;
update_irq();
}
void ViaCuda::assert_ctrl_line(ViaLine line)
{
switch (line) {
case ViaLine::CA1:
this->_via_ifr |= VIA_IF_CA1;
break;
case ViaLine::CA2:
this->_via_ifr |= VIA_IF_CA2;
break;
case ViaLine::CB1:
this->_via_ifr |= VIA_IF_CB1;
break;
case ViaLine::CB2:
this->_via_ifr |= VIA_IF_CB1;
break;
default:
ABORT_F("Assertion of unknown VIA line requested!");
}
update_irq();
}
void ViaCuda::schedule_sr_int(uint64_t timeout_ns) {
if (this->sr_timer_on) {
TimerManager::get_instance()->cancel_timer(this->sr_timer_id);
this->sr_timer_on = false;
}
this->sr_timer_id = TimerManager::get_instance()->add_oneshot_timer(
timeout_ns,
[this]() { this->assert_sr_int(); });
this->sr_timer_on = true;
}
void ViaCuda::write(uint8_t new_state) {
if (!ready()) {
LOG_F(WARNING, "Cuda not ready!");
return;
}
int new_tip = !!(new_state & CUDA_TIP);
int new_byteack = !!(new_state & CUDA_BYTEACK);
/* return if there is no state change */
if (new_tip == this->old_tip && new_byteack == this->old_byteack)
return;
LOG_F(9, "Cuda state changed!");
this->old_tip = new_tip;
this->old_byteack = new_byteack;
if (new_tip) {
if (new_byteack) {
this->via_regs[VIA_B] |= CUDA_TREQ; /* negate TREQ */
this->treq = 1;
if (this->in_count) {
process_packet();
/* start response transaction */
this->via_regs[VIA_B] &= ~CUDA_TREQ; /* assert TREQ */
this->treq = 0;
}
this->in_count = 0;
} else {
LOG_F(9, "Cuda: enter sync state");
this->via_regs[VIA_B] &= ~CUDA_TREQ; /* assert TREQ */
this->treq = 0;
this->in_count = 0;
this->out_count = 0;
}
// send dummy byte as idle acknowledge or attention
//assert_sr_int();
schedule_sr_int(USECS_TO_NSECS(61));
} else {
if (this->via_regs[VIA_ACR] & 0x10) { /* data transfer: Host --> Cuda */
if (this->in_count < 16) {
this->in_buf[this->in_count++] = this->via_regs[VIA_SR];
// tell the system we've read the byte after 71 usecs
schedule_sr_int(USECS_TO_NSECS(71));
//assert_sr_int();
} else {
LOG_F(WARNING, "Cuda input buffer too small. Truncating data!");
}
} else { /* data transfer: Cuda --> Host */
(this->*out_handler)();
//assert_sr_int();
// tell the system we've written next byte after 88 usecs
schedule_sr_int(USECS_TO_NSECS(88));
}
}
}
/* sends zeros to host ad infinitum */
void ViaCuda::null_out_handler() {
this->via_regs[VIA_SR] = 0;
}
/* sends PRAM content to host ad infinitum */
void ViaCuda::pram_out_handler()
{
this->via_regs[VIA_SR] = this->pram_obj->read_byte(this->cur_pram_addr++);
}
/* sends data from out_buf until exhausted, then switches to next_out_handler */
void ViaCuda::out_buf_handler() {
if (this->out_pos < this->out_count) {
LOG_F(9, "OutBufHandler: sending next byte 0x%X", this->out_buf[this->out_pos]);
this->via_regs[VIA_SR] = this->out_buf[this->out_pos++];
} else if (this->is_open_ended) {
LOG_F(9, "OutBufHandler: switching to next handler");
this->out_handler = this->next_out_handler;
this->next_out_handler = &ViaCuda::null_out_handler;
(this->*out_handler)();
} else {
LOG_F(9, "Sending last byte");
this->out_count = 0;
this->via_regs[VIA_B] |= CUDA_TREQ; /* negate TREQ */
this->treq = 1;
}
}
void ViaCuda::response_header(uint32_t pkt_type, uint32_t pkt_flag) {
