dingusppc/devices/ioctrl/heathrow.cpp
2023-12-11 08:05:39 +01:00

560 lines
18 KiB
C++

/*
DingusPPC - The Experimental PowerPC Macintosh emulator
Copyright (C) 2018-23 divingkatae and maximum
(theweirdo) spatium
(Contact divingkatae#1017 or powermax#2286 on Discord for more info)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include <cpu/ppc/ppcemu.h>
#include <devices/deviceregistry.h>
#include <devices/common/ata/idechannel.h>
#include <devices/common/dbdma.h>
#include <devices/common/hwcomponent.h>
#include <devices/common/viacuda.h>
#include <devices/floppy/swim3.h>
#include <devices/ioctrl/macio.h>
#include <devices/serial/escc.h>
#include <devices/sound/awacs.h>
#include <endianswap.h>
#include <loguru.hpp>
#include <machines/machinebase.h>
#include <cinttypes>
#include <functional>
#include <memory>
/** Heathrow Mac I/O device emulation.
Author: Max Poliakovski
*/
using namespace std;
HeathrowIC::HeathrowIC() : PCIDevice("mac-io/heathrow"), InterruptCtrl()
{
supports_types(HWCompType::MMIO_DEV | HWCompType::PCI_DEV | HWCompType::INT_CTRL);
// populate my PCI config header
this->vendor_id = PCI_VENDOR_APPLE;
this->device_id = 0x0010;
this->class_rev = 0xFF000001;
this->cache_ln_sz = 8;
this->lat_timer = 0x40;
this->setup_bars({{0, 0xFFF80000UL}}); // declare 512Kb of memory-mapped I/O space
this->pci_notify_bar_change = [this](int bar_num) {
this->notify_bar_change(bar_num);
};
// NVRAM connection
this->nvram = dynamic_cast<NVram*>(gMachineObj->get_comp_by_name("NVRAM"));
// connect Cuda
this->viacuda = dynamic_cast<ViaCuda*>(gMachineObj->get_comp_by_name("ViaCuda"));
// find appropriate sound chip, create a DMA output channel for sound,
// then wire everything together
this->snd_codec = dynamic_cast<MacioSndCodec*>(gMachineObj->get_comp_by_type(HWCompType::SND_CODEC));
this->snd_out_dma = std::unique_ptr<DMAChannel> (new DMAChannel());
this->snd_codec->set_dma_out(this->snd_out_dma.get());
this->snd_out_dma->set_callbacks(
std::bind(&AwacsScreamer::dma_out_start, this->snd_codec),
std::bind(&AwacsScreamer::dma_out_stop, this->snd_codec)
);
// connect SCSI HW and the corresponding DMA channel
this->mesh = dynamic_cast<MeshController*>(gMachineObj->get_comp_by_name("MeshHeathrow"));
this->scsi_dma = std::unique_ptr<DMAChannel> (new DMAChannel());
// connect IDE HW
this->ide_0 = dynamic_cast<IdeChannel*>(gMachineObj->get_comp_by_name("Ide0"));
this->ide_1 = dynamic_cast<IdeChannel*>(gMachineObj->get_comp_by_name("Ide1"));
// connect serial HW
this->escc = dynamic_cast<EsccController*>(gMachineObj->get_comp_by_name("Escc"));
// connect floppy disk HW and initialize its DMA channel
this->swim3 = dynamic_cast<Swim3::Swim3Ctrl*>(gMachineObj->get_comp_by_name("Swim3"));
this->floppy_dma = std::unique_ptr<DMAChannel> (new DMAChannel());
this->swim3->set_dma_channel(this->floppy_dma.get());
this->floppy_dma->register_dma_int(this, 2);
// connect Ethernet HW
