dingusppc/devices/ioctrl/amic.cpp

406 lines
14 KiB
C++

/*
DingusPPC - The Experimental PowerPC Macintosh emulator
Copyright (C) 2018-21 divingkatae and maximum
(theweirdo) spatium
(Contact divingkatae#1017 or powermax#2286 on Discord for more info)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
/** Apple memory-mapped I/O controller emulation.
Author: Max Poliakovski
*/
#include <cpu/ppc/ppcmmu.h>
#include <devices/common/scsi/ncr53c94.h>
#include <devices/common/viacuda.h>
#include <devices/ethernet/mace.h>
#include <devices/ioctrl/amic.h>
#include <devices/serial/escc.h>
#include <machines/machinebase.h>
#include <devices/memctrl/memctrlbase.h>
#include <algorithm>
#include <cinttypes>
#include <loguru.hpp>
#include <memory>
AMIC::AMIC()
{
this->name = "Apple Memory-mapped I/O Controller";
MemCtrlBase *mem_ctrl = dynamic_cast<MemCtrlBase *>
(gMachineObj->get_comp_by_type(HWCompType::MEM_CTRL));
/* add memory mapped I/O region for the AMIC control registers */
if (!mem_ctrl->add_mmio_region(0x50F00000, 0x00040000, this)) {
LOG_F(ERROR, "Couldn't register AMIC registers!");
}
this->scsi = std::unique_ptr<Ncr53C94> (new Ncr53C94());
this->escc = std::unique_ptr<EsccController> (new EsccController());
this->mace = std::unique_ptr<MaceController> (new MaceController(MACE_ID));
this->viacuda = std::unique_ptr<ViaCuda> (new ViaCuda());
this->snd_out_dma = std::unique_ptr<AmicSndOutDma> (new AmicSndOutDma());
this->awacs = std::unique_ptr<AwacDevicePdm> (new AwacDevicePdm());
this->awacs->set_dma_out(this->snd_out_dma.get());
}
bool AMIC::supports_type(HWCompType type) {
if ((type == HWCompType::MMIO_DEV)
|| (type == HWCompType::INT_CTRL)) {
return true;
} else {
return false;
}
}
//Interrupt Register
void AMIC::process_interrupt(uint32_t cookie) {
bool confirm_interrupt = false;
uint32_t bit_field = 0;
if (this->int_ctrl_reg & 0x40) {
confirm_interrupt = true;
}
switch (cookie) {
case DEV_ID::VIA_CUDA:
if (this->viacuda->read(VIA_IFR)) {
bit_field = (1 << VIA1_Interrupt);
confirm_interrupt = true;
}
else if (via2_slot_int_enable || via2_int_enable) {
bit_field = (1 << VIA2_Interrupt);
confirm_interrupt = true;
}
break;
case DEV_ID::SCC_B:
case DEV_ID::SCC_A:
bit_field = (1 << SCC_Interrupt);
confirm_interrupt = true;
break;
case DEV_ID::ETHERNET:
bit_field = (1 << Eth_Interrupt);
confirm_interrupt = true;
break;
case DEV_ID::Swim3_DMA:
case DEV_ID::ETHERNET_DMA_OUT:
case DEV_ID::ETHERNET_DMA_IN:
case DEV_ID::SCC_A_DMA_OUT:
case DEV_ID::SCC_A_DMA_IN:
case DEV_ID::SCC_B_DMA_OUT:
case DEV_ID::SCC_B_DMA_IN:
if (dma_int_reg0) {
bit_field = (1 << DMA_Interrupt);
confirm_interrupt = true;
}
break;
case DEV_ID::SOUND_DMA_OUT:
case DEV_ID::SOUND_DMA_IN:
if (dma_int_reg1) {
bit_field = (1 << DMA_Interrupt);
confirm_interrupt = true;
}
break;
case DEV_ID::NMI:
bit_field = (1 << NMI_Interrupt);
confirm_interrupt = true;
break;
}
if (confirm_interrupt)
ack_interrupt(bit_field);
}
uint32_t AMIC::ack_interrupt(uint32_t device_bits) {
bool confirm_interrupt = false;
bool ack_bit = this->int_ctrl_reg & 0x80;
if (device_bits & this->int_ctrl_reg)
confirm_interrupt = true;
if (confirm_interrupt && ack_bit)
ack_cpu_interrupt();
return 0;
}
uint32_t AMIC::read(uint32_t reg_start, uint32_t offset, int size) {
uint32_t phase_val;
// subdevices registers
switch(offset >> 12) {
case 0: // VIA1 registers
case 1:
process_interrupt(VIA_CUDA);
return this->viacuda->read(offset >> 9);
case 4: // SCC registers
this->escc->read_compat((offset >> 1) & 0xF);
this->process_interrupt(SCC_A);
return 0;
case 0xA: // MACE registers
return this->mace->read((offset >> 4) & 0xF);
case 0x10: // SCSI registers
return this->scsi->read((offset >> 4) & 0xF);
case 0x14: // Sound registers
switch (offset) {
case AMICReg::Snd_Stat_0:
case AMICReg::Snd_Stat_1:
case AMICReg::Snd_Stat_2:
return (this->awacs->read_stat() >> (offset & 3 * 8)) & 0xFF;
case AMICReg::Snd_Phase0:
case AMICReg::Snd_Phase1:
case AMICReg::Snd_Phase2:
// the sound phase register is organized as follