Mihai Parparita e011d86742 amic: don't reset cur_buf_pos if we've drained the DMA buffer
Otherwise if pull_data is called again, it will think that it still
has data available in the buffer (rem_len will be non-zero) and
random data at the buffer location will be returned.

This manifested itself as noise being played back in the JS
implementation of the SoundServer. The cubeb implementation was not
affected because it stops polling once it's told it has no more
data in the buffer. Both approaches are valid (the JS version pads
data with silence), and the DMA buffer should support both.
2023-11-06 22:33:00 -08:00

674 lines
22 KiB
C++

/*
DingusPPC - The Experimental PowerPC Macintosh emulator
Copyright (C) 2018-23 divingkatae and maximum
(theweirdo) spatium
(Contact divingkatae#1017 or powermax#2286 on Discord for more info)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
/** Apple memory-mapped I/O controller emulation.
Author: Max Poliakovski
*/
#include <core/timermanager.h>
#include <cpu/ppc/ppcemu.h>
#include <cpu/ppc/ppcmmu.h>
#include <devices/deviceregistry.h>
#include <devices/common/hwcomponent.h>
#include <devices/common/scsi/sc53c94.h>
#include <devices/common/viacuda.h>
#include <devices/ethernet/mace.h>
#include <devices/floppy/swim3.h>
#include <devices/ioctrl/amic.h>
#include <devices/serial/escc.h>
#include <machines/machinebase.h>
#include <devices/memctrl/memctrlbase.h>
#include <devices/video/displayid.h>
#include <devices/video/pdmonboard.h>
#include <algorithm>
#include <cinttypes>
#include <loguru.hpp>
#include <memory>
AMIC::AMIC() : MMIODevice()
{
this->name = "Apple Memory-mapped I/O Controller";
supports_types(HWCompType::MMIO_DEV | HWCompType::INT_CTRL);
// connect internal SCSI controller
this->scsi = dynamic_cast<Sc53C94*>(gMachineObj->get_comp_by_name("Sc53C94"));
this->scsi_dma = std::unique_ptr<AmicScsiDma> (new AmicScsiDma());
this->scsi->set_dma_channel(this->scsi_dma.get());
// connect serial HW
this->escc = dynamic_cast<EsccController*>(gMachineObj->get_comp_by_name("Escc"));
// connect Ethernet HW
this->mace = dynamic_cast<MaceController*>(gMachineObj->get_comp_by_name("Mace"));
// connect Cuda
this->viacuda = dynamic_cast<ViaCuda*>(gMachineObj->get_comp_by_name("ViaCuda"));
// initialize sound HW
this->snd_out_dma = std::unique_ptr<AmicSndOutDma> (new AmicSndOutDma());
this->awacs = std::unique_ptr<AwacDevicePdm> (new AwacDevicePdm());
this->awacs->set_dma_out(this->snd_out_dma.get());
// initialize on-board video
this->disp_id = std::unique_ptr<DisplayID> (new DisplayID());
this->def_vid = std::unique_ptr<PdmOnboardVideo> (new PdmOnboardVideo());
this->def_vid->init_interrupts(this, SLOT_INT_VBL << 16);
// initialize floppy disk HW
this->swim3 = dynamic_cast<Swim3::Swim3Ctrl*>(gMachineObj->get_comp_by_name("Swim3"));
this->floppy_dma = std::unique_ptr<AmicFloppyDma> (new AmicFloppyDma());
this->swim3->set_dma_channel(this->floppy_dma.get());
}
int AMIC::device_postinit()
{
MemCtrlBase *mem_ctrl = dynamic_cast<MemCtrlBase *>
(gMachineObj->get_comp_by_type(HWCompType::MEM_CTRL));
// add memory mapped I/O region for the AMIC control registers
if (!mem_ctrl->add_mmio_region(0x50F00000, 0x00040000, this)) {
LOG_F(ERROR, "Couldn't register AMIC registers!");
}
// AMIC drives the VIA CA1 internally to generate 60.15 Hz interrupts
this->pseudo_vbl_tid = TimerManager::get_instance()->add_cyclic_timer(
static_cast<uint64_t>((1.0f/60.15) * NS_PER_SEC + 0.5f),
[this]() {
this->viacuda->assert_ctrl_line(ViaLine::CA1);
});
// set EMMO pin status (active low)
this->emmo_pin = GET_BIN_PROP("emmo") ^ 1;
return 0;
}
uint32_t AMIC::read(uint32_t rgn_start, uint32_t offset, int size)
{
uint32_t phase_val;
// subdevices registers
switch(offset >> 12) {
case 0: // VIA1 registers
case 1:
return this->viacuda->read(offset >> 9);
case 4: // SCC registers
return this->escc->read(compat_to_macrisc[(offset >> 1) & 0xF]);
case 0xA: // MACE registers
return this->mace->read((offset >> 4) & 0x1F);
case 0x10: // SCSI registers
if (offset & 0x100) {
return this->scsi->pseudo_dma_read();
} else {
return this->scsi->read((offset >> 4) & 0xF);
}
case 0x14: // Sound registers
switch (offset) {
case AMICReg::Snd_Stat_0:
case AMICReg::Snd_Stat_1:
case AMICReg::Snd_Stat_2:
return (this->awacs->read_stat() >> (offset & 3) * 8) & 0xFF;
case AMICReg::Snd_Phase0:
case AMICReg::Snd_Phase1:
case AMICReg::Snd_Phase2:
// the sound phase register is organized as follows:
// 000000oo oooooooo oopppppp where 'o' is the 12-bit offset
// into the DMA buffer and 'p' is an undocumented prescale value
// HWInit doesn't care about. Let's hope it will be sufficient
// to return 0 for prescale.
phase_val = this->snd_out_dma->get_cur_buf_pos() << 6;
return (phase_val >> ((2 - (offset & 3)) * 8)) & 0xFF;
case AMICReg::Snd_Out_Ctrl:
return this->snd_out_ctrl;
case AMICReg::Snd_Out_DMA:
return this->snd_out_dma->read_stat();
}
break;
case 0x16: // SWIM3 registers
case 0x17:
return this->swim3->read((offset >> 9) & 0xF);
}
switch(offset) {
case AMICReg::Ariel_Config:
return this->def_vid->get_vdac_config();
case AMICReg::VIA2_Slot_IFR:
return this->via2_slot_ifr;
case AMICReg::VIA2_IFR:
case AMICReg::VIA2_IFR_RBV:
return this->via2_ifr;
case AMICReg::VIA2_Slot_IER:
return this->via2_slot_ier;
case AMICReg::VIA2_IER:
case AMICReg::VIA2_IER_RBV:
return this->via2_ier;
case AMICReg::Video_Mode:
return this->def_vid->get_video_mode();
case AMICReg::Monitor_Id:
return this->mon_id;
case AMICReg::Int_Ctrl:
return (this->int_ctrl & 0xC0) | (this->dev_irq_lines & 0x3F);
case AMICReg::Diag_Reg:
return 0xFE | this->emmo_pin;
case AMICReg::DMA_Base_Addr_0:
case AMICReg::DMA_Base_Addr_1:
case AMICReg::DMA_Base_Addr_2:
case AMICReg::DMA_Base_Addr_3:
return (this->dma_base >> (3 - (offset & 3)) * 8) & 0xFF;
case AMICReg::SCSI_DMA_Ctrl:
return this->scsi_dma->read_stat();
case AMICReg::Floppy_Addr_Ptr_0:
case AMICReg::Floppy_Addr_Ptr_1:
case AMICReg::Floppy_Addr_Ptr_2:
case AMICReg::Floppy_Addr_Ptr_3:
return (this->floppy_addr_ptr >> (3 - (offset & 3)) * 8) & 0xFF;
case AMICReg::Floppy_DMA_Ctrl:
return this->floppy_dma->read_stat();
default:
LOG_F(WARNING, "Unknown AMIC register read, offset=%x", offset);
}
return 0;
}
void AMIC::write(uint32_t rgn_start, uint32_t offset, uint32_t value, int size)
{
uint32_t mask;
// subdevices registers
switch(offset >> 12) {
case 0: // VIA1 registers
case 1:
this->viacuda->write(offset >> 9, value);
return;
case 4:
this->escc->write(compat_to_macrisc[(offset >> 1) & 0xF], value);
return;
case 0xA: // MACE registers
this->mace->write((offset >> 4) & 0x1F, value);
return;
case 0x10:
this->scsi->write((offset >> 4) & 0xF, value);
return;
case 0x14: // Sound registers
switch(offset) {