this->bmac = dynamic_cast<BigMac*>(gMachineObj->get_comp_by_type(HWCompType::ETHER_MAC));
this->enet_xmit_dma = std::unique_ptr<DMAChannel> (new DMAChannel());
this->enet_rcv_dma = std::unique_ptr<DMAChannel> (new DMAChannel());
// set EMMO pin status (active low)
this->emmo_pin = GET_BIN_PROP("emmo") ^ 1;
}
void HeathrowIC::notify_bar_change(int bar_num)
{
if (bar_num) // only BAR0 is supported
return;
if (this->base_addr != (this->bars[bar_num] & 0xFFFFFFF0UL)) {
if (this->base_addr) {
this->host_instance->pci_unregister_mmio_region(this->base_addr, 0x80000, this);
}
this->base_addr = this->bars[0] & 0xFFFFFFF0UL;
this->host_instance->pci_register_mmio_region(this->base_addr, 0x80000, this);
LOG_F(INFO, "%s: base address set to 0x%X", this->pci_name.c_str(), this->base_addr);
}
}
uint32_t HeathrowIC::dma_read(uint32_t offset, int size) {
switch (offset >> 8) {
case MIO_OHARE_DMA_MESH:
return this->scsi_dma->reg_read(offset & 0xFF, size);
case MIO_OHARE_DMA_FLOPPY:
return this->floppy_dma->reg_read(offset & 0xFF, size);
case MIO_OHARE_DMA_ETH_XMIT:
return this->enet_xmit_dma->reg_read(offset & 0xFF, size);
case MIO_OHARE_DMA_ETH_RCV:
return this->enet_rcv_dma->reg_read(offset & 0xFF, size);
case MIO_OHARE_DMA_AUDIO_OUT:
return this->snd_out_dma->reg_read(offset & 0xFF, size);
default:
LOG_F(WARNING, "Unsupported DMA channel read, offset=0x%X", offset);
}
return 0;
}
void HeathrowIC::dma_write(uint32_t offset, uint32_t value, int size) {
switch (offset >> 8) {
case MIO_OHARE_DMA_MESH:
this->scsi_dma->reg_write(offset & 0xFF, value, size);
break;
case MIO_OHARE_DMA_FLOPPY:
this->floppy_dma->reg_write(offset & 0xFF, value, size);
break;
case MIO_OHARE_DMA_ETH_XMIT:
this->enet_xmit_dma->reg_write(offset & 0xFF, value, size);
break;
case MIO_OHARE_DMA_ETH_RCV:
this->enet_rcv_dma->reg_write(offset & 0xFF, value, size);
break;
case MIO_OHARE_DMA_AUDIO_OUT:
this->snd_out_dma->reg_write(offset & 0xFF, value, size);
break;
default:
LOG_F(WARNING, "Unsupported DMA channel write, offset=0x%X, val=0x%X", offset, value);
}
}
uint32_t HeathrowIC::read(uint32_t rgn_start, uint32_t offset, int size) {
uint32_t res = 0;
LOG_F(9, "%s: reading from offset %x", this->name.c_str(), offset);
unsigned sub_addr = (offset >> 12) & 0x7F;
switch (sub_addr) {
case 0:
res = mio_ctrl_read(offset, size);
break;
case 8:
res = dma_read(offset - 0x8000, size);
break;
case 0x10: // SCSI
res = this->mesh->read((offset >> 4) & 0xF);
break;
case 0x11: // Ethernet
res = BYTESWAP_SIZED(this->bmac->read(offset & 0xFFFU), size);
break;
case 0x12: // ESCC compatible addressing
if ((offset & 0xFF) < 16) {
return this->escc->read(compat_to_macrisc[(offset >> 1) & 0xF]);
}
// fallthrough
case 0x13: // ESCC MacRISC addressing
return this->escc->read((offset >> 4) & 0xF);
case 0x14:
res = this->snd_codec->snd_ctrl_read(offset - 0x14000, size);
break;
case 0x15: // SWIM3
return this->swim3->read((offset >> 4 )& 0xF);
case 0x16: // VIA-CUDA
case 0x17:
res = this->viacuda->read((offset - 0x16000) >> 9);
break;
case 0x20: // IDE 0
res = this->ide_0->read((offset >> 4) & 0x1F, size);
break;
case 0x21: // IDE 1
res = this->ide_1->read((offset >> 4) & 0x1F, size);
break;
default:
if (sub_addr >= 0x60) {
res = this->nvram->read_byte((offset - 0x60000) >> 4);
} else {
LOG_F(WARNING, "Attempting to read unmapped I/O space: %x", offset);
}
}
return res;
}
void HeathrowIC::write(uint32_t rgn_start, uint32_t offset, uint32_t value, int size) {
LOG_F(9, "%s: writing to offset %x", this->name.c_str(), offset);
unsigned sub_addr = (offset >> 12) & 0x7F;
switch (sub_addr) {
case 0:
mio_ctrl_write(offset, value, size);
break;
case 8:
dma_write(offset - 0x8000, value, size);
break;
case 0x10: // SCSI
this->mesh->write((offset >> 4) & 0xF, value);
break;
case 0x11: // Ethernet
this->bmac->write(offset & 0xFFFU, BYTESWAP_SIZED(value, size));
break;
case 0x12: // ESCC compatible addressing
if ((offset & 0xFF) < 16) {
this->escc->write(compat_to_macrisc[(offset >> 1) & 0xF], value);
break;
}
// fallthrough
case 0x13: // ESCC MacRISC addressing
this->escc->write((offset >> 4) & 0xF, value);
break;
case 0x14:
this->snd_codec->snd_ctrl_write(offset - 0x14000, value, size);
break;
case 0x15: // SWIM3
this->swim3->write((offset >> 4) & 0xF, value);
break;
case 0x16: // VIA-CUDA
case 0x17:
this->viacuda->write((offset - 0x16000) >> 9, value);
break;
case 0x20: // IDE O
this->ide_0->write((offset >> 4) & 0x1F, value, size);
break;
case 0x21: // IDE 1
this->ide_1->write((offset >> 4) & 0x1F, value, size);
break;
default:
if (sub_addr >= 0x60) {
this->nvram->write_byte((offset - 0x60000) >> 4, value);
} else {
LOG_F(WARNING, "Attempting to write to unmapped I/O space: %x", offset);
}
}
}
uint32_t HeathrowIC::mio_ctrl_read(uint32_t offset, int size) {
uint32_t res = 0;
switch (offset & 0xFC) {
case MIO_INT_EVENTS2:
res = this->int_events2;
break;
case MIO_INT_MASK2:
res = this->int_mask2;
break;
case MIO_INT_LEVELS2:
res = this->int_levels2;
break;
case MIO_INT_EVENTS1:
res = this->int_events1;
break;
case MIO_INT_MASK1:
res = this->int_mask1;
break;
case MIO_INT_LEVELS1:
res = this->int_levels1;
break;
case MIO_INT_CLEAR1:
case MIO_INT_CLEAR2:
// some Mac OS drivers reads from those write-only registers
// so we return zero here as real HW does
break;
case MIO_OHARE_ID:
LOG_F(9, "read from MIO:ID register at Address %x", ppc_state.pc);
res = (this->fp_id << 24) | (this->mon_id << 16) | (this->mb_id << 8) |
(this->cpu_id | (this->emmo_pin << 4));
break;
case MIO_OHARE_FEAT_CTRL:
LOG_F(9, "read from MIO:Feat_Ctrl register");
res = this->feat_ctrl;
break;
default:
LOG_F(WARNING, "read from unknown MIO register at %x", offset);
break;
}
return BYTESWAP_32(res);
}
void HeathrowIC::mio_ctrl_write(uint32_t offset, uint32_t value, int size) {
switch (offset & 0xFC) {
case MIO_INT_MASK2:
this->int_mask2 |= BYTESWAP_32(value) & ~MACIO_INT_MODE;
break;
case MIO_INT_CLEAR2:
this->int_events2 &= ~(BYTESWAP_32(value) & 0x7FFFFFFFUL);
clear_cpu_int();
break;
case MIO_INT_MASK1:
this->int_mask1 = BYTESWAP_32(value);
// copy IntMode bit to InterruptMask2 register
this->int_mask2 = (this->int_mask2 & ~MACIO_INT_MODE) | (this->int_mask1 & MACIO_INT_MODE);
break;
case MIO_INT_CLEAR1:
if ((this->int_mask1 & MACIO_INT_MODE) && (value & MACIO_INT_CLR)) {
this->int_events1 = 0;
this->int_events2 = 0;
} else {
this->int_events1 &= ~(BYTESWAP_32(value) & 0x7FFFFFFFUL);
}
clear_cpu_int();
break;
case MIO_OHARE_ID:
LOG_F(WARNING, "Attempted to write %x to MIO:ID at %x; Address : %x", value, offset, ppc_state.pc);
break;
case MIO_OHARE_FEAT_CTRL:
this->feature_control(BYTESWAP_32(value));
break;
case 0x3C:
LOG_F(9, "write %x to MIO:Aux_Ctrl register", value);
this->aux_ctrl = value;
break;
default:
LOG_F(WARNING, "write %x to unknown MIO register at %x", value, offset);
break;
}
}
void HeathrowIC::feature_control(const uint32_t value)
{
LOG_F(9, "write %x to MIO:Feat_Ctrl register", value);
this->feat_ctrl = value;
if (!(this->feat_ctrl & 1)) {
LOG_F(9, "Heathrow: Monitor sense enabled");
} else {
LOG_F(9, "Heathrow: Monitor sense disabled");
}
}
uint32_t HeathrowIC::register_dev_int(IntSrc src_id)
{
switch (src_id) {
case IntSrc::SCSI1:
return 1 << 1;
case IntSrc::IDE0:
return 1 << 2;
case IntSrc::IDE1:
return 1 << 3;
case IntSrc::VIA_CUDA:
return 1 << 7;
case IntSrc::SWIM3:
return 1 << 8;
default:
ABORT_F("Heathrow: unknown interrupt source %d", src_id);
}
return 0;
}
uint32_t HeathrowIC::register_dma_int(IntSrc src_id)
{
return 0;
}
void HeathrowIC::ack_int(uint32_t irq_id, uint8_t irq_line_state)
{
#if 1
if (irq_id >= (1 << 20)) { // does this irq_id belong to the second set?
irq_id >>= (20 - 10); // adjust for non-DMA interrupt bits of the 2nd set
// native mode: set IRQ bits in int_events2 on a 0-to-1 transition
// emulated mode: set IRQ bits in int_events2 on all transitions
if ((this->int_mask1 & MACIO_INT_MODE) ||
(irq_line_state && !(this->int_levels2 & irq_id))) {
this->int_events2 |= irq_id;
} else {
this->int_events2 &= ~irq_id;
}
this->int_events2 &= this->int_mask2;
// update IRQ line state
if (irq_line_state) {
this->int_levels2 |= irq_id;
} else {
this->int_levels2 &= ~irq_id;
}
} else {
irq_id <<= 11; // adjust for non-DMA interrupt bits of the first set
// native mode: set IRQ bits in int_events1 on a 0-to-1 transition
// emulated mode: set IRQ bits in int_events1 on all transitions
if ((this->int_mask1 & MACIO_INT_MODE) ||
(irq_line_state && !(this->int_levels1 & irq_id))) {
this->int_events1 |= irq_id;
} else {
this->int_events1 &= ~irq_id;
}
this->int_events1 &= this->int_mask1;
// update IRQ line state
if (irq_line_state) {
this->int_levels1 |= irq_id;
} else {
this->int_levels1 &= ~irq_id;
}
}
this->signal_cpu_int();
#endif
#if 0
if (this->int_mask1 & MACIO_INT_MODE) { // 68k interrupt emulation mode?
if (irq_id >= (1 << 20)) { // irq_id in the range of int_events2?
