dingusppc/devices/common/pci/pcibase.cpp
joevt 6d23e18c11 pci: Add PCI CardBus bridge.
PCCard is used by PowerBook G3 Wallstreet in Open Firmware 2.0.1.
CardBus is probed in New World Macs starting from at least Open Firmware 4.1.9f1 sometime after Open Firmware 3.1.1.

- Create PCIBase from common stuff in PCIDevice.
- Add PCIBridgeBase. These have a primary bus number, secondary bus number, and subordinate bus number which are used to determine if PCI type 1 config cycle should be passed.
- Change PCIBridge to use PCIBridgeBase instead of PCIDevice.
- Add PCICardBusBridge which uses PCIBridgeBase.
2024-03-03 16:00:55 -07:00

305 lines
10 KiB
C++

/*
DingusPPC - The Experimental PowerPC Macintosh emulator
Copyright (C) 2018-23 divingkatae and maximum
(theweirdo) spatium
(Contact divingkatae#1017 or powermax#2286 on Discord for more info)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include <devices/common/pci/pcibase.h>
#include <endianswap.h>
#include <loguru.hpp>
#include <memaccess.h>
#include <cinttypes>
#include <fstream>
#include <cstring>
#include <string>
PCIBase::PCIBase(std::string name, PCIHeaderType hdr_type, int num_bars)
{
this->name = name;
this->pci_name = name;
this->hdr_type = hdr_type;
this->num_bars = num_bars;
this->pci_rd_stat = [this]() { return this->status; };
this->pci_rd_cmd = [this]() { return this->command; };
this->pci_rd_bist = []() { return 0; };
this->pci_rd_lat_timer = [this]() { return this->lat_timer; };
this->pci_rd_cache_lnsz = [this]() { return this->cache_ln_sz; };
this->pci_wr_stat = [](uint16_t val) {};
this->pci_wr_cmd = [this](uint16_t cmd) {
/*
FIXME: should register or unregister BAR mmio regions if (cmd & 2) changes.
Or the mmio regions should be enabled/disabled.
*/
this->command = cmd;
};
this->pci_wr_bist = [](uint8_t val) {};
this->pci_wr_lat_timer = [this](uint8_t val) { this->lat_timer = val; };
this->pci_wr_cache_lnsz = [this](uint8_t val) { this->cache_ln_sz = val; };
this->pci_notify_bar_change = [](int bar_num) {};
};
uint32_t PCIBase::pci_cfg_read(uint32_t reg_offs, AccessDetails &details)
{
switch (reg_offs) {
case PCI_CFG_DEV_ID:
return (this->device_id << 16) | (this->vendor_id);
case PCI_CFG_STAT_CMD:
return (this->pci_rd_stat() << 16) | (this->pci_rd_cmd());
case PCI_CFG_CLASS_REV:
return this->class_rev;
case PCI_CFG_DWORD_3:
return (pci_rd_bist() << 24) | (this->hdr_type << 16) |
(pci_rd_lat_timer() << 8) | pci_rd_cache_lnsz();
}
LOG_READ_UNIMPLEMENTED_CONFIG_REGISTER();
return 0;
}
void PCIBase::pci_cfg_write(uint32_t reg_offs, uint32_t value, AccessDetails &details)
{
switch (reg_offs) {
case PCI_CFG_STAT_CMD:
this->pci_wr_stat(value >> 16);
this->pci_wr_cmd(value & 0xFFFFU);
break;
case PCI_CFG_DWORD_3:
this->pci_wr_bist(value >> 24);
this->pci_wr_lat_timer((value >> 8) & 0xFF);
this->pci_wr_cache_lnsz(value & 0xFF);
break;
default:
LOG_WRITE_UNIMPLEMENTED_CONFIG_REGISTER();
}
}
void PCIBase::setup_bars(std::vector<BarConfig> cfg_data)
{
for (auto cfg_entry : cfg_data) {
if (cfg_entry.bar_num > this->num_bars) {
ABORT_F("BAR number %d out of range", cfg_entry.bar_num);
}
this->bars_cfg[cfg_entry.bar_num] = cfg_entry.bar_cfg;
}
this->finish_config_bars();
}
int PCIBase::attach_exp_rom_image(const std::string img_path)
{
std::ifstream img_file;
int result = 0;
this->exp_bar_cfg = 0; // tell the world we got no ROM for now
try {
img_file.open(img_path, std::ios::in | std::ios::binary);
if (img_file.fail()) {
throw std::runtime_error("could not open specified ROM dump image");
}
// validate image file
uint8_t buf[4] = { 0 };
img_file.seekg(0, std::ios::beg);
img_file.read((char *)buf, sizeof(buf));
if (buf[0] != 0x55 || buf[1] != 0xAA) {
throw std::runtime_error("invalid expansion ROM signature");
}
// determine image size
img_file.seekg(0, std::ios::end);
size_t exp_rom_image_size = img_file.tellg();
if (exp_rom_image_size > 4*1024*1024) {
throw std::runtime_error("expansion ROM file too large");
}
// verify PCI struct offset
uint16_t pci_struct_offset = 0;
img_file.seekg(0x18, std::ios::beg);
img_file.read((char *)&pci_struct_offset, sizeof(pci_struct_offset));
if (pci_struct_offset > exp_rom_image_size) {
throw std::runtime_error("invalid PCI structure offset");
}
// verify PCI struct signature