case AMICReg::Snd_Ctrl_0:
case AMICReg::Snd_Ctrl_1:
case AMICReg::Snd_Ctrl_2:
// remember values of sound control registers
this->imm_snd_regs[offset & 3] = value;
// transfer control information to the sound codec when ready
if ((this->imm_snd_regs[0] & 0xC0) == PDM_SND_CTRL_VALID) {
this->awacs->write_ctrl(
(this->imm_snd_regs[1] >> 4) | (this->imm_snd_regs[0] & 0x3F),
((this->imm_snd_regs[1] & 0xF) << 8) | this->imm_snd_regs[2]
);
}
return;
case AMICReg::Snd_Buf_Size_Hi:
case AMICReg::Snd_Buf_Size_Lo:
SET_SIZE_BYTE(this->snd_buf_size, offset, value);
this->snd_buf_size &= ~3; // sound buffer size is always a multiple of 4
LOG_F(9, "AMIC: Sound buffer size set to 0x%X", this->snd_buf_size);
return;
case AMICReg::Snd_Out_Ctrl:
LOG_F(9, "AMIC Sound Out Ctrl updated, val=%x", value);
if ((value & 1) != (this->snd_out_ctrl & 1)) {
if (value & 1) {
LOG_F(9, "AMIC Sound Out DMA enabled!");
this->snd_out_dma->init(this->dma_base & ~0x3FFFF,
this->snd_buf_size);
this->snd_out_dma->enable();
this->awacs->set_sample_rate((this->snd_out_ctrl >> 1) & 3);
this->awacs->dma_out_start();
} else {
LOG_F(9, "AMIC Sound Out DMA disabled!");
this->snd_out_dma->disable();
}
}
this->snd_out_ctrl = value;
return;
case AMICReg::Snd_In_Ctrl:
LOG_F(INFO, "AMIC Sound In Ctrl updated, val=%x", value);
return;
case AMICReg::Snd_Out_DMA:
this->snd_out_dma->write_dma_out_ctrl(value);
return;
}
case 0x16: // SWIM3 registers
case 0x17:
this->swim3->write((offset >> 9) & 0xF, value);
return;
}
switch(offset) {
case AMICReg::VIA2_Slot_IFR:
if (value & SLOT_INT_VBL) {
// clear pending VBL int
this->ack_slot_int(SLOT_INT_VBL, 0);
}
break;
case AMICReg::VIA2_IFR:
// for each "1" in value clear the corresponding IRQ bit
// TODO: is bit 7 read only?
this->via2_ifr &= ~(value & 0x7F);
this->update_via2_irq();
break;
case AMICReg::VIA2_Slot_IER:
if (value & 0x80)
this->via2_slot_ier |= value & 0x7F;
else
this->via2_slot_ier &= ~value;
break;
case AMICReg::VIA2_IER:
case AMICReg::VIA2_IER_RBV:
if (value & 0x80) {
this->via2_ier |= value & 0x7F;
} else {
this->via2_ier &= ~value;
}
break;
case AMICReg::Ariel_Clut_Index:
this->def_vid->set_clut_index(value);
break;
case AMICReg::Ariel_Clut_Color:
this->def_vid->set_clut_color(value);
break;
case AMICReg::Ariel_Config:
this->def_vid->set_vdac_config(value);
break;
case AMICReg::Video_Mode:
this->def_vid->set_video_mode(value);
break;
case AMICReg::Pixel_Depth:
this->def_vid->set_pixel_depth(value);
break;
case AMICReg::Monitor_Id: {
// extract and convert pin directions (0 - input, 1 - output)
uint8_t dirs = ~value & 7;
if (!dirs && !(value & 8)) {
LOG_F(INFO, "AMIC: Monitor sense lines tristated");
}
// propagate bit 3 to all pins configured as output
// set levels of all intput pins to "1"
uint8_t levels = (7 ^ dirs) | (((value & 8) ? 7 : 0) & dirs);
// read monitor sense lines and store the result in the bits 4-6
this->mon_id = (this->mon_id & 0xF) |
(this->disp_id->read_monitor_sense(levels, dirs) << 4);
}
break;
case AMICReg::Int_Ctrl:
// reset CPU interrupt bit if requested
if (value & CPU_INT_CLEAR) {
if (this->int_ctrl & CPU_INT_FLAG) {
this->int_ctrl &= ~CPU_INT_FLAG;
ppc_release_int();
LOG_F(5, "AMIC: CPU INT latch cleared");
}
}
// keep interrupt mode bit
// and discard read-only IQR state bits
this->int_ctrl |= value & CPU_INT_MODE;
break;
case AMICReg::DMA_Base_Addr_0:
case AMICReg::DMA_Base_Addr_1:
case AMICReg::DMA_Base_Addr_2:
case AMICReg::DMA_Base_Addr_3:
SET_ADDR_BYTE(this->dma_base, offset, value);
this->dma_base &= 0xFFFC0000UL;
LOG_F(9, "AMIC: DMA base address set to 0x%X", this->dma_base);
break;
case AMICReg::Enet_DMA_Xmt_Ctrl:
LOG_F(INFO, "AMIC Ethernet Transmit DMA Ctrl updated, val=%x", value);
break;
case AMICReg::SCSI_DMA_Base_0:
case AMICReg::SCSI_DMA_Base_1:
case AMICReg::SCSI_DMA_Base_2:
case AMICReg::SCSI_DMA_Base_3:
SET_ADDR_BYTE(this->scsi_dma_base, offset, value);
this->scsi_dma_base &= 0xFFFFFFF8UL;
LOG_F(9, "AMIC: SCSI DMA base address set to 0x%X", this->scsi_dma_base);
break;
case AMICReg::SCSI_DMA_Ctrl:
if (value & 1) { // RST bit set?
this->scsi_addr_ptr = this->scsi_dma_base;
this->scsi_dma->reset(this->scsi_addr_ptr);
}
if (value & 2) { // RUN bit set?
this->scsi_dma->reinit(this->scsi_dma_base);
this->scsi->real_dma_xfer((value >> 6) & 1);
}
this->scsi_dma->write_ctrl(value);
break;
case AMICReg::Enet_DMA_Rcv_Ctrl:
LOG_F(INFO, "AMIC Ethernet Receive DMA Ctrl updated, val=%x", value);
break;
case AMICReg::Floppy_Addr_Ptr_2:
case AMICReg::Floppy_Addr_Ptr_3:
SET_ADDR_BYTE(this->floppy_addr_ptr, offset, value);
break;
case AMICReg::Floppy_Byte_Cnt_Hi:
case AMICReg::Floppy_Byte_Cnt_Lo:
SET_SIZE_BYTE(this->floppy_byte_cnt, offset, value);
break;
case AMICReg::Floppy_DMA_Ctrl:
if (value & 1) { // RST bit set?
this->floppy_addr_ptr = this->dma_base + 0x15000;
this->floppy_dma->reset(this->floppy_addr_ptr);
}
if (value & 2) { // RUN bit set?
this->floppy_dma->reinit(this->floppy_addr_ptr, this->floppy_byte_cnt);
}
this->floppy_dma->write_ctrl(value);
break;
case AMICReg::SCC_DMA_Xmt_A_Ctrl:
LOG_F(INFO, "AMIC SCC Transmit Ch A DMA Ctrl updated, val=%x", value);
break;
case AMICReg::SCC_DMA_Rcv_A_Ctrl:
LOG_F(INFO, "AMIC SCC Receive Ch A DMA Ctrl updated, val=%x", value);
break;
case AMICReg::SCC_DMA_Xmt_B_Ctrl:
LOG_F(INFO, "AMIC SCC Transmit Ch B DMA Ctrl updated, val=%x", value);
break;
case AMICReg::SCC_DMA_Rcv_B_Ctrl:
LOG_F(INFO, "AMIC SCC Receive Ch B DMA Ctrl updated, val=%x", value);
break;
default:
LOG_F(WARNING, "Unknown AMIC register write, offset=%x, val=%x",
offset, value);
}
}
// ======================== Interrupt related stuff ==========================
uint32_t AMIC::register_dev_int(IntSrc src_id) {
switch (src_id) {
case IntSrc::VIA_CUDA:
return CPU_INT_VIA1;
case IntSrc::SCSI1:
return VIA2_INT_SCSI_IRQ << 8;
case IntSrc::SWIM3:
return VIA2_INT_SWIM3 << 8;
case IntSrc::NMI:
return CPU_INT_NMI;
default:
ABORT_F("AMIC: unknown interrupt source %d", src_id);
}
return 0;
}
uint32_t AMIC::register_dma_int(IntSrc src_id) {
ABORT_F("AMIC: register_dma_int() not implemented");
return 0;
}
void AMIC::ack_int(uint32_t irq_id, uint8_t irq_line_state) {
// dispatch cascaded AMIC interrupts from various sources
// irq_id format: 00DDCCBBAA where
// - AA -> CPU interrupts
// - BB -> pseudo VIA2 interrupts
// - CC -> slot interrupts
if (irq_id < 0x100) {
this->ack_cpu_int(irq_id, irq_line_state);
} else if (irq_id < 0x10000) {
this->ack_via2_int(irq_id >> 8, irq_line_state);
} else if (irq_id < 0x1000000) {
this->ack_slot_int(irq_id >> 16, irq_line_state);
} else {
ABORT_F("AMIC: unknown interrupt source ID 0x%X", irq_id);
}
}
void AMIC::ack_slot_int(uint32_t irq_id, uint8_t irq_line_state) {
// CAUTION: reverse logic (0 - true, 1 - false) in the IFR register!