this->out_buf[0] = pkt_type;
this->out_buf[1] = pkt_flag;
this->out_buf[2] = this->in_buf[1]; /* copy original cmd */
this->out_count = 3;
this->out_pos = 0;
this->out_handler = &ViaCuda::out_buf_handler;
this->next_out_handler = &ViaCuda::null_out_handler;
this->is_open_ended = false;
}
void ViaCuda::error_response(uint32_t error) {
this->out_buf[0] = CUDA_PKT_ERROR;
this->out_buf[1] = error;
this->out_buf[2] = this->in_buf[0];
this->out_buf[3] = this->in_buf[1]; /* copy original cmd */
this->out_count = 4;
this->out_pos = 0;
this->out_handler = &ViaCuda::out_buf_handler;
this->next_out_handler = &ViaCuda::null_out_handler;
this->is_open_ended = false;
}
void ViaCuda::process_packet() {
if (this->in_count < 2) {
LOG_F(ERROR, "Cuda: invalid packet (too few data)!");
error_response(CUDA_ERR_BAD_SIZE);
return;
}
switch (this->in_buf[0]) {
case CUDA_PKT_ADB:
LOG_F(9, "Cuda: ADB packet received \n");
process_adb_command(this->in_buf[1], this->in_count - 2);
break;
case CUDA_PKT_PSEUDO:
LOG_F(9, "Cuda: pseudo command packet received");
LOG_F(9, "Command: 0x%X", this->in_buf[1]);
LOG_F(9, "Data count: %d", this->in_count);
for (int i = 0; i < this->in_count; i++) {
LOG_F(9, "0x%X ,", this->in_buf[i]);
}
pseudo_command(this->in_buf[1], this->in_count - 2);
break;
default:
LOG_F(ERROR, "Cuda: unsupported packet type = %d", this->in_buf[0]);
error_response(CUDA_ERR_BAD_PKT);
}
}
void ViaCuda::process_adb_command(uint8_t cmd_byte, int data_count) {
int adb_dev = cmd_byte >> 4; // 2 for keyboard, 3 for mouse
int cmd = cmd_byte & 0xF;
if (!cmd) {
LOG_F(9, "Cuda: ADB SendReset command requested");
response_header(CUDA_PKT_ADB, 0);
} else if (cmd == 1) {
LOG_F(9, "Cuda: ADB Flush command requested");
response_header(CUDA_PKT_ADB, 0);
} else if ((cmd & 0xC) == 8) {
LOG_F(9, "Cuda: ADB Listen command requested");
int adb_reg = cmd_byte & 0x3;
if (adb_bus->listen(adb_dev, adb_reg)) {
response_header(CUDA_PKT_ADB, 0);
for (int data_ptr = 0; data_ptr < adb_bus->get_output_len(); data_ptr++) {
this->in_buf[(2 + data_ptr)] = adb_bus->get_output_byte(data_ptr);
}
} else {
response_header(CUDA_PKT_ADB, 2);
}
} else if ((cmd & 0xC) == 0xC) {
LOG_F(9, "Cuda: ADB Talk command requested");
response_header(CUDA_PKT_ADB, 0);
int adb_reg = cmd_byte & 0x3;
if (adb_bus->talk(adb_dev, adb_reg, this->in_buf[2])) {
response_header(CUDA_PKT_ADB, 0);
} else {
response_header(CUDA_PKT_ADB, 2);
}
} else {
LOG_F(ERROR, "Cuda: unsupported ADB command 0x%X", cmd);
error_response(CUDA_ERR_BAD_CMD);
}
}
void ViaCuda::pseudo_command(int cmd, int data_count) {
uint16_t addr;
int i;
switch (cmd) {
case CUDA_START_STOP_AUTOPOLL:
if (this->in_buf[2]) {
LOG_F(INFO, "Cuda: autopoll started, rate: %d ms", this->poll_rate);
} else {
LOG_F(INFO, "Cuda: autopoll stopped");
}
response_header(CUDA_PKT_PSEUDO, 0);
break;
case CUDA_READ_MCU_MEM:
addr = READ_WORD_BE_A(&this->in_buf[2]);
response_header(CUDA_PKT_PSEUDO, 0);
// if starting address is within PRAM region
// prepare to transfer PRAM content, othwesise we will send zeroes
if (addr >= CUDA_PRAM_START && addr <= CUDA_PRAM_END) {
this->cur_pram_addr = addr - CUDA_PRAM_START;
