dingusppc/devices/common/pci/pcidevice.cpp
joevt 6af8b52376 changes to pci logging
For invalid or unsupported PCI accesses, do the following:
- log a device's full pci address using pciutils setpci command format bb:dd.f @rr.s (bus:device:function @register+offset.size).
- report as read or write access.
- log value for writes.
- bus, device, function, and register values cannot be determined from Invalid IDSEL values so they will output as ??.
- for invalid IDSEL values, report the entire value of the config_addr.
- for valid IDSEL values, the bus number cannot be determined since IDSEL only specifies device number. It's probably bus 00 but we'll show ?? to indicate an IDSEL type access.

Add missing config type read access logging for chaos.
2022-08-22 17:16:17 -07:00

256 lines
8.0 KiB
C++

/*
DingusPPC - The Experimental PowerPC Macintosh emulator
Copyright (C) 2018-22 divingkatae and maximum
(theweirdo) spatium
(Contact divingkatae#1017 or powermax#2286 on Discord for more info)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include <devices/common/pci/pcidevice.h>
#include <devices/common/viacuda.h>
#include <endianswap.h>
#include <loguru.hpp>
#include <memaccess.h>
#include <cinttypes>
#include <fstream>
#include <string>
PCIDevice::PCIDevice(std::string name)
{
this->pci_name = name;
this->pci_rd_stat = []() { return 0; };
this->pci_rd_cmd = [this]() { return this->command; };
this->pci_rd_bist = []() { return 0; };
this->pci_rd_lat_timer = [this]() { return this->lat_timer; };
this->pci_rd_cache_lnsz = [this]() { return this->cache_ln_sz; };
this->pci_wr_stat = [](uint16_t val) {};
this->pci_wr_cmd = [this](uint16_t cmd) { this->command = cmd; };
this->pci_wr_bist = [](uint8_t val) {};
this->pci_wr_lat_timer = [this](uint8_t val) { this->lat_timer = val; };
this->pci_wr_cache_lnsz = [this](uint8_t val) { this->cache_ln_sz = val; };
this->pci_notify_bar_change = [](int bar_num) {};
};
uint32_t PCIDevice::pci_cfg_read(uint32_t reg_offs, uint32_t size)
{
uint32_t result;
switch (reg_offs) {
case PCI_CFG_DEV_ID:
result = (this->device_id << 16) | (this->vendor_id);
break;
case PCI_CFG_STAT_CMD:
result = (this->pci_rd_stat() << 16) | (this->pci_rd_cmd());
break;
case PCI_CFG_CLASS_REV:
result = this->class_rev;
break;
case PCI_CFG_DWORD_3:
result = (pci_rd_bist() << 24) | (this->hdr_type << 16) |
(pci_rd_lat_timer() << 8) | pci_rd_cache_lnsz();
break;
case PCI_CFG_BAR0:
case PCI_CFG_BAR1:
case PCI_CFG_BAR2:
case PCI_CFG_BAR3:
case PCI_CFG_BAR4:
case PCI_CFG_BAR5:
result = this->bars[(reg_offs - 0x10) >> 2];
break;
case PCI_CFG_SUBSYS_ID:
result = (this->subsys_id << 16) | (this->subsys_vndr);
break;
case PCI_CFG_ROM_BAR:
result = this->exp_rom_bar;
break;
case PCI_CFG_DWORD_15:
result = (max_lat << 24) | (min_gnt << 16) | (irq_pin << 8) | irq_line;
break;
default:
LOG_F(
WARNING, "%s: attempt to read from reserved/unimplemented register @%02x.%c",
this->pci_name.c_str(), reg_offs,
size == 4 ? 'l' : size == 2 ? 'w' : size == 1 ? 'b' : '0' + size
);
return 0;
}
if (size == 4) {
return BYTESWAP_32(result);
} else {
return read_mem_rev(((uint8_t *)&result) + (reg_offs & 3), size);
}
}
void PCIDevice::pci_cfg_write(uint32_t reg_offs, uint32_t value, uint32_t size)
{
uint32_t data;
if (size == 4) {
data = BYTESWAP_32(value);
} else {
// get current register content as DWORD and update it partially
data = BYTESWAP_32(this->pci_cfg_read(reg_offs, 4));
write_mem_rev(((uint8_t *)&data) + (reg_offs & 3), value, size);
}
switch (reg_offs) {
case PCI_CFG_STAT_CMD:
this->pci_wr_stat(data >> 16);