if (irq_line_state) {
this->via2_slot_ifr &= ~irq_id;
} else {
this->via2_slot_ifr |= irq_id;
}
uint8_t new_irq = !!(~this->via2_slot_ifr & this->via2_slot_ier & 0x7F);
if (new_irq != this->via2_slot_irq) {
this->via2_slot_irq = new_irq;
this->ack_via2_int(VIA2_INT_ALL_SLOT, new_irq);
}
}
void AMIC::update_via2_irq() {
uint8_t new_irq = !!(this->via2_ifr & this->via2_ier & 0x7F);
this->via2_ifr = (this->via2_ifr & 0x7F) | (new_irq << 7);
if (new_irq != this->via2_irq) {
this->via2_irq = new_irq;
this->ack_cpu_int(CPU_INT_VIA2, new_irq);
}
}
void AMIC::ack_via2_int(uint32_t irq_id, uint8_t irq_line_state) {
if (irq_line_state) {
this->via2_ifr |= irq_id;
} else {
this->via2_ifr &= ~irq_id;
}
this->update_via2_irq();
}
void AMIC::ack_cpu_int(uint32_t irq_id, uint8_t irq_line_state) {
if (this->int_ctrl & CPU_INT_MODE) { // 68k interrupt emulation mode?
if (irq_line_state) {
this->dev_irq_lines |= irq_id;
} else {
this->dev_irq_lines &= ~irq_id;
}
if (!(this->int_ctrl & CPU_INT_FLAG)) {
this->int_ctrl |= CPU_INT_FLAG;
ppc_assert_int();
LOG_F(5, "AMIC: CPU INT asserted, source: %d", irq_id);
} else {
LOG_F(5, "AMIC: CPU INT already latched");
}
} else {
ABORT_F("AMIC: native interrupt mode not implemented");
}
}
void AMIC::ack_dma_int(uint32_t irq_id, uint8_t irq_line_state) {
ABORT_F("AMIC: ack_dma_int() not implemented");
}
// ============================ Sound DMA stuff ================================
AmicSndOutDma::AmicSndOutDma()
{
this->dma_out_ctrl = 0;
this->enabled = false;
}
void AmicSndOutDma::init(uint32_t buf_base, uint32_t buf_samples)
{
this->out_buf0 = buf_base + AMIC_SND_BUF0_OFFS;
this->out_buf1 = buf_base + AMIC_SND_BUF1_OFFS;
this->out_buf_len = buf_samples * 2 * 2;
this->snd_buf_num = 0;
this->cur_buf_pos = 0;
}
uint8_t AmicSndOutDma::read_stat()
{
return this->dma_out_ctrl;
}
void AmicSndOutDma::write_dma_out_ctrl(uint8_t value)
{
// clear interrupt flags
value &= ~PDM_DMA_INTS_MASK;
this->dma_out_ctrl = value;
LOG_F(9, "AMIC: Sound out DMA control set to 0x%X", value);
}
DmaPullResult AmicSndOutDma::pull_data(uint32_t req_len, uint32_t *avail_len,
uint8_t **p_data)
{
*avail_len = 0;
int rem_len = this->out_buf_len - this->cur_buf_pos;
if (rem_len <= 0) {
if (!this->snd_buf_num) {
// signal buffer 0 drained
this->dma_out_ctrl |= PDM_DMA_IF0;
// TODO: generate IE0 interrupt if enabled
} else {
// signal buffer 1 drained
this->dma_out_ctrl |= PDM_DMA_IF1;
// TODO: generate IE1 interrupt if enabled
}
// check DMA enable flag after buffer 1 was processed
// if it's false stop delivering sound data
// this will effectively stop audio playback
if (this->snd_buf_num && !this->enabled) {
return DmaPullResult::NoMoreData;
}
this->cur_buf_pos = 0; // reset buffer position
this->snd_buf_num ^= 1; // toggle sound buffers
