dingusppc/cpu/ppc/poweropcodes.cpp
joevt 2b8f510603 poweropcodes: Fix slq.
Test bit 26 of rB instead of using >= 0x20 to determine which operation to perform.
The two operations need to be switched such that rA is cleared when bit 26 is set.
Don't forget to store the result in rA.
2024-04-10 07:28:58 -07:00

680 lines
21 KiB
C++

/*
DingusPPC - The Experimental PowerPC Macintosh emulator
Copyright (C) 2018-24 divingkatae and maximum
(theweirdo) spatium
(Contact divingkatae#1017 or powermax#2286 on Discord for more info)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
// The Power-specific opcodes for the processor - ppcopcodes.cpp
// Any shared opcodes are in ppcopcodes.cpp
#include "ppcemu.h"
#include "ppcmacros.h"
#include "ppcmmu.h"
#include <stdint.h>
// Affects the XER register's SO and OV Bits
inline void power_setsoov(uint32_t a, uint32_t b, uint32_t d) {
if ((a ^ b) & (a ^ d) & 0x80000000UL) {
ppc_state.spr[SPR::XER] |= XER::SO | XER::OV;
} else {
ppc_state.spr[SPR::XER] &= ~XER::OV;
}
}
/** mask generator for rotate and shift instructions (§ 4.2.1.4 PowerpC PEM) */
static inline uint32_t power_rot_mask(unsigned rot_mb, unsigned rot_me) {
uint32_t m1 = 0xFFFFFFFFUL >> rot_mb;
uint32_t m2 = uint32_t(0xFFFFFFFFUL << (31 - rot_me));
return ((rot_mb <= rot_me) ? m2 & m1 : m1 | m2);
}
template <field_rc rec, field_ov ov>
void dppc_interpreter::power_abs() {
uint32_t ppc_result_d;
ppc_grab_regsda(ppc_cur_instruction);
if (ppc_result_a == 0x80000000) {
ppc_result_d = ppc_result_a;
if (ov)
ppc_state.spr[SPR::XER] |= XER::SO | XER::OV;
} else {
ppc_result_d = (int32_t(ppc_result_a) < 0) ? -ppc_result_a : ppc_result_a;
if (ov)
ppc_state.spr[SPR::XER] &= ~XER::OV;
}
if (rec)
ppc_changecrf0(ppc_result_d);
ppc_store_iresult_reg(reg_d, ppc_result_d);
}
template void dppc_interpreter::power_abs<RC0, OV0>();
template void dppc_interpreter::power_abs<RC0, OV1>();
template void dppc_interpreter::power_abs<RC1, OV0>();
template void dppc_interpreter::power_abs<RC1, OV1>();
void dppc_interpreter::power_clcs() {
uint32_t ppc_result_d;
ppc_grab_regsda(ppc_cur_instruction);
switch (reg_a) {
case 12: //instruction cache line size
case 13: //data cache line size
case 14: //minimum line size
case 15: //maximum line size
default: ppc_result_d = is_601 ? 64 : 32; break;
case 7:
case 23: ppc_result_d = is_601 ? 64 : 0; break;
case 8:
case 9:
case 24:
case 25: ppc_result_d = is_601 ? 64 : 4; break;
case 10:
case 11:
case 26:
case 27: ppc_result_d = is_601 ? 64 : 0x4000; break;
}
ppc_store_iresult_reg(reg_d, ppc_result_d);
}
template <field_rc rec, field_ov ov>
void dppc_interpreter::power_div() {
uint32_t ppc_result_d;
ppc_grab_regsdab(ppc_cur_instruction);
int64_t dividend = (uint64_t(ppc_result_a) << 32) | ppc_state.spr[SPR::MQ];
int32_t divisor = ppc_result_b;
int64_t quotient;
int32_t remainder;
if (dividend == -0x80000000 && divisor == -1) {
remainder = 0;
ppc_result_d = 0x80000000U; // -2^31 aka INT32_MIN
if (ov)
ppc_state.spr[SPR::XER] |= XER::SO | XER::OV;
} else if (!divisor) {
remainder = 0;
ppc_result_d = 0x80000000U; // -2^31 aka INT32_MIN
