dingusppc/cpu/ppc/ppcmmu.cpp
2021-02-03 12:19:18 +01:00

645 lines
24 KiB
C++

/*
DingusPPC - The Experimental PowerPC Macintosh emulator
Copyright (C) 2018-20 divingkatae and maximum
(theweirdo) spatium
(Contact divingkatae#1017 or powermax#2286 on Discord for more info)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
/** @file PowerPC Memory management unit emulation. */
/* TODO:
- implement TLB
- implement 601-style BATs
- add proper error and exception handling
- clarify what to do in the case of unaligned memory accesses
*/
#include "ppcmmu.h"
#include "devices/memctrlbase.h"
#include "memaccess.h"
#include "ppcemu.h"
#include <array>
#include <cinttypes>
#include <cstdint>
#include <iostream>
#include <stdexcept>
#include <string>
#include <thirdparty/loguru/loguru.hpp>
/* pointer to exception handler to be called when a MMU exception is occured. */
void (*mmu_exception_handler)(Except_Type exception_type, uint32_t srr1_bits);
/** PowerPC-style MMU BAT arrays (NULL initialization isn't prescribed). */
PPC_BAT_entry ibat_array[4] = {{0}};
PPC_BAT_entry dbat_array[4] = {{0}};
/** remember recently used physical memory regions for quicker translation. */
AddressMapEntry last_read_area = {0xFFFFFFFF, 0xFFFFFFFF};
AddressMapEntry last_write_area = {0xFFFFFFFF, 0xFFFFFFFF};
AddressMapEntry last_exec_area = {0xFFFFFFFF, 0xFFFFFFFF};
AddressMapEntry last_ptab_area = {0xFFFFFFFF, 0xFFFFFFFF};
AddressMapEntry last_dma_area = {0xFFFFFFFF, 0xFFFFFFFF};
#define WRITE_BYTE(addr, val) (*(addr) = val)
/* macro for generating code reading from physical memory */
#define READ_PHYS_MEM(ENTRY, ADDR, OP, SIZE, UNVAL) \
{ \
if ((ADDR) >= (ENTRY).start && ((ADDR) + (SIZE)) <= (ENTRY).end) { \
ret = OP((ENTRY).mem_ptr + ((ADDR) - (ENTRY).start)); \
} else { \
AddressMapEntry* entry = mem_ctrl_instance->find_range((ADDR)); \
if (entry) { \
if (entry->type & (RT_ROM | RT_RAM)) { \
(ENTRY).start = entry->start; \
(ENTRY).end = entry->end; \
(ENTRY).mem_ptr = entry->mem_ptr; \
ret = OP((ENTRY).mem_ptr + ((ADDR) - (ENTRY).start)); \
} else if (entry->type & RT_MMIO) { \
ret = entry->devobj->read(entry->start, (ADDR)-entry->start, (SIZE)); \
} else { \
LOG_F(ERROR, "Please check your address map! \n"); \
ret = (UNVAL); \
} \
} else { \
LOG_F(WARNING, "Read from unmapped memory at 0x%08X!\n", (ADDR)); \
ret = (UNVAL); \
} \
} \
}
/* macro for generating code writing to physical memory */
#define WRITE_PHYS_MEM(ENTRY, ADDR, OP, VAL, SIZE) \
{ \
if ((ADDR) >= (ENTRY).start && ((ADDR) + (SIZE)) <= (ENTRY).end) { \
OP((ENTRY).mem_ptr + ((ADDR) - (ENTRY).start), (VAL)); \
} else { \
AddressMapEntry* entry = mem_ctrl_instance->find_range((ADDR)); \
if (entry) { \
if (entry->type & RT_RAM) { \
(ENTRY).start = entry->start; \
(ENTRY).end = entry->end; \
(ENTRY).mem_ptr = entry->mem_ptr; \
OP((ENTRY).mem_ptr + ((ADDR) - (ENTRY).start), (VAL)); \
} else if (entry->type & RT_MMIO) { \
entry->devobj->write(entry->start, (ADDR)-entry->start, (VAL), (SIZE)); \
} else { \
LOG_F(ERROR, "Please check your address map!\n"); \
} \
} else { \
LOG_F(WARNING, "Write to unmapped memory at 0x%08X!\n", (ADDR)); \
} \
} \
}
uint8_t* mmu_get_dma_mem(uint32_t addr, uint32_t size) {
if (addr >= last_dma_area.start && (addr + size) <= last_dma_area.end) {
return last_dma_area.mem_ptr + (addr - last_dma_area.start);
} else {
AddressMapEntry* entry = mem_ctrl_instance->find_range(addr);
if (entry && entry->type & (RT_ROM | RT_RAM)) {
last_dma_area.start = entry->start;
last_dma_area.end = entry->end;
last_dma_area.mem_ptr = entry->mem_ptr;
return last_dma_area.mem_ptr + (addr - last_dma_area.start);
} else {
LOG_F(ERROR, "SOS: DMA access to unmapped memory %08X!\n", addr);
exit(-1); // FIXME: ugly error handling, must be the proper exception!