this->pci_wr_cmd(data & 0xFFFFU);
break;
case PCI_CFG_DWORD_3:
this->pci_wr_bist(data >> 24);
this->pci_wr_lat_timer((data >> 8) & 0xFF);
this->pci_wr_cache_lnsz(data & 0xFF);
break;
case PCI_CFG_BAR0:
case PCI_CFG_BAR1:
case PCI_CFG_BAR2:
case PCI_CFG_BAR3:
case PCI_CFG_BAR4:
case PCI_CFG_BAR5:
if (data == 0xFFFFFFFFUL) {
this->do_bar_sizing((reg_offs - 0x10) >> 2);
} else {
this->set_bar_value((reg_offs - 0x10) >> 2, data);
}
break;
case PCI_CFG_ROM_BAR:
if (data == 0xFFFFF800UL) {
this->exp_rom_bar = this->exp_bar_cfg;
} else {
this->exp_rom_bar = (data & 0xFFFFF801UL);
if (this->exp_rom_bar & 1) {
this->map_exp_rom_mem();
} else {
LOG_F(WARNING, "%s: unmapping of expansion ROM not implemented yet",
this->pci_name.c_str());
}
}
break;
case PCI_CFG_DWORD_15:
this->irq_line = data >> 24;
break;
default:
LOG_F(
WARNING, "%s: attempt to write to reserved/unimplemented register @%02x.%c = %0*x",
this->pci_name.c_str(), reg_offs,
size == 4 ? 'l' : size == 2 ? 'w' : size == 1 ? 'b' : '0' + size, size * 2, value
);
}
}
int PCIDevice::attach_exp_rom_image(const std::string img_path)
{
std::ifstream img_file;
int result = 0;
this->exp_bar_cfg = 0; // tell the world we got no ROM for now
try {
img_file.open(img_path, std::ios::in | std::ios::binary);
if (img_file.fail()) {
throw std::runtime_error("could not open specified ROM dump image");
}
// validate image file
uint8_t buf[4] = { 0 };
img_file.seekg(0, std::ios::beg);
img_file.read((char *)buf, sizeof(buf));
if (buf[0] != 0x55 || buf[1] != 0xAA) {
throw std::runtime_error("invalid expansion ROM signature");
}
// determine image size
img_file.seekg(0, std::ios::end);
this->exp_rom_size = img_file.tellg();
// verify PCI struct offset
uint32_t pci_struct_offset = 0;
img_file.seekg(0x18, std::ios::beg);
img_file.read((char *)&pci_struct_offset, sizeof(pci_struct_offset));
if (pci_struct_offset > this->exp_rom_size) {
throw std::runtime_error("invalid PCI structure offset");
}
// verify PCI struct signature
img_file.seekg(pci_struct_offset, std::ios::beg);
img_file.read((char *)buf, sizeof(buf));
if (buf[0] != 'P' || buf[1] != 'C' || buf[2] != 'I' || buf[3] != 'R') {
throw std::runtime_error("unexpected PCI struct signature");
}
// ROM image ok - go ahead and load it
this->exp_rom_data = std::unique_ptr<uint8_t[]> (new uint8_t[this->exp_rom_size]);
img_file.seekg(0, std::ios::beg);
img_file.read((char *)this->exp_rom_data.get(), this->exp_rom_size);
// align ROM image size on a 2KB boundary and initialize ROM config
this->exp_rom_size = (this->exp_rom_size + 0x7FFU) & 0xFFFFF800UL;
this->exp_bar_cfg = ~(this->exp_rom_size - 1);
}
catch (const std::exception& exc) {
LOG_F(ERROR, "PCIDevice: %s", exc.what());
result = -1;
}
img_file.close();
return result;
}
void PCIDevice::do_bar_sizing(int bar_num)
{
this->bars[bar_num] = this->bars_cfg[bar_num];
}
void PCIDevice::set_bar_value(int bar_num, uint32_t value)
{
uint32_t bar_cfg = this->bars_cfg[bar_num];
if (bar_cfg & 1) {
this->bars[bar_num] = (value & 0xFFFFFFFCUL) | 1;
} else {
if (bar_cfg & 6) {
ABORT_F("Invalid or unsupported PCI space type: %d", (bar_cfg >> 1) & 3);
}
this->bars[bar_num] = (value & 0xFFFFFFF0UL) | (bar_cfg & 0xF);
}
this->pci_notify_bar_change(bar_num);
}
void PCIDevice::map_exp_rom_mem()
{
uint32_t rom_addr, rom_size;
rom_addr = this->exp_rom_bar & 0xFFFFF800UL;
rom_size = ~this->exp_bar_cfg + 1;
if (!this->exp_rom_addr || this->exp_rom_addr != rom_addr) {
this->host_instance->pci_register_mmio_region(rom_addr, rom_size, this);
this->exp_rom_addr = rom_addr;
}
}