rem_len = this->out_buf_len; // buffer size = full buffer
}
uint32_t len = std::min((uint32_t)rem_len, req_len);
MapDmaResult res = mmu_map_dma_mem(
(this->snd_buf_num ? this->out_buf1 : this->out_buf0) + this->cur_buf_pos,
len, false);
*p_data = res.host_va;
this->cur_buf_pos += len;
*avail_len = len;
return DmaPullResult::MoreData;
}
// ============================ Floppy DMA stuff ===============================
void AmicFloppyDma::reset(const uint32_t addr_ptr)
{
this->stat &= 0x48; // clear interrupt flag, RUN and RST bits
this->addr_ptr = addr_ptr;
this->byte_count = 0;
}
void AmicFloppyDma::reinit(const uint32_t addr_ptr, const uint16_t byte_cnt)
{
this->addr_ptr = addr_ptr;
this->byte_count = byte_cnt;
}
void AmicFloppyDma::write_ctrl(uint8_t value)
{
// copy over DIR, IE and RUN bits
this->stat = (this->stat & 0x81) | (value & 0x4A);
// clear interrupt flag if requested
if (value & 0x80) {
this->stat &= 0x7F;
}
}
int AmicFloppyDma::push_data(const char* src_ptr, int len)
{
len = std::min((int)this->byte_count, len);
MapDmaResult res = mmu_map_dma_mem(this->addr_ptr, len, false);
uint8_t *p_data = res.host_va;
if (!res.is_writable) {
ABORT_F("AMIC: attempting DMA write to read-only memory");
}
std::memcpy(p_data, src_ptr, len);
this->addr_ptr += len;
this->byte_count -= len;
if (!this->byte_count) {
LOG_F(WARNING, "AMIC: DMA interrupts not implemented yet");
}
return 0;
}
DmaPullResult AmicFloppyDma::pull_data(uint32_t req_len, uint32_t *avail_len,
uint8_t **p_data)
{
return DmaPullResult::NoMoreData;
}
// ============================ SCSI DMA stuff ================================
void AmicScsiDma::reset(const uint32_t addr_ptr)
{
this->stat &= 0x48; // clear interrupt flag, RUN and RST bits
this->addr_ptr = addr_ptr;
this->byte_count = 0;
}
void AmicScsiDma::reinit(const uint32_t addr_ptr)
{
this->addr_ptr = addr_ptr;
this->byte_count = 0;
}
void AmicScsiDma::write_ctrl(uint8_t value)
{
// copy over DIR, IE and RUN bits
this->stat = (this->stat & 0x81) | (value & 0x4A);
// clear interrupt flag if requested
if (value & 0x80) {
this->stat &= 0x7F;
}
}
int AmicScsiDma::push_data(const char* src_ptr, int len)
{
MapDmaResult res = mmu_map_dma_mem(this->addr_ptr, len, false);
uint8_t *p_data = res.host_va;
std::memcpy(p_data, src_ptr, len);
this->addr_ptr += len;
return 0;
}
DmaPullResult AmicScsiDma::pull_data(uint32_t req_len, uint32_t *avail_len,
uint8_t **p_data)
{
MapDmaResult res = mmu_map_dma_mem(this->addr_ptr, req_len, false);
*p_data = res.host_va;
this->addr_ptr += req_len;
*avail_len = req_len;
return DmaPullResult::MoreData;
}
static vector<string> Amic_Subdevices = {
"Scsi0", "Sc53C94", "Escc", "Mace", "ViaCuda", "Swim3"
};
static const DeviceDescription Amic_Descriptor = {
AMIC::create, Amic_Subdevices, {}
};
REGISTER_DEVICE(Amic, Amic_Descriptor);