dingusppc/devices/video/control.cpp
joevt cf9237f7d6 control: Fixes.
- Fix video vram endianness. It should behave like RAM.
- Add read for registers ENABLE, INT_STATUS, INT_ENABLE.
- Add write for registers CNTTST, INT_ENABLE.
- Add support for 16bpp and 32bpp.
- Add vbl interrupt.
2024-01-13 00:41:08 +01:00

674 lines
26 KiB
C++

/*
DingusPPC - The Experimental PowerPC Macintosh emulator
Copyright (C) 2018-22 divingkatae and maximum
(theweirdo) spatium
(Contact divingkatae#1017 or powermax#2286 on Discord for more info)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
/** @file TNT on-board video output emulation. */
/** TNT on-board video comprises several components:
- Chaos ASIC that provides data bus buffering between the video subsystem
and the processor bus
- Control ASIC that provides addressing and control for the video subsystem
- RaDACal RAMDAC ASIC for generating video stream to the monitor
- Athens clock generator for generating pixel clock
Kudos to joevt#3510 for his precious technical help and HW hacking.
*/
#include <debugger/backtrace.h>
#include <devices/common/i2c/athens.h>
#include <devices/common/i2c/i2c.h>
#include <devices/deviceregistry.h>
#include <devices/video/control.h>
#include <endianswap.h>
#include <loguru.hpp>
#include <machines/machinebase.h>
#include <machines/machineproperties.h>
#include <memaccess.h>
#include <cinttypes>
namespace loguru {
enum : Verbosity {
Verbosity_RADACAL = loguru::Verbosity_INFO,
Verbosity_CONTROL = loguru::Verbosity_INFO
};
}
ControlVideo::ControlVideo()
: PCIDevice("Control-Video"), VideoCtrlBase(640, 480)
{
supports_types(HWCompType::PCI_HOST | HWCompType::PCI_DEV);
// get VRAM size in MBs and convert it to bytes
this->vram_size = GET_INT_PROP("gfxmem_size") << 20;
// allocate VRAM
this->vram_ptr = std::unique_ptr<uint8_t[]> (new uint8_t[this->vram_size]);
// set up PCI configuration space header
this->vendor_id = PCI_VENDOR_APPLE;
this->device_id = 3;
this->class_rev = 0;
this->setup_bars({
{0, 0xFFFFFFFFUL}, // I/O region (4 bytes but it's weird because bit 1 is set)
{1, 0xFFFFF000UL}, // base address for the HW registers (4KB)
{2, 0xFC000000UL} // base address for the VRAM (64MB)
});
this->pci_notify_bar_change = [this](int bar_num) {
this->notify_bar_change(bar_num);
};
// initialize the video clock generator
this->clk_gen = std::unique_ptr<AthensClocks> (new AthensClocks(0x28));
// register the video clock generator with the I2C host
I2CBus* i2c_bus = dynamic_cast<I2CBus*>(gMachineObj->get_comp_by_type(HWCompType::I2C_HOST));
i2c_bus->register_device(0x28, this->clk_gen.get());
// attach IOBus Device #2 0xF301B000 ; register RaDACal with the I/O controller
GrandCentral* gc_obj = dynamic_cast<GrandCentral*>(gMachineObj->get_comp_by_name("GrandCentral"));
gc_obj->attach_iodevice(1, this);
// initialize display identification
this->display_id = std::unique_ptr<DisplayID> (new DisplayID());
}
void ControlVideo::notify_bar_change(int bar_num)
{
switch (bar_num) {
case 0:
this->io_base = this->bars[bar_num] & ~3;
LOG_F(INFO, "Control: I/O space address set to 0x%08X", this->io_base);
break;
case 1:
if (this->regs_base != (this->bars[bar_num] & 0xFFFFFFF0UL)) {
this->regs_base = this->bars[bar_num] & 0xFFFFFFF0UL;
this->host_instance->pci_register_mmio_region(this->regs_base,
0x1000, this);
LOG_F(INFO, "Control: register aperture set to 0x%08X", this->regs_base);
}