if (ov)
ppc_state.spr[SPR::XER] |= XER::SO | XER::OV;
} else {
quotient = dividend / divisor;
remainder = dividend % divisor;
ppc_result_d = uint32_t(quotient);
if (ov) {
if (((quotient >> 31) + 1) & ~1) {
ppc_state.spr[SPR::XER] |= XER::SO | XER::OV;
} else {
ppc_state.spr[SPR::XER] &= ~XER::OV;
}
}
}
if (rec)
ppc_changecrf0(remainder);
ppc_store_iresult_reg(reg_d, ppc_result_d);
ppc_state.spr[SPR::MQ] = remainder;
}
template void dppc_interpreter::power_div<RC0, OV0>();
template void dppc_interpreter::power_div<RC0, OV1>();
template void dppc_interpreter::power_div<RC1, OV0>();
template void dppc_interpreter::power_div<RC1, OV1>();
template <field_rc rec, field_ov ov>
void dppc_interpreter::power_divs() {
uint32_t ppc_result_d;
int32_t remainder;
ppc_grab_regsdab(ppc_cur_instruction);
if (!ppc_result_b) { // handle the "anything / 0" case
ppc_result_d = -1;
remainder = ppc_result_a;
if (ov)
ppc_state.spr[SPR::XER] |= XER::SO | XER::OV;
} else if (ppc_result_a == 0x80000000U && ppc_result_b == 0xFFFFFFFFU) {
ppc_result_d = 0x80000000U;
remainder = 0;
if (ov)
ppc_state.spr[SPR::XER] |= XER::SO | XER::OV;
} else { // normal signed devision
ppc_result_d = int32_t(ppc_result_a) / int32_t(ppc_result_b);
remainder = (int32_t(ppc_result_a) % int32_t(ppc_result_b));
if (ov)
ppc_state.spr[SPR::XER] &= ~XER::OV;
}
if (rec)
ppc_changecrf0(remainder);
ppc_store_iresult_reg(reg_d, ppc_result_d);
ppc_state.spr[SPR::MQ] = remainder;
}
template void dppc_interpreter::power_divs<RC0, OV0>();
template void dppc_interpreter::power_divs<RC0, OV1>();
template void dppc_interpreter::power_divs<RC1, OV0>();
template void dppc_interpreter::power_divs<RC1, OV1>();
template <field_rc rec, field_ov ov>
void dppc_interpreter::power_doz() {
ppc_grab_regsdab(ppc_cur_instruction);
uint32_t ppc_result_d = (int32_t(ppc_result_a) < int32_t(ppc_result_b)) ?
ppc_result_b - ppc_result_a : 0;
if (ov) {
if (int32_t(ppc_result_d) < 0) {
ppc_state.spr[SPR::XER] |= XER::SO | XER::OV;
} else {
ppc_state.spr[SPR::XER] &= ~XER::OV;
}
}
if (rec)
ppc_changecrf0(ppc_result_d);
ppc_store_iresult_reg(reg_d, ppc_result_d);
}
template void dppc_interpreter::power_doz<RC0, OV0>();
template void dppc_interpreter::power_doz<RC0, OV1>();
template void dppc_interpreter::power_doz<RC1, OV0>();
template void dppc_interpreter::power_doz<RC1, OV1>();
void dppc_interpreter::power_dozi() {
uint32_t ppc_result_d;
ppc_grab_regsdasimm(ppc_cur_instruction);
if (((int32_t)ppc_result_a) > simm) {
ppc_result_d = 0;
} else {
ppc_result_d = simm - ppc_result_a;
}
ppc_store_iresult_reg(reg_d, ppc_result_d);
}
template <field_rc rec>
void dppc_interpreter::power_lscbx() {
ppc_grab_regsdab(ppc_cur_instruction);
ppc_effective_address = ppc_result_b + (reg_a ? ppc_result_a : 0);
uint32_t bytes_to_load = (ppc_state.spr[SPR::XER] & 0x7F);
uint32_t bytes_remaining = bytes_to_load;
uint8_t matching_byte = (uint8_t)(ppc_state.spr[SPR::XER] >> 8);
uint32_t ppc_result_d = 0;
bool is_match = false;
// for storing each byte
uint8_t shift_amount = 24;
while (bytes_remaining > 0) {