}
}
}
void ppc_set_cur_instruction(const uint8_t* ptr) {
ppc_cur_instruction = READ_DWORD_BE_A(ptr);
}
void ibat_update(uint32_t bat_reg) {
int upper_reg_num;
uint32_t bl, lo_mask;
PPC_BAT_entry* bat_entry;
upper_reg_num = bat_reg & 0xFFFFFFFE;
if (ppc_state.spr[upper_reg_num] & 3) { // is that BAT pair valid?
bat_entry = &ibat_array[(bat_reg - 528) >> 1];
bl = (ppc_state.spr[upper_reg_num] >> 2) & 0x7FF;
lo_mask = (bl << 17) | 0x1FFFF;
bat_entry->access = ppc_state.spr[upper_reg_num] & 3;
bat_entry->prot = ppc_state.spr[upper_reg_num + 1] & 3;
bat_entry->lo_mask = lo_mask;
bat_entry->phys_hi = ppc_state.spr[upper_reg_num + 1] & ~lo_mask;
bat_entry->bepi = ppc_state.spr[upper_reg_num] & ~lo_mask;
}
}
void dbat_update(uint32_t bat_reg) {
int upper_reg_num;
uint32_t bl, lo_mask;
PPC_BAT_entry* bat_entry;
upper_reg_num = bat_reg & 0xFFFFFFFE;
if (ppc_state.spr[upper_reg_num] & 3) { // is that BAT pair valid?
bat_entry = &dbat_array[(bat_reg - 536) >> 1];
bl = (ppc_state.spr[upper_reg_num] >> 2) & 0x7FF;
lo_mask = (bl << 17) | 0x1FFFF;
bat_entry->access = ppc_state.spr[upper_reg_num] & 3;
bat_entry->prot = ppc_state.spr[upper_reg_num + 1] & 3;
bat_entry->lo_mask = lo_mask;
bat_entry->phys_hi = ppc_state.spr[upper_reg_num + 1] & ~lo_mask;
bat_entry->bepi = ppc_state.spr[upper_reg_num] & ~lo_mask;
}
}
static inline uint8_t* calc_pteg_addr(uint32_t hash) {
uint32_t sdr1_val, pteg_addr;
sdr1_val = ppc_state.spr[SPR::SDR1];
pteg_addr = sdr1_val & 0xFE000000;
pteg_addr |= (sdr1_val & 0x01FF0000) | (((sdr1_val & 0x1FF) << 16) & ((hash & 0x7FC00) << 6));
pteg_addr |= (hash & 0x3FF) << 6;
if (pteg_addr >= last_ptab_area.start && pteg_addr <= last_ptab_area.end) {
return last_ptab_area.mem_ptr + (pteg_addr - last_ptab_area.start);
} else {
AddressMapEntry* entry = mem_ctrl_instance->find_range(pteg_addr);
if (entry && entry->type & (RT_ROM | RT_RAM)) {
last_ptab_area.start = entry->start;
last_ptab_area.end = entry->end;
last_ptab_area.mem_ptr = entry->mem_ptr;
return last_ptab_area.mem_ptr + (pteg_addr - last_ptab_area.start);
} else {
LOG_F(ERROR, "SOS: no page table region was found at %08X!\n", pteg_addr);
exit(-1); // FIXME: ugly error handling, must be the proper exception!