this->next_out_handler = &ViaCuda::pram_out_handler;
} else if (addr >= CUDA_ROM_START) {
// HACK: Cuda ROM dump requsted so let's partially fake it
this->out_buf[3] = 0; // empty copyright string
WRITE_WORD_BE_A(&this->out_buf[4], 0x0019U);
WRITE_WORD_BE_A(&this->out_buf[6], CUDA_FW_VERSION_MAJOR);
WRITE_WORD_BE_A(&this->out_buf[8], CUDA_FW_VERSION_MINOR);
this->out_count += 7;
}
this->is_open_ended = true;
break;
case CUDA_GET_REAL_TIME:
response_header(CUDA_PKT_PSEUDO, 0);
this->out_buf[2] = (uint8_t)((this->real_time >> 24) & 0xFF);
this->out_buf[3] = (uint8_t)((this->real_time >> 16) & 0xFF);
this->out_buf[4] = (uint8_t)((this->real_time >> 8) & 0xFF);
this->out_buf[5] = (uint8_t)((this->real_time) & 0xFF);
break;
case CUDA_WRITE_MCU_MEM:
addr = READ_WORD_BE_A(&this->in_buf[2]);
// if addr is inside PRAM, update PRAM with data from in_buf
// otherwise, ignore data in in_buf
if (addr >= CUDA_PRAM_START && addr <= CUDA_PRAM_END) {
for (i = 0; i < this->in_count - 4; i++) {
this->pram_obj->write_byte((addr - CUDA_PRAM_START + i) & 0xFF,
this->in_buf[4+i]);
}
}
response_header(CUDA_PKT_PSEUDO, 0);
break;
case CUDA_READ_PRAM:
addr = READ_WORD_BE_A(&this->in_buf[2]);
if (addr <= 0xFF) {
response_header(CUDA_PKT_PSEUDO, 0);
// this command is open-ended so set up the corresponding context
this->cur_pram_addr = addr;
this->next_out_handler = &ViaCuda::pram_out_handler;
this->is_open_ended = true;
} else {
error_response(CUDA_ERR_BAD_PAR);
}
break;
case CUDA_SET_REAL_TIME:
response_header(CUDA_PKT_PSEUDO, 0);
this->real_time = ((uint32_t)in_buf[2]) >> 24;
this->real_time += ((uint32_t)in_buf[3]) >> 16;
this->real_time += ((uint32_t)in_buf[4]) >> 8;
this->real_time += ((uint32_t)in_buf[5]);
break;
case CUDA_WRITE_PRAM:
addr = READ_WORD_BE_A(&this->in_buf[2]);
if (addr <= 0xFF) {
// transfer data from in_buf to PRAM
for (i = 0; i < this->in_count - 4; i++) {
this->pram_obj->write_byte((addr + i) & 0xFF, this->in_buf[4+i]);
}
response_header(CUDA_PKT_PSEUDO, 0);
} else {
error_response(CUDA_ERR_BAD_PAR);
}
break;
case CUDA_FILE_SERVER_FLAG:
response_header(CUDA_PKT_PSEUDO, 0);
if (this->in_buf[2]) {
LOG_F(INFO, "Cuda: File server flag on");
this->file_server = true;
} else {
LOG_F(INFO, "Cuda: File server flag off");
this->file_server = false;
}
break;
case CUDA_SET_AUTOPOLL_RATE:
this->poll_rate = this->in_buf[2];
LOG_F(INFO, "Cuda: autopoll rate set to %d ms", this->poll_rate);
response_header(CUDA_PKT_PSEUDO, 0);
break;
case CUDA_GET_AUTOPOLL_RATE:
response_header(CUDA_PKT_PSEUDO, 0);
this->out_buf[3] = this->poll_rate;
this->out_count++;
break;
case CUDA_SET_DEVICE_LIST:
response_header(CUDA_PKT_PSEUDO, 0);
this->device_mask = ((uint16_t)in_buf[2]) >> 8;
this->device_mask += ((uint16_t)in_buf[3]);
break;
case CUDA_GET_DEVICE_LIST:
response_header(CUDA_PKT_PSEUDO, 0);
this->out_buf[2] = (uint8_t)((this->device_mask >> 8) & 0xFF);
this->out_buf[3] = (uint8_t)((this->device_mask) & 0xFF);
break;
case CUDA_ONE_SECOND_MODE:
LOG_F(INFO, "Cuda: One Second Interrupt - Byte Sent: %d", this->in_buf[2]);
response_header(CUDA_PKT_PSEUDO, 0);
break;
case CUDA_READ_WRITE_I2C:
response_header(CUDA_PKT_PSEUDO, 0);