break;
case 2:
if (this->vram_base != (this->bars[bar_num] & 0xFFFFFFF0UL)) {
this->vram_base = this->bars[bar_num] & 0xFFFFFFF0UL;
this->host_instance->pci_register_mmio_region(this->vram_base,
0x04000000, this);
LOG_F(INFO, "Control: VRAM aperture set to 0x%08X", this->vram_base);
}
break;
}
}
static const char * get_name_controlreg(int offset) {
switch (offset >> 4) {
case ControlRegs::CUR_LINE : return "CUR_LINE";
case ControlRegs::VFPEQ : return "VFPEQ";
case ControlRegs::VFP : return "VFP";
case ControlRegs::VAL : return "VAL";
case ControlRegs::VBP : return "VBP";
case ControlRegs::VBPEQ : return "VBPEQ";
case ControlRegs::VSYNC : return "VSYNC";
case ControlRegs::VHLINE : return "VHLINE";
case ControlRegs::PIPED : return "PIPED";
case ControlRegs::HPIX : return "HPIX";
case ControlRegs::HFP : return "HFP";
case ControlRegs::HAL : return "HAL";
case ControlRegs::HBWAY : return "HBWAY";
case ControlRegs::HSP : return "HSP";
case ControlRegs::HEQ : return "HEQ";
case ControlRegs::HLFLN : return "HLFLN";
case ControlRegs::HSERR : return "HSERR";
case ControlRegs::CNTTST : return "CNTTST";
case ControlRegs::TEST : return "TEST";
case ControlRegs::GBASE : return "GBASE";
case ControlRegs::ROW_WORDS : return "ROW_WORDS";
case ControlRegs::MON_SENSE : return "MON_SENSE";
case ControlRegs::ENABLE : return "ENABLE";
case ControlRegs::GSC_DIVIDE : return "GSC_DIVIDE";
case ControlRegs::REFRESH_COUNT : return "REFRESH_COUNT";
case ControlRegs::INT_ENABLE : return "INT_ENABLE";
case ControlRegs::INT_STATUS : return "INT_STATUS";
default : return "unknown";
}
}
uint32_t ControlVideo::read(uint32_t rgn_start, uint32_t offset, int size)
{
if (rgn_start == this->vram_base) {
if (offset >= 0x800000) {
return read_mem(&this->vram_ptr[offset - 0x800000], size);
}
LOG_F(INFO, "Control: little-endian access to VRAM not supported yet");
return 0;
}
uint32_t value;
if (rgn_start == this->regs_base) {
switch (offset >> 4) {
case ControlRegs::CUR_LINE:
value = 0; // current active video line should relate this to refresh rate
LOG_F(ERROR, "Control: read CUR_LINE %03x.%c", offset, SIZE_ARG(size));
break;
case ControlRegs::VFPEQ:
case ControlRegs::VFP:
case ControlRegs::VAL:
case ControlRegs::VBP:
case ControlRegs::VBPEQ:
case ControlRegs::VSYNC:
case ControlRegs::VHLINE:
case ControlRegs::PIPED:
case ControlRegs::HPIX:
case ControlRegs::HFP:
case ControlRegs::HAL:
case ControlRegs::HBWAY:
case ControlRegs::HSP:
case ControlRegs::HEQ:
case ControlRegs::HLFLN:
case ControlRegs::HSERR:
value = this->swatch_params[(offset >> 4) - ControlRegs::VFPEQ];
LOG_F(CONTROL, "Control: read %s %03x.%c = %0*x", get_name_controlreg(offset), offset, SIZE_ARG(size), size * 2, value);
break;
case ControlRegs::CNTTST:
value = 0;
LOG_F(ERROR, "Control: read CNTTST %03x.%c = %0*x", offset, SIZE_ARG(size), size * 2, value);
break;
case ControlRegs::TEST:
value = this->test;
LOG_F(CONTROL, "Control: read TEST %03x.%c = %0*x", offset, SIZE_ARG(size), size * 2, value);
break;
case ControlRegs::GBASE:
value = this->fb_base;
LOG_F(CONTROL, "Control: read GBASE %03x.%c = %0*x", offset, SIZE_ARG(size), size * 2, value);
break;
case ControlRegs::ROW_WORDS:
value = this->row_words;
LOG_F(CONTROL, "Control: read ROW_WORDS %03x.%c = %0*x", offset, SIZE_ARG(size), size * 2, value);
break;
case ControlRegs::MON_SENSE:
value = this->cur_mon_id << 6;