}
}
}
static bool search_pteg(
uint8_t* pteg_addr, uint8_t** ret_pte_addr, uint32_t vsid, uint16_t page_index, uint8_t pteg_num) {
/* construct PTE matching word */
uint32_t pte_check = 0x80000000 | (vsid << 7) | (pteg_num << 6) | (page_index >> 10);
#ifdef MMU_INTEGRITY_CHECKS
/* PTEG integrity check that ensures that all matching PTEs have
identical RPN, WIMG and PP bits (PPC PEM 32-bit 7.6.2, rule 5). */
uint32_t pte_word2_check;
bool match_found = false;
for (int i = 0; i < 8; i++, pteg_addr += 8) {
if (pte_check == READ_DWORD_BE_A(pteg_addr)) {
if (match_found) {
if ((READ_DWORD_BE_A(pteg_addr) & 0xFFFFF07B) != pte_word2_check) {
LOG_F(ERROR, "Multiple PTEs with different RPN/WIMG/PP found!\n");
exit(-1);
}
} else {
/* isolate RPN, WIMG and PP fields */
pte_word2_check = READ_DWORD_BE_A(pteg_addr) & 0xFFFFF07B;
*ret_pte_addr = pteg_addr;
}
}
}
#else
for (int i = 0; i < 8; i++, pteg_addr += 8) {
if (pte_check == READ_DWORD_BE_A(pteg_addr)) {
*ret_pte_addr = pteg_addr;
return true;
}
}
#endif
return false;
}
static uint32_t page_address_translate(uint32_t la, bool is_instr_fetch, unsigned msr_pr, int is_write) {
uint32_t sr_val, page_index, pteg_hash1, vsid, pte_word2;
unsigned key, pp;
uint8_t* pte_addr;
sr_val = ppc_state.sr[(la >> 28) & 0x0F];
if (sr_val & 0x80000000) {
LOG_F(ERROR, "Direct-store segments not supported, LA=%0xX\n", la);
exit(-1); // FIXME: ugly error handling, must be the proper exception!
}
/* instruction fetch from a no-execute segment will cause ISI exception */
if ((sr_val & 0x10000000) && is_instr_fetch) {
mmu_exception_handler(Except_Type::EXC_ISI, 0x10000000);
}
page_index = (la >> 12) & 0xFFFF;
pteg_hash1 = (sr_val & 0x7FFFF) ^ page_index;
vsid = sr_val & 0x0FFFFFF;
if (!search_pteg(calc_pteg_addr(pteg_hash1), &pte_addr, vsid, page_index, 0)) {
if (!search_pteg(calc_pteg_addr(~pteg_hash1), &pte_addr, vsid, page_index, 1)) {
if (is_instr_fetch) {
mmu_exception_handler(Except_Type::EXC_ISI, 0x40000000);
} else {
ppc_state.spr[SPR::DSISR] = 0x40000000 | (is_write << 25);
ppc_state.spr[SPR::DAR] = la;
mmu_exception_handler(Except_Type::EXC_DSI, 0);
}
}
}
pte_word2 = READ_DWORD_BE_A(pte_addr + 4);
key = (((sr_val >> 29) & 1) & msr_pr) | (((sr_val >> 30) & 1) & (msr_pr ^ 1));
/* check page access */
pp = pte_word2 & 3;
// the following scenarios cause DSI/ISI exception:
// any access with key = 1 and PP = %00
// write access with key = 1 and PP = %01
// write access with PP = %11
if ((key && (!pp || (pp == 1 && is_write))) || (pp == 3 && is_write)) {
if (is_instr_fetch) {
mmu_exception_handler(Except_Type::EXC_ISI, 0x08000000);
} else {
ppc_state.spr[SPR::DSISR] = 0x08000000 | (is_write << 25);
ppc_state.spr[SPR::DAR] = la;
mmu_exception_handler(Except_Type::EXC_DSI, 0);
}
}
/* update R and C bits */
/* For simplicity, R is set on each access, C is set only for writes */
pte_addr[6] |= 0x01;
if (is_write) {
pte_addr[7] |= 0x80;
}
/* return physical address */
return ((pte_word2 & 0xFFFFF000) | (la & 0x00000FFF));
}
/** PowerPC-style MMU instruction address translation. */
static uint32_t ppc_mmu_instr_translate(uint32_t la) {
uint32_t pa; /* translated physical address */
bool bat_hit = false;
unsigned msr_pr = !!(ppc_state.msr & 0x4000);
// Format: %XY
// X - supervisor access bit, Y - problem/user access bit
// Those bits are mutually exclusive
unsigned access_bits = (~msr_pr << 1) | msr_pr;
for (int bat_index = 0; bat_index < 4; bat_index++) {
PPC_BAT_entry* bat_entry = &ibat_array[bat_index];
if ((bat_entry->access & access_bits) && ((la & ~bat_entry->lo_mask) == bat_entry->bepi)) {
bat_hit = true;
if (!bat_entry->prot) {
mmu_exception_handler(Except_Type::EXC_ISI, 0x08000000);
}
// logical to physical translation
pa = bat_entry->phys_hi | (la & bat_entry->lo_mask);
break;
}
}
/* page address translation */
if (!bat_hit) {
pa = page_address_translate(la, true, msr_pr, 0);
}
return pa;
}
/** PowerPC-style MMU data address translation. */
static uint32_t ppc_mmu_addr_translate(uint32_t la, int is_write) {
#ifdef PROFILER
mmu_translations_num++;
#endif
uint32_t pa; /* translated physical address */
bool bat_hit = false;
unsigned msr_pr = !!(ppc_state.msr & 0x4000);
// Format: %XY
// X - supervisor access bit, Y - problem/user access bit
// Those bits are mutually exclusive
unsigned access_bits = (~msr_pr << 1) | msr_pr;
for (int bat_index = 0; bat_index < 4; bat_index++) {
PPC_BAT_entry* bat_entry = &dbat_array[bat_index];
if ((bat_entry->access & access_bits) && ((la & ~bat_entry->lo_mask) == bat_entry->bepi)) {
bat_hit = true;
if (!bat_entry->prot || ((bat_entry->prot & 1) && is_write)) {
ppc_state.spr[SPR::DSISR] = 0x08000000 | (is_write << 25);
ppc_state.spr[SPR::DAR] = la;
mmu_exception_handler(Except_Type::EXC_DSI, 0);
}
// logical to physical translation
pa = bat_entry->phys_hi | (la & bat_entry->lo_mask);
break;
}
}
/* page address translation */
if (!bat_hit) {
pa = page_address_translate(la, false, msr_pr, is_write);
}
return pa;
}
static void mem_write_unaligned(uint32_t addr, uint32_t value, uint32_t size) {
#ifdef MMU_DEBUG
LOG_F(WARNING, "Attempt to write unaligned %d bytes to 0x%08X\n", size, addr);
#endif
if (((addr & 0xFFF) + size) > 0x1000) {
// Special case: unaligned cross-page writes
LOG_F(WARNING, "Cross-page unaligned write, addr=%08X, size=%d\n",
addr, size);
uint32_t phys_addr;
uint32_t shift = (size - 1) * 8;
// Break misaligned memory accesses into multiple, smaller accesses
// and retranslate on page boundary.
// Because such accesses suffer a performance penalty, they will be
// presumably very rare so don't care much about performance.
for (int i = 0; i < size; shift -= 8, addr++, phys_addr++, i++) {
if ((ppc_state.msr & 0x10) && (!i || !(addr & 0xFFF))) {
phys_addr = ppc_mmu_addr_translate(addr, 0);
}
WRITE_PHYS_MEM(last_write_area, phys_addr, WRITE_BYTE,
(value >> shift) & 0xFF, 1);
}
} else {
// data address translation if enabled
if (ppc_state.msr & 0x10) {
addr = ppc_mmu_addr_translate(addr, 0);
}
if (size == 2) {
WRITE_PHYS_MEM(last_write_area, addr, WRITE_WORD_BE_U, value, 2);
} else {
WRITE_PHYS_MEM(last_write_area, addr, WRITE_DWORD_BE_U, value, 4);
}
}
}
void mem_write_byte(uint32_t addr, uint8_t value) {
/* data address translation if enabled */
if (ppc_state.msr & 0x10) {
addr = ppc_mmu_addr_translate(addr, 1);
}
WRITE_PHYS_MEM(last_write_area, addr, WRITE_BYTE, value, 1);
}
void mem_write_word(uint32_t addr, uint16_t value) {
if (addr & 1) {
mem_write_unaligned(addr, value, 2);
}
/* data address translation if enabled */
if (ppc_state.msr & 0x10) {
addr = ppc_mmu_addr_translate(addr, 1);
}
WRITE_PHYS_MEM(last_write_area, addr, WRITE_WORD_BE_A, value, 2);
}
void mem_write_dword(uint32_t addr, uint32_t value) {
if (addr & 3) {
mem_write_unaligned(addr, value, 4);
}
/* data address translation if enabled */
if (ppc_state.msr & 0x10) {
addr = ppc_mmu_addr_translate(addr, 1);
}
WRITE_PHYS_MEM(last_write_area, addr, WRITE_DWORD_BE_A, value, 4);
}
void mem_write_qword(uint32_t addr, uint64_t value) {
if (addr & 7) {
LOG_F(ERROR, "SOS! Attempt to write unaligned QWORD to 0x%08X\n", addr);
exit(-1); // FIXME!
}
/* data address translation if enabled */
if (ppc_state.msr & 0x10) {
addr = ppc_mmu_addr_translate(addr, 1);
}
WRITE_PHYS_MEM(last_write_area, addr, WRITE_QWORD_BE_A, value, 8);
}
static uint32_t mem_grab_unaligned(uint32_t addr, uint32_t size) {
uint32_t ret = 0;
#ifdef MMU_DEBUG
LOG_F(WARNING, "Attempt to read unaligned %d bytes from 0x%08X\n", size, addr);
#endif
if (((addr & 0xFFF) + size) > 0x1000) {
// Special case: misaligned cross-page reads
LOG_F(WARNING, "Cross-page unaligned read, addr=%08X, size=%d\n",
addr, size);
uint32_t phys_addr;
uint32_t res = 0;
// Break misaligned memory accesses into multiple, smaller accesses
// and retranslate on page boundary.
// Because such accesses suffer a performance penalty, they will be
// presumably very rare so don't care much about performance.
for (int i = 0; i < size; addr++, phys_addr++, i++) {
if ((ppc_state.msr & 0x10) && (!i || !(addr & 0xFFF))) {
phys_addr = ppc_mmu_addr_translate(addr, 0);
}
READ_PHYS_MEM(last_read_area, phys_addr, *, 1, 0xFFU);
res = (res << 8) | ret;
}
return res;
} else {
/* data address translation if enabled */
if (ppc_state.msr & 0x10) {
addr = ppc_mmu_addr_translate(addr, 0);
}
if (size == 2) {
READ_PHYS_MEM(last_read_area, addr, READ_WORD_BE_U, 2, 0xFFFFU);
} else {
READ_PHYS_MEM(last_read_area, addr, READ_DWORD_BE_U, 4, 0xFFFFFFFFUL);
}
}
return ret;
}
/** Grab a value from memory into a register */
uint8_t mem_grab_byte(uint32_t addr) {
uint8_t ret;
/* data address translation if enabled */
if (ppc_state.msr & 0x10) {
addr = ppc_mmu_addr_translate(addr, 0);
}
READ_PHYS_MEM(last_read_area, addr, *, 1, 0xFFU);
return ret;
}
uint16_t mem_grab_word(uint32_t addr) {
uint16_t ret;
if (addr & 1) {
return mem_grab_unaligned(addr, 2);
}
/* data address translation if enabled */
if (ppc_state.msr & 0x10) {
addr = ppc_mmu_addr_translate(addr, 0);
}
READ_PHYS_MEM(last_read_area, addr, READ_WORD_BE_A, 2, 0xFFFFU);
return ret;
}
uint32_t mem_grab_dword(uint32_t addr) {
uint32_t ret;
if (addr & 3) {
return mem_grab_unaligned(addr, 4);
}
/* data address translation if enabled */
if (ppc_state.msr & 0x10) {
addr = ppc_mmu_addr_translate(addr, 0);
}
READ_PHYS_MEM(last_read_area, addr, READ_DWORD_BE_A, 4, 0xFFFFFFFFUL);
return ret;
}
uint64_t mem_grab_qword(uint32_t addr) {
uint64_t ret;
if (addr & 7) {
LOG_F(ERROR, "SOS! Attempt to read unaligned QWORD at 0x%08X\n", addr);
exit(-1); // FIXME!
}
/* data address translation if enabled */
if (ppc_state.msr & 0x10) {
addr = ppc_mmu_addr_translate(addr, 0);
}
READ_PHYS_MEM(last_read_area, addr, READ_QWORD_BE_A, 8, 0xFFFFFFFFFFFFFFFFULL);
return ret;
}
uint8_t* quickinstruction_translate(uint32_t addr) {
uint8_t* real_addr;
/* perform instruction address translation if enabled */
if (ppc_state.msr & 0x20) {
addr = ppc_mmu_instr_translate(addr);
}
if (addr >= last_exec_area.start && addr <= last_exec_area.end) {
real_addr = last_exec_area.mem_ptr + (addr - last_exec_area.start);
ppc_set_cur_instruction(real_addr);
} else {
AddressMapEntry* entry = mem_ctrl_instance->find_range(addr);
if (entry && entry->type & (RT_ROM | RT_RAM)) {
last_exec_area.start = entry->start;
last_exec_area.end = entry->end;
last_exec_area.mem_ptr = entry->mem_ptr;
real_addr = last_exec_area.mem_ptr + (addr - last_exec_area.start);
ppc_set_cur_instruction(real_addr);
} else {
LOG_F(WARNING, "attempt to execute code at %08X!\n", addr);
exit(-1); // FIXME: ugly error handling, must be the proper exception!
}
}
return real_addr;
}
uint64_t mem_read_dbg(uint32_t virt_addr, uint32_t size) {
uint32_t save_dsisr, save_dar;
uint64_t ret_val;
/* save MMU-related CPU state */
save_dsisr = ppc_state.spr[SPR::DSISR];
save_dar = ppc_state.spr[SPR::DAR];
mmu_exception_handler = dbg_exception_handler;
try {
switch (size) {
case 1:
ret_val = mem_grab_byte(virt_addr);
break;
case 2:
ret_val = mem_grab_word(virt_addr);
break;
case 4:
ret_val = mem_grab_dword(virt_addr);
break;
case 8:
ret_val = mem_grab_qword(virt_addr);
break;
default:
ret_val = mem_grab_byte(virt_addr);
}
} catch (std::invalid_argument& exc) {
/* restore MMU-related CPU state */
mmu_exception_handler = ppc_exception_handler;
ppc_state.spr[SPR::DSISR] = save_dsisr;
ppc_state.spr[SPR::DAR] = save_dar;
/* rethrow MMU exception */
throw exc;
}
/* restore MMU-related CPU state */
mmu_exception_handler = ppc_exception_handler;
ppc_state.spr[SPR::DSISR] = save_dsisr;
ppc_state.spr[SPR::DAR] = save_dar;
return ret_val;
}
void ppc_mmu_init() {
mmu_exception_handler = ppc_exception_handler;
}