uint8_t return_value = mmu_read_vmem<uint8_t>(ppc_effective_address);
ppc_result_d |= return_value << shift_amount;
if (!shift_amount) {
if (reg_d != reg_a && reg_d != reg_b)
ppc_store_iresult_reg(reg_d, ppc_result_d);
reg_d = (reg_d + 1) & 0x1F;
ppc_result_d = 0;
shift_amount = 24;
} else {
shift_amount -= 8;
}
ppc_effective_address++;
bytes_remaining--;
if (return_value == matching_byte) {
is_match = true;
break;
}
}
// store partially loaded register if any
if (shift_amount != 24 && reg_d != reg_a && reg_d != reg_b)
ppc_store_iresult_reg(reg_d, ppc_result_d);
ppc_state.spr[SPR::XER] = (ppc_state.spr[SPR::XER] & ~0x7F) | (bytes_to_load - bytes_remaining);
if (rec) {
ppc_state.cr =
(ppc_state.cr & 0x0FFFFFFFUL) |
(is_match ? CRx_bit::CR_EQ : 0) |
((ppc_state.spr[SPR::XER] & XER::SO) >> 3);
}
}
template void dppc_interpreter::power_lscbx<RC0>();
template void dppc_interpreter::power_lscbx<RC1>();
template <field_rc rec>
void dppc_interpreter::power_maskg() {
ppc_grab_regssab(ppc_cur_instruction);
uint32_t mask_start = ppc_result_d & 0x1F;
uint32_t mask_end = ppc_result_b & 0x1F;
uint32_t insert_mask = 0;
if (mask_start < (mask_end + 1)) {
insert_mask = power_rot_mask(mask_start, mask_end);
}
else if (mask_start == (mask_end + 1)) {
insert_mask = 0xFFFFFFFF;
}
else {
insert_mask = ~(power_rot_mask(mask_end + 1, mask_start - 1));
}
ppc_result_a = insert_mask;
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_store_iresult_reg(reg_a, ppc_result_a);
}
template void dppc_interpreter::power_maskg<RC0>();
template void dppc_interpreter::power_maskg<RC1>();
template <field_rc rec>
void dppc_interpreter::power_maskir() {
ppc_grab_regssab(ppc_cur_instruction);
ppc_result_a = (ppc_result_a & ~ppc_result_b) | (ppc_result_d & ppc_result_b);
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_store_iresult_reg(reg_a, ppc_result_a);
}
template void dppc_interpreter::power_maskir<RC0>();
template void dppc_interpreter::power_maskir<RC1>();
template <field_rc rec, field_ov ov>
void dppc_interpreter::power_mul() {
ppc_grab_regsdab(ppc_cur_instruction);
int64_t product = int64_t(int32_t(ppc_result_a)) * int32_t(ppc_result_b);
uint32_t ppc_result_d = uint32_t(uint64_t(product) >> 32);
ppc_state.spr[SPR::MQ] = uint32_t(product);
if (ov) {
if (uint64_t(product >> 31) + 1 & ~1) {
ppc_state.spr[SPR::XER] |= XER::SO | XER::OV;
} else {
ppc_state.spr[SPR::XER] &= ~XER::OV;
}
}
if (rec)
ppc_changecrf0(uint32_t(product));
ppc_store_iresult_reg(reg_d, ppc_result_d);
}
template void dppc_interpreter::power_mul<RC0, OV0>();
template void dppc_interpreter::power_mul<RC0, OV1>();
template void dppc_interpreter::power_mul<RC1, OV0>();
template void dppc_interpreter::power_mul<RC1, OV1>();
template <field_rc rec, field_ov ov>
void dppc_interpreter::power_nabs() {
ppc_grab_regsda(ppc_cur_instruction);
uint32_t ppc_result_d = (int32_t(ppc_result_a) < 0) ? ppc_result_a : -ppc_result_a;
if (ov)
ppc_state.spr[SPR::XER] &= ~XER::OV;
if (rec)
ppc_changecrf0(ppc_result_d);
ppc_store_iresult_reg(reg_d, ppc_result_d);
}
template void dppc_interpreter::power_nabs<RC0, OV0>();
template void dppc_interpreter::power_nabs<RC0, OV1>();
template void dppc_interpreter::power_nabs<RC1, OV0>();
template void dppc_interpreter::power_nabs<RC1, OV1>();
void dppc_interpreter::power_rlmi() {
ppc_grab_regssab(ppc_cur_instruction);
unsigned rot_mb = (ppc_cur_instruction >> 6) & 0x1F;
unsigned rot_me = (ppc_cur_instruction >> 1) & 0x1F;
unsigned rot_sh = ppc_result_b & 0x1F;
uint32_t r = ((ppc_result_d << rot_sh) | (ppc_result_d >> (32 - rot_sh)));
uint32_t mask = power_rot_mask(rot_mb, rot_me);
ppc_result_a = ((r & mask) | (ppc_result_a & ~mask));
if ((ppc_cur_instruction & 0x01) == 1)
ppc_changecrf0(ppc_result_a);
ppc_store_iresult_reg(reg_a, ppc_result_a);
}
template <field_rc rec>
void dppc_interpreter::power_rrib() {
ppc_grab_regssab(ppc_cur_instruction);
unsigned rot_sh = ppc_result_b & 0x1F;
if (int32_t(ppc_result_d) < 0) {
ppc_result_a |= (0x80000000U >> rot_sh);
} else {
ppc_result_a &= ~(0x80000000U >> rot_sh);
}
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_store_iresult_reg(reg_a, ppc_result_a);
}
template void dppc_interpreter::power_rrib<RC0>();
template void dppc_interpreter::power_rrib<RC1>();
template <field_rc rec>
void dppc_interpreter::power_sle() {
ppc_grab_regssab(ppc_cur_instruction);
unsigned rot_sh = ppc_result_b & 0x1F;
ppc_result_a = ppc_result_d << rot_sh;
ppc_state.spr[SPR::MQ] = ((ppc_result_d << rot_sh) | (ppc_result_d >> (32 - rot_sh)));
ppc_store_iresult_reg(reg_a, ppc_result_a);
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_store_iresult_reg(reg_a, ppc_result_a);
}
template void dppc_interpreter::power_sle<RC0>();
template void dppc_interpreter::power_sle<RC1>();
template <field_rc rec>
void dppc_interpreter::power_sleq() {
ppc_grab_regssab(ppc_cur_instruction);
unsigned rot_sh = ppc_result_b & 0x1F;
uint32_t r = ((ppc_result_d << rot_sh) | (ppc_result_d >> (32 - rot_sh)));
uint32_t mask = power_rot_mask(0, 31 - rot_sh);
ppc_result_a = ((r & mask) | (ppc_state.spr[SPR::MQ] & ~mask));
ppc_state.spr[SPR::MQ] = r;
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_store_iresult_reg(reg_a, ppc_result_a);
}
template void dppc_interpreter::power_sleq<RC0>();
template void dppc_interpreter::power_sleq<RC1>();
template <field_rc rec>
void dppc_interpreter::power_sliq() {
ppc_grab_regssash(ppc_cur_instruction);
ppc_result_a = ppc_result_d << rot_sh;
ppc_state.spr[SPR::MQ] = ((ppc_result_d << rot_sh) | (ppc_result_d >> (32 - rot_sh)));
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_store_iresult_reg(reg_a, ppc_result_a);
}
template void dppc_interpreter::power_sliq<RC0>();
template void dppc_interpreter::power_sliq<RC1>();
template <field_rc rec>
void dppc_interpreter::power_slliq() {
ppc_grab_regssash(ppc_cur_instruction);
uint32_t r = ((ppc_result_d << rot_sh) | (ppc_result_d >> (32 - rot_sh)));
uint32_t mask = power_rot_mask(0, 31 - rot_sh);
ppc_result_a = ((r & mask) | (ppc_state.spr[SPR::MQ] & ~mask));
ppc_state.spr[SPR::MQ] = r;
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_store_iresult_reg(reg_a, ppc_result_a);
}
template void dppc_interpreter::power_slliq<RC0>();
template void dppc_interpreter::power_slliq<RC1>();
template <field_rc rec>
void dppc_interpreter::power_sllq() {
ppc_grab_regssab(ppc_cur_instruction);
unsigned rot_sh = ppc_result_b & 0x1F;
if (ppc_result_b & 0x20) {
ppc_result_a = ppc_state.spr[SPR::MQ] & (-1U << rot_sh);
} else {
ppc_result_a = ((ppc_result_d << rot_sh) | (ppc_state.spr[SPR::MQ] & ((1 << rot_sh) - 1)));
}
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_store_iresult_reg(reg_a, ppc_result_a);
}
template void dppc_interpreter::power_sllq<RC0>();
template void dppc_interpreter::power_sllq<RC1>();
template <field_rc rec>
void dppc_interpreter::power_slq() {
ppc_grab_regssab(ppc_cur_instruction);
unsigned rot_sh = ppc_result_b & 0x1F;
if (ppc_result_b & 0x20) {
ppc_result_a = 0;
} else {
ppc_result_a = ppc_result_d << rot_sh;
}
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_state.spr[SPR::MQ] = ((ppc_result_d << rot_sh) | (ppc_result_d >> (32 - rot_sh)));
ppc_store_iresult_reg(reg_a, ppc_result_a);
}
template void dppc_interpreter::power_slq<RC0>();
template void dppc_interpreter::power_slq<RC1>();
template <field_rc rec>
void dppc_interpreter::power_sraiq() {
ppc_grab_regssash(ppc_cur_instruction);
uint32_t mask = (1 << rot_sh) - 1;
ppc_result_a = (int32_t)ppc_result_d >> rot_sh;
ppc_state.spr[SPR::MQ] = (ppc_result_d >> rot_sh) | (ppc_result_d << (32 - rot_sh));
if ((int32_t(ppc_result_d) < 0) && (ppc_result_d & mask)) {
ppc_state.spr[SPR::XER] |= XER::CA;
} else {
ppc_state.spr[SPR::XER] &= ~XER::CA;
}
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_store_iresult_reg(reg_a, ppc_result_a);
}
template void dppc_interpreter::power_sraiq<RC0>();
template void dppc_interpreter::power_sraiq<RC1>();
template <field_rc rec>
void dppc_interpreter::power_sraq() {
ppc_grab_regssab(ppc_cur_instruction);
unsigned rot_sh = ppc_result_b & 0x1F;
uint32_t mask = (1 << rot_sh) - 1;
ppc_result_a = (int32_t)ppc_result_d >> rot_sh;
ppc_state.spr[SPR::MQ] = ((ppc_result_d << rot_sh) | (ppc_result_d >> (32 - rot_sh)));
if ((int32_t(ppc_result_d) < 0) && (ppc_result_d & mask)) {
ppc_state.spr[SPR::XER] |= XER::CA;
} else {
ppc_state.spr[SPR::XER] &= ~XER::CA;
}
ppc_state.spr[SPR::MQ] = (ppc_result_d >> rot_sh) | (ppc_result_d << (32 - rot_sh));
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_store_iresult_reg(reg_a, ppc_result_a);
}
template void dppc_interpreter::power_sraq<RC0>();
template void dppc_interpreter::power_sraq<RC1>();
template <field_rc rec>
void dppc_interpreter::power_sre() {
ppc_grab_regssab(ppc_cur_instruction);
unsigned rot_sh = ppc_result_b & 0x1F;
ppc_result_a = ppc_result_d >> rot_sh;
ppc_state.spr[SPR::MQ] = (ppc_result_d >> rot_sh) | (ppc_result_d << (32 - rot_sh));
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_store_iresult_reg(reg_a, ppc_result_a);
}
template void dppc_interpreter::power_sre<RC0>();
template void dppc_interpreter::power_sre<RC1>();
template <field_rc rec>
void dppc_interpreter::power_srea() {
ppc_grab_regssab(ppc_cur_instruction);
unsigned rot_sh = ppc_result_b & 0x1F;
ppc_result_a = (int32_t)ppc_result_d >> rot_sh;
ppc_state.spr[SPR::MQ] = ((ppc_result_d << rot_sh) | (ppc_result_d >> (32 - rot_sh)));
if ((int32_t(ppc_result_d) < 0) && (ppc_result_d & rot_sh)) {
ppc_state.spr[SPR::XER] |= XER::CA;
} else {
ppc_state.spr[SPR::XER] &= ~XER::CA;
}
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_store_iresult_reg(reg_a, ppc_result_a);
}
template void dppc_interpreter::power_srea<RC0>();
template void dppc_interpreter::power_srea<RC1>();
template <field_rc rec>
void dppc_interpreter::power_sreq() {
ppc_grab_regssab(ppc_cur_instruction);
unsigned rot_sh = ppc_result_b & 0x1F;
unsigned mask = power_rot_mask(rot_sh, 31);
ppc_result_a = ((rot_sh & mask) | (ppc_state.spr[SPR::MQ] & ~mask));
ppc_state.spr[SPR::MQ] = rot_sh;
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_store_iresult_reg(reg_a, ppc_result_a);
}
template void dppc_interpreter::power_sreq<RC0>();
template void dppc_interpreter::power_sreq<RC1>();
template <field_rc rec>
void dppc_interpreter::power_sriq() {
ppc_grab_regssash(ppc_cur_instruction);
ppc_result_a = ppc_result_d >> rot_sh;
ppc_state.spr[SPR::MQ] = (ppc_result_d >> rot_sh) | (ppc_result_d << (32 - rot_sh));
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_store_iresult_reg(reg_a, ppc_result_a);
}
template void dppc_interpreter::power_sriq<RC0>();
template void dppc_interpreter::power_sriq<RC1>();
template <field_rc rec>
void dppc_interpreter::power_srliq() {
ppc_grab_regssash(ppc_cur_instruction);
uint32_t r = (ppc_result_d >> rot_sh) | (ppc_result_d << (32 - rot_sh));
unsigned mask = power_rot_mask(rot_sh, 31);
ppc_result_a = ((r & mask) | (ppc_state.spr[SPR::MQ] & ~mask));
ppc_state.spr[SPR::MQ] = r;
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_store_iresult_reg(reg_a, ppc_result_a);
}
template void dppc_interpreter::power_srliq<RC0>();
template void dppc_interpreter::power_srliq<RC1>();
template <field_rc rec>
void dppc_interpreter::power_srlq() {
ppc_grab_regssab(ppc_cur_instruction);
unsigned rot_sh = ppc_result_b & 0x1F;
uint32_t r = (ppc_result_d >> rot_sh) | (ppc_result_d << (32 - rot_sh));
unsigned mask = power_rot_mask(rot_sh, 31);
if (ppc_result_b >= 0x20) {
ppc_result_a = (ppc_state.spr[SPR::MQ] & mask);
}
else {
ppc_result_a = ((r & mask) | (ppc_state.spr[SPR::MQ] & ~mask));
}
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_store_iresult_reg(reg_a, ppc_result_a);
}
template void dppc_interpreter::power_srlq<RC0>();
template void dppc_interpreter::power_srlq<RC1>();
template <field_rc rec>
void dppc_interpreter::power_srq() {
ppc_grab_regssab(ppc_cur_instruction);
unsigned rot_sh = ppc_result_b & 0x1F;
if (ppc_result_b >= 0x20) {
ppc_result_a = 0;
} else {
ppc_result_a = ppc_result_d >> rot_sh;
}
ppc_state.spr[SPR::MQ] = (ppc_result_d >> rot_sh) | (ppc_result_d << (32 - rot_sh));
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_store_iresult_reg(reg_a, ppc_result_a);
}
template void dppc_interpreter::power_srq<RC0>();
template void dppc_interpreter::power_srq<RC1>();