LOG_F(CONTROL, "Control: read MON_SENSE %03x.%c = %0*x", offset, SIZE_ARG(size), size * 2, value);
break;
case ControlRegs::ENABLE:
value = this->flags;
LOG_F(CONTROL, "Control: read ENABLE %03x.%c", offset, SIZE_ARG(size));
break;
case ControlRegs::GSC_DIVIDE:
value = this->clock_divider;
LOG_F(CONTROL, "Control: read GSC_DIVIDE %03x.%c = %0*x", offset, SIZE_ARG(size), size * 2, value);
break;
case ControlRegs::REFRESH_COUNT:
value = 0;
LOG_F(ERROR, "Control: read CNTTST %03x.%c = %0*x", offset, SIZE_ARG(size), size * 2, value);
break;
case ControlRegs::INT_STATUS:
value = this->int_status;
if (value != this->last_int_status) {
LOG_F(CONTROL, "Control: read (previous %d times) INT_STATUS %03x.%c = %0*x", last_int_status_read_count, offset, SIZE_ARG(size), size * 2, value);
this->last_int_status = value;
this->last_int_status_read_count = 0;
}
else {
this->last_int_status_read_count++;
}
break;
case ControlRegs::INT_ENABLE:
value = this->int_enable;
LOG_F(CONTROL, "Control: read INT_ENABLE %03x.%c = %0*x", offset, SIZE_ARG(size), size * 2, value);
break;
default:
LOG_F(ERROR, "Control: read %03x.%c", offset, SIZE_ARG(size));
value = 0;
}
AccessDetails details;
details.size = size;
details.offset = offset & 3;
uint32_t result = pci_conv_rd_data(value, value, details);
if ((offset & 3) || (size != 4)) {
LOG_F(WARNING, "Control: read %03x.%c = %08x -> %0*x", offset, SIZE_ARG(size), value, size * 2, result);
//dump_backtrace();
}
return result;
}
return 0;
}
void ControlVideo::write(uint32_t rgn_start, uint32_t offset, uint32_t value, int size)
{
if (rgn_start == this->vram_base) {
if (offset >= 0x800000) {
write_mem(&this->vram_ptr[offset - 0x800000], value, size);
} else {
LOG_F(INFO, "Control: little-endian access to VRAM not supported yet");
}
return;
}
if (rgn_start == this->regs_base) {
value = BYTESWAP_32(value);
switch (offset >> 4) {
case ControlRegs::PIPED:
this->swatch_params[(offset >> 4) - ControlRegs::VFPEQ] = value & 0x3ff;
if (value & ~0x3ff)
LOG_F(ERROR, "Control: write PIPED %03x.%c = %0*x", offset, SIZE_ARG(size), size * 2, value);
else
LOG_F(CONTROL, "Control: write PIPED %03x.%c = %0*x", offset, SIZE_ARG(size), size * 2, value);
if (this->display_enabled) {
this->enable_display();
}
break;
case ControlRegs::HEQ:
this->swatch_params[(offset >> 4) - ControlRegs::VFPEQ] = value & 0xff;
if (value & ~0xff)
LOG_F(ERROR, "Control: write HEQ %03x.%c = %0*x", offset, SIZE_ARG(size), size * 2, value);
else
LOG_F(CONTROL, "Control: write HEQ %03x.%c = %0*x", offset, SIZE_ARG(size), size * 2, value);
if (this->display_enabled) {
this->enable_display();
}
break;
case ControlRegs::VFPEQ:
case ControlRegs::VFP:
case ControlRegs::VAL:
case ControlRegs::VBP:
case ControlRegs::VBPEQ:
case ControlRegs::VSYNC:
case ControlRegs::VHLINE:
case ControlRegs::HPIX:
case ControlRegs::HFP:
case ControlRegs::HAL:
case ControlRegs::HBWAY:
case ControlRegs::HSP:
case ControlRegs::HLFLN:
case ControlRegs::HSERR:
this->swatch_params[(offset >> 4) - ControlRegs::VFPEQ] = value & 0xfff;
if (value & ~0xfff)
LOG_F(ERROR, "Control: write %s %03x.%c = %0*x", get_name_controlreg(offset), offset, SIZE_ARG(size), size * 2, value);
else
LOG_F(CONTROL, "Control: write %s %03x.%c = %0*x", get_name_controlreg(offset), offset, SIZE_ARG(size), size * 2, value);
if (this->display_enabled) {
this->enable_display();
}
break;
case ControlRegs::CNTTST:
if (value != 0)
LOG_F(ERROR, "Control: write CNTTST %03x.%c = %0*x", offset, SIZE_ARG(size), size * 2, value);
else
LOG_F(CONTROL, "Control: write CNTTST %03x.%c = %0*x", offset, SIZE_ARG(size), size * 2, value);
break;
case ControlRegs::TEST:
if (value & ~0x7ff)
LOG_F(ERROR, "Control: write TEST %03x.%c = %0*x", offset, SIZE_ARG(size), size * 2, value);
else
LOG_F(CONTROL, "Control: write TEST %03x.%c = %0*x", offset, SIZE_ARG(size), size * 2, value);
value &= 0x7ff;
if (this->test != value) {
if ((this->test & ~TEST_STROBE & 0x400) != (value & ~TEST_STROBE & 0x400)) {
this->test = value;
this->test_shift = 0;
LOG_F(CONTROL, "New TEST value: 0x%08X", this->test);
} else {
LOG_F(CONTROL, "TEST strobe bit flipped, new value: 0x%08X", value);
this->test = value;
if (++this->test_shift >= 3) {
LOG_F(CONTROL, "Received TEST reg value: 0x%08X", this->test & ~TEST_STROBE);
if ((this->test ^ this->prev_test) & 0x400) {
if ((this->display_enabled = !(this->test & 0x400))) {
this->enable_display();
} else {
this->disable_display();
}
this->prev_test = this->test;
}
}
}
}
break;
case ControlRegs::GBASE:
if (value & ~0x3fffe0)
LOG_F(ERROR, "Control: write GBASE %03x.%c = %0*x", offset, SIZE_ARG(size), size * 2, value);
else
LOG_F(CONTROL, "Control: write GBASE %03x.%c = %0*x", offset, SIZE_ARG(size), size * 2, value);
this->fb_base = value & 0x3fffe0;
if (this->display_enabled) {
this->enable_display();
}
break;
case ControlRegs::ROW_WORDS:
if (value & ~0x7fe0)
LOG_F(ERROR, "Control: write ROW_WORDS %03x.%c = %0*x", offset, SIZE_ARG(size), size * 2, value);
else
LOG_F(CONTROL, "Control: write ROW_WORDS %03x.%c = %0*x", offset, SIZE_ARG(size), size * 2, value);
this->row_words = value & 0x7fe0;
if (this->display_enabled) {
this->enable_display();
}
break;
case ControlRegs::MON_SENSE:
if (value & ~0x1FF)
LOG_F(ERROR, "Control: write MON_SENSE %03x.%c = %0*x", offset, SIZE_ARG(size), size * 2, value);
else
LOG_F(CONTROL, "Control: write MON_SENSE %03x.%c = %0*x", offset, SIZE_ARG(size), size * 2, value);
value = (value >> 3) & 7;
this->cur_mon_id = this->display_id->read_monitor_sense(value & 7, value ^ 7);
break;
case ControlRegs::ENABLE:
if (value & ~0xfff)
LOG_F(ERROR, "Control: write ENABLE %03x.%c = %0*x", offset, SIZE_ARG(size), size * 2, value);
else
LOG_F(CONTROL, "Control: write ENABLE %03x.%c = %0*x", offset, SIZE_ARG(size), size * 2, value);
this->flags = value & -0xfff;
break;
case ControlRegs::GSC_DIVIDE:
if (value & ~0x3)
LOG_F(ERROR, "Control: write GSC_DIVIDE %03x.%c = %0*x", offset, SIZE_ARG(size), size * 2, value);
else
LOG_F(CONTROL, "Control: write GSC_DIVIDE %03x.%c = %0*x", offset, SIZE_ARG(size), size * 2, value);
this->clock_divider = value & 3;
if (this->display_enabled) {
this->enable_display();
}
break;
case ControlRegs::REFRESH_COUNT:
if (value & ~0x3ff)
LOG_F(ERROR, "Control: write REFRESH_COUNT %03x.%c = %0*x", offset, SIZE_ARG(size), size * 2, value);
else
LOG_F(CONTROL, "Control: write REFRESH_COUNT %03x.%c = %0*x", offset, SIZE_ARG(size), size * 2, value);
break;
case ControlRegs::INT_ENABLE:
if (value & ~0xc)
LOG_F(ERROR, "Control: write INT_ENABLE %03x.%c = %0*x", offset, SIZE_ARG(size), size * 2, value);
else {
//LOG_F(CONTROL, "Control: write INT_ENABLE %03x.%c = %0*x", offset, SIZE_ARG(size), size * 2, value);
}
this->int_enable = value & 0xf; // alternates between 0x04 and 0x0c
break;
default:
LOG_F(ERROR, "Control: write %03x.%c = %0*x", offset, SIZE_ARG(size), size * 2, value);