img_file.seekg(pci_struct_offset, std::ios::beg);
img_file.read((char *)buf, sizeof(buf));
if (buf[0] != 'P' || buf[1] != 'C' || buf[2] != 'I' || buf[3] != 'R') {
throw std::runtime_error("unexpected PCI struct signature");
}
// find minimum rom size for the rom file (power of 2 >= 0x800)
for (this->exp_rom_size = 1 << 11; this->exp_rom_size < exp_rom_image_size; this->exp_rom_size <<= 1) {}
// ROM image ok - go ahead and load it
this->exp_rom_data = std::unique_ptr<uint8_t[]> (new uint8_t[this->exp_rom_size]);
img_file.seekg(0, std::ios::beg);
img_file.read((char *)this->exp_rom_data.get(), exp_rom_image_size);
memset(&this->exp_rom_data[exp_rom_image_size], 0xff, this->exp_rom_size - exp_rom_image_size);
if (exp_rom_image_size == this->exp_rom_size) {
LOG_F(INFO, "%s: loaded expansion rom (%d bytes).",
this->pci_name.c_str(), this->exp_rom_size);
}
else {
LOG_F(WARNING, "%s: loaded expansion rom (%d bytes adjusted to %d bytes).",
this->pci_name.c_str(), (int)exp_rom_image_size, this->exp_rom_size);
}
this->exp_bar_cfg = ~(this->exp_rom_size - 1);
}
catch (const std::exception& exc) {
LOG_F(ERROR, "%s: %s", this->pci_name.c_str(), exc.what());
result = -1;
}
img_file.close();
return result;
}
void PCIBase::set_bar_value(int bar_num, uint32_t value)
{
uint32_t bar_cfg = this->bars_cfg[bar_num];
switch (bars_typ[bar_num]) {
case PCIBarType::Unused:
return;
case PCIBarType::Io_16_Bit:
case PCIBarType::Io_32_Bit:
this->bars[bar_num] = (value & bar_cfg & ~3) | (bar_cfg & 3);
if (value != 0xFFFFFFFFUL && (value & ~3) != (value & bar_cfg & ~3)) {
LOG_F(ERROR, "%s: BAR %d cannot be 0x%08x (set to 0x%08x)", this->pci_name.c_str(), bar_num, (value & ~3), (value & bar_cfg & ~3));
}
break;
case PCIBarType::Mem_20_Bit:
case PCIBarType::Mem_32_Bit:
case PCIBarType::Mem_64_Bit_Lo:
this->bars[bar_num] = (value & bar_cfg & ~0xF) | (bar_cfg & 0xF);
if (value != 0xFFFFFFFFUL && (value & ~0xF) != (value & bar_cfg & ~0xF)) {
LOG_F(ERROR, "%s: BAR %d cannot be 0x%08x (set to 0x%08x)", this->pci_name.c_str(), bar_num, (value & ~0xF), (value & bar_cfg & ~0xF));
}
break;
case PCIBarType::Mem_64_Bit_Hi:
this->bars[bar_num] = value & bar_cfg;
break;
}
if (value != 0xFFFFFFFFUL) // don't notify the device during BAR sizing
this->pci_notify_bar_change(bar_num);
}
void PCIBase::finish_config_bars()
{
for (int bar_num = 0; bar_num < this->num_bars; bar_num++) {
uint32_t bar_cfg = this->bars_cfg[bar_num];
if (!bar_cfg) // skip unimplemented BARs
continue;
if (bar_cfg & 1) {
bars_typ[bar_num] = (bar_cfg & 0xffff0000) ? PCIBarType::Io_32_Bit :
PCIBarType::Io_16_Bit;
has_io_space = true;
}
else {
int pci_space_type = (bar_cfg >> 1) & 3;
switch (pci_space_type) {
case 0:
bars_typ[bar_num] = PCIBarType::Mem_32_Bit;
break;
case 1:
bars_typ[bar_num] = PCIBarType::Mem_20_Bit;
break;
case 2:
if (bar_num >= num_bars - 1) {
ABORT_F("%s: BAR %d cannot be 64-bit",
this->pci_name.c_str(), bar_num);
}
else if (this->bars_cfg[bar_num+1] == 0) {
ABORT_F("%s: 64-bit BAR %d has zero for upper 32 bits",
this->pci_name.c_str(), bar_num);
}
else {
bars_typ[bar_num++] = PCIBarType::Mem_64_Bit_Lo;
bars_typ[bar_num ] = PCIBarType::Mem_64_Bit_Hi;
}
break;
default:
ABORT_F("%s: invalid or unsupported PCI space type %d for BAR %d",
this->pci_name.c_str(), pci_space_type, bar_num);
} // switch pci_space_type
}
} // for bar_num
}
void PCIBase::map_exp_rom_mem()
{
uint32_t rom_addr = this->exp_rom_bar & this->exp_bar_cfg;
if (rom_addr) {
if (this->exp_rom_addr != rom_addr) {
this->unmap_exp_rom_mem();
uint32_t rom_size = ~this->exp_bar_cfg + 1;
this->host_instance->pci_register_mmio_region(rom_addr, rom_size, this);
this->exp_rom_addr = rom_addr;
}
}
else {
this->unmap_exp_rom_mem();
}
}
void PCIBase::unmap_exp_rom_mem()
{
if (this->exp_rom_addr) {
uint32_t rom_size = ~this->exp_bar_cfg + 1;
this->host_instance->pci_unregister_mmio_region(exp_rom_addr, rom_size, this);
this->exp_rom_addr = 0;
}
}
void PCIBase::pci_wr_exp_rom_bar(uint32_t data)
{
if (!this->exp_bar_cfg) {
return;
}
if ((data & this->exp_bar_cfg) == this->exp_bar_cfg) {
// doing sizing
this->exp_rom_bar = (data & (this->exp_bar_cfg | 1));
} else {
this->exp_rom_bar = (data & (this->exp_bar_cfg | 1));
if (this->exp_rom_bar & 1) {
this->map_exp_rom_mem();
}
else {
this->unmap_exp_rom_mem();
}
}
}