irq_id >>= (20 - 10); // adjust for non-DMA interrupt bits of int_events2
this->int_events2 |= irq_id; // signal IRQ line change
this->int_events2 &= this->int_mask2;
// update IRQ line state
if (irq_line_state) {
this->int_levels2 |= irq_id;
} else {
this->int_levels2 &= ~irq_id;
}
} else {
irq_id <<= 11;
this->int_events1 |= irq_id; // signal IRQ line change
this->int_events1 &= this->int_mask1;
// update IRQ line state
if (irq_line_state) {
this->int_levels1 |= irq_id;
} else {
this->int_levels1 &= ~irq_id;
}
}
this->signal_cpu_int();
} else {
LOG_F(WARNING, "%s: native interrupt mode not implemented", this->name.c_str());
}
#endif
}
void HeathrowIC::ack_dma_int(uint32_t irq_id, uint8_t irq_line_state)
{
#if 1
if (irq_id >= (1 << 10)) { // does this irq_id belong to the second set?
irq_id >>= 10; // adjust for DMA interrupt bits of the 2nd set
// native mode: set IRQ bits in int_events2 on a 0-to-1 transition
// emulated mode: set IRQ bits in int_events2 on all transitions
if ((this->int_mask1 & MACIO_INT_MODE) ||
(irq_line_state && !(this->int_levels2 & irq_id))) {
this->int_events2 |= irq_id;
} else {
this->int_events2 &= ~irq_id;
}
this->int_events2 &= this->int_mask2;
// update IRQ line state
if (irq_line_state) {
this->int_levels2 |= irq_id;
} else {
this->int_levels2 &= ~irq_id;
}
} else {
// native mode: set IRQ bits in int_events1 on a 0-to-1 transition
// emulated mode: set IRQ bits in int_events1 on all transitions
if ((this->int_mask1 & MACIO_INT_MODE) ||
(irq_line_state && !(this->int_levels1 & irq_id))) {
this->int_events1 |= irq_id;
} else {
this->int_events1 &= ~irq_id;
}
this->int_events1 &= this->int_mask1;
// update IRQ line state
if (irq_line_state) {
this->int_levels1 |= irq_id;
} else {
this->int_levels1 &= ~irq_id;
}
}
this->signal_cpu_int();
#endif
#if 0
if (this->int_mask1 & MACIO_INT_MODE) { // 68k interrupt emulation mode?
if (irq_id >= (1 << 10)) { // irq_id in the range of int_events2?
irq_id >>= 10; // adjust for DMA interrupt bits of int_events2
this->int_events2 |= irq_id; // signal IRQ line change
this->int_events2 &= this->int_mask2;
// update IRQ line state
if (irq_line_state) {
this->int_levels2 |= irq_id;
} else {
this->int_levels2 &= ~irq_id;
}
} else {
this->int_events1 |= irq_id; // signal IRQ line change
this->int_events1 &= this->int_mask1;
// update IRQ line state
if (irq_line_state) {
this->int_levels1 |= irq_id;
} else {
this->int_levels1 &= ~irq_id;
}
}
this->signal_cpu_int();
} else {
ABORT_F("%s: native interrupt mode not implemented", this->name.c_str());
}
#endif
}
void HeathrowIC::signal_cpu_int() {
if (this->int_events1 || this->int_events2) {
if (!this->cpu_int_latch) {
this->cpu_int_latch = true;
ppc_assert_int();
} else {
LOG_F(5, "%s: CPU INT already latched", this->name.c_str());
}
}
}
void HeathrowIC::clear_cpu_int()
{
if (!this->int_events1 && !this->int_events2) {
this->cpu_int_latch = false;
ppc_release_int();
LOG_F(5, "Heathrow: CPU INT latch cleared");
}
}
static const vector<string> Heathrow_Subdevices = {
"NVRAM", "ViaCuda", "Scsi0", "MeshHeathrow", "Escc", "Swim3", "Ide0", "Ide1",
"BigMacHeathrow"
};
static const DeviceDescription Heathrow_Descriptor = {
HeathrowIC::create, Heathrow_Subdevices, {}
};
REGISTER_DEVICE(Heathrow, Heathrow_Descriptor);