i2c_simple_transaction(this->in_buf[2], &this->in_buf[3], this->in_count - 3);
break;
case CUDA_COMB_FMT_I2C:
response_header(CUDA_PKT_PSEUDO, 0);
if (this->in_count >= 5) {
i2c_comb_transaction(
this->in_buf[2], this->in_buf[3], this->in_buf[4], &this->in_buf[5], this->in_count - 5);
}
break;
case CUDA_OUT_PB0: /* undocumented call! */
LOG_F(INFO, "Cuda: send %d to PB0", (int)(this->in_buf[2]));
response_header(CUDA_PKT_PSEUDO, 0);
break;
case CUDA_WARM_START:
case CUDA_POWER_DOWN:
case CUDA_MONO_STABLE_RESET:
case CUDA_RESTART_SYSTEM:
/* really kludge temp code */
LOG_F(INFO, "Cuda: Restart/Shutdown signal sent with command 0x%x! \n", cmd);
//exit(0);
break;
default:
LOG_F(ERROR, "Cuda: unsupported pseudo command 0x%X", cmd);
error_response(CUDA_ERR_BAD_CMD);
}
}
/* sends data from the current I2C to host ad infinitum */
void ViaCuda::i2c_handler() {
this->receive_byte(this->curr_i2c_addr, &this->via_regs[VIA_SR]);
}
void ViaCuda::i2c_simple_transaction(uint8_t dev_addr, const uint8_t* in_buf, int in_bytes) {
int op_type = dev_addr & 1; /* 0 - write to device, 1 - read from device */
dev_addr >>= 1; /* strip RD/WR bit */
if (!this->start_transaction(dev_addr)) {
LOG_F(WARNING, "Unsupported I2C device 0x%X", dev_addr);
error_response(CUDA_ERR_I2C);
return;
}
/* send data to the target I2C device until there is no more data to send
or the target device doesn't acknowledge that indicates an error */
for (int i = 0; i < in_bytes; i++) {
if (!this->send_byte(dev_addr, in_buf[i])) {
LOG_F(WARNING, "NO_ACK during sending, device 0x%X", dev_addr);
error_response(CUDA_ERR_I2C);
return;
}
}
if (op_type) { /* read request initiate an open ended transaction */
this->curr_i2c_addr = dev_addr;
this->out_handler = &ViaCuda::out_buf_handler;
this->next_out_handler = &ViaCuda::i2c_handler;
this->is_open_ended = true;
}
}
void ViaCuda::i2c_comb_transaction(
uint8_t dev_addr, uint8_t sub_addr, uint8_t dev_addr1, const uint8_t* in_buf, int in_bytes) {
int op_type = dev_addr1 & 1; /* 0 - write to device, 1 - read from device */
if ((dev_addr & 0xFE) != (dev_addr1 & 0xFE)) {
LOG_F(ERROR, "Combined I2C: dev_addr mismatch!");
error_response(CUDA_ERR_I2C);
return;
}
dev_addr >>= 1; /* strip RD/WR bit */
if (!this->start_transaction(dev_addr)) {
LOG_F(WARNING, "Unsupported I2C device 0x%X", dev_addr);
error_response(CUDA_ERR_I2C);
return;
}
if (!this->send_subaddress(dev_addr, sub_addr)) {
LOG_F(WARNING, "NO_ACK while sending subaddress, device 0x%X", dev_addr);
error_response(CUDA_ERR_I2C);
return;
}
/* send data to the target I2C device until there is no more data to send
or the target device doesn't acknowledge that indicates an error */
for (int i = 0; i < in_bytes; i++) {
if (!this->send_byte(dev_addr, in_buf[i])) {
LOG_F(WARNING, "NO_ACK during sending, device 0x%X", dev_addr);
error_response(CUDA_ERR_I2C);
return;
}
}
if (!op_type) { /* return dummy response for writes */
LOG_F(WARNING, "Combined I2C - write request!");
} else {
this->curr_i2c_addr = dev_addr;
this->out_handler = &ViaCuda::out_buf_handler;
this->next_out_handler = &ViaCuda::i2c_handler;
this->is_open_ended = true;
}
}