}
}
}
void ControlVideo::enable_display()
{
int new_width, new_height, clk_divisor;
// get pixel frequency from Athens
this->pixel_clock = this->clk_gen->get_dot_freq();
// get RaDACal clock divisor
clk_divisor = 1 << ((rad_cr >> 6) + 1);
// calculate active_width and active_height from video timing parameters
new_width = swatch_params[ControlRegs::HFP-1] - swatch_params[ControlRegs::HAL-1];
new_height = swatch_params[ControlRegs::VFP-1] - swatch_params[ControlRegs::VAL-1];
new_width *= clk_divisor;
new_height >>= 1; // FIXME: assume non-interlaced mode for now
this->active_width = new_width;
this->active_height = new_height;
// set framebuffer parameters
this->fb_ptr = &this->vram_ptr[this->fb_base];
this->fb_pitch = this->row_words;
// get pixel depth from RaDACal
switch ((this->rad_cr >> 2) & 3) {
case 0:
this->pixel_depth = 8;
this->convert_fb_cb = [this](uint8_t *dst_buf, int dst_pitch) {
this->convert_frame_8bpp_indexed(dst_buf, dst_pitch);
};
break;
case 1:
this->pixel_depth = 16;
this->convert_fb_cb = [this](uint8_t *dst_buf, int dst_pitch) {
this->convert_frame_15bpp(dst_buf, dst_pitch);
};
break;
case 2:
this->pixel_depth = 32;
this->fb_ptr += 16;
this->convert_fb_cb = [this](uint8_t *dst_buf, int dst_pitch) {
this->convert_frame_32bpp_BE(dst_buf, dst_pitch);
};
break;
default:
LOG_F(ERROR, "RaDACal: Invalid pixel depth code!");
}
// calculate display refresh rate
this->hori_blank = swatch_params[ControlRegs::HAL-1] +
(swatch_params[ControlRegs::HSP-1] - swatch_params[ControlRegs::HFP-1]);
this->hori_blank *= clk_divisor;
this->vert_blank = swatch_params[ControlRegs::VAL-1] +
(swatch_params[ControlRegs::VSYNC-1] - swatch_params[ControlRegs::VFP-1]);
this->vert_blank >>= 1;
this->hori_total = this->hori_blank + new_width;
this->vert_total = this->vert_blank + new_height;
this->stop_refresh_task();
// set up periodic timer for display updates
if (this->active_width > 0 && this->active_height > 0 && this->pixel_clock > 0) {
this->refresh_rate = (double)(this->pixel_clock) / (this->hori_total * this->vert_total);
LOG_F(INFO, "Control: refresh rate set to %f Hz", this->refresh_rate);
this->start_refresh_task();
this->blank_on = false;
LOG_F(CONTROL, "Control: display enabled");
this->crtc_on = true;
}
else {
LOG_F(CONTROL, "Control: display not enabled");
this->blank_on = true;
this->crtc_on = false;
}
}
void ControlVideo::disable_display()
{
this->crtc_on = false;
LOG_F(INFO, "Control: display disabled");
}
void ControlVideo::draw_hw_cursor(uint8_t *dst_buf, int dst_pitch) {
uint8_t *src_row = &this->vram_ptr[this->fb_base];
uint8_t *dst_row = dst_buf;
int cur_height = this->active_height;
dst_pitch -= 32 * 4;
int src_pitch = this->fb_pitch - 16;
uint32_t color[16];
for (int c = 0; c < 16; c++) {
color[c] = (this->cursor_data[c*3] << 16) | (this->cursor_data[c*3 + 1] << 8) | (this->cursor_data[c*3 + 2]);
}
for (int h = 0; h < cur_height; h++) {
for (int x = 0; x < 2; x++) {
uint64_t px16 = READ_QWORD_BE_A(src_row);
for (int p = 0; p < 16; p++) {
int c = px16 >> 60;
switch (c) {
case 0:
// transparent
break;
case 1:
// 1's complement
WRITE_DWORD_LE_A(dst_row, READ_DWORD_LE_A(dst_row) ^ 0xffffff);
break;
case 8:
WRITE_DWORD_LE_A(dst_row, color[0]);
break;
case 9:
WRITE_DWORD_LE_A(dst_row, color[1]);
break;
default:
WRITE_DWORD_LE_A(dst_row, (c << 16) | (c << 8) | c);
break;
}
px16 <<= 4;
dst_row += 4;
}
src_row += 8;
}
dst_row += dst_pitch;
src_row += src_pitch;
}
}
// ========================== RaDACal related stuff ==========================
uint16_t ControlVideo::iodev_read(uint32_t address)
{
uint16_t result;
switch (address) {
case RadacalRegs::MULTI:
switch (this->rad_addr) {
case RadacalRegs::MISC_CTRL:
result = this->rad_cr;
LOG_F(RADACAL, "RaDACal: read MISC_CTRL = 0x%02x", result);
break;
/*
case RadacalRegs::CLOCK_SELECT:
result = this->dac_clock_select;
LOG_F(RADACAL, "RaDACal: read CLOCK_SELECT = 0x%02x", result);
break;
case RadacalRegs::DAC_TYPE:
result = this->dac_type;
LOG_F(RADACAL, "RaDACal: read DAC_TYPE = 0x%02x", result);
break;
*/
default:
LOG_F(ERROR, "RaDACal: read MULTI 0x%02x", this->rad_addr);
result = 0;
}
break;
case RadacalRegs::CLUT_DATA:
LOG_F(ERROR, "RaDACal: read CLUT_DATA 0x%02x", rad_addr);
result = 0;
break;
default:
LOG_F(ERROR, "RaDACal: read 0x%02x", address);
result = 0;
}
return result;
}
void ControlVideo::iodev_write(uint32_t address, uint16_t value)
{
switch (address) {
case RadacalRegs::ADDRESS:
LOG_F(RADACAL, "RaDACal: write ADDRESS = 0x%02x", value);
this->rad_addr = value;
this->comp_index = 0;
break;
case RadacalRegs::CURSOR_DATA:
LOG_F(RADACAL, "RaDACal: write CURSOR_DATA 0x%02x = 0x%02x", this->rad_addr, value);
this->cursor_data[(this->rad_addr++) % 24] = value;
break;
case RadacalRegs::MULTI:
switch (this->rad_addr) {
case RadacalRegs::CURSOR_POS_HI:
LOG_F(RADACAL, "RaDACal: write CURSOR_POS_HI = 0x%02x", value);
this->rad_cur_pos = (value << 8) | (this->rad_cur_pos & 0x00ff);
break;
case RadacalRegs::CURSOR_POS_LO:
LOG_F(RADACAL, "RaDACal: write CURSOR_POS_LO = 0x%02x", value);
this->rad_cur_pos = (this->rad_cur_pos & 0xff00) | (value & 0x00ff);
break;
case RadacalRegs::MISC_CTRL:
LOG_F(RADACAL, "RaDACal: write MISC_CTRL = 0x%02x", value);
this->rad_cr = value;
break;
case RadacalRegs::DBL_BUF_CTRL:
LOG_F(RADACAL, "RaDACal: write DBL_BUF_CTRL = 0x%02x", value);
this->rad_dbl_buf_cr = value;
break;
default:
LOG_F(ERROR, "RaDACal: write MULTI 0x%02x = 0x%02x", this->rad_addr, value);
}
break;
case RadacalRegs::CLUT_DATA:
LOG_F(RADACAL, "RaDACal: write CLUT_DATA 0x%02x = 0x%02x", this->rad_addr, value);
this->clut_color[this->comp_index++] = value;
if (this->comp_index >= 3) {
this->set_palette_color(this->rad_addr, clut_color[0],
clut_color[1], clut_color[2], 0xFF);
this->rad_addr++; // auto-increment CLUT address
this->comp_index = 0;
}
break;
default:
LOG_F(ERROR, "RaDACal: write 0x%02x = 0x%02x", address, value);
}
}
int ControlVideo::device_postinit()
{
this->int_ctrl = dynamic_cast<InterruptCtrl*>(
gMachineObj->get_comp_by_type(HWCompType::INT_CTRL));
this->irq_id = this->int_ctrl->register_dev_int(IntSrc::CONTROL);
this->vbl_cb = [this](uint8_t irq_line_state) {
if (irq_line_state)
this->int_status |= 0xc;
else
this->int_status &= ~0xc;
if (this->crtc_on && (4 & this->int_enable)) {
//this->pci_interrupt(irq_line_state);
this->int_ctrl->ack_int(this->irq_id, irq_line_state);
}
};
return 0;
}
// ========================== Device registry stuff ==========================
static const PropMap Control_Properties = {
{"gfxmem_size",
new IntProperty( 2, vector<uint32_t>({2, 4}))},
{"mon_id",
new StrProperty("AppleVision1710")},
};
static const DeviceDescription Control_Descriptor = {
ControlVideo::create, {}, Control_Properties
};
REGISTER_DEVICE(ControlVideo, Control_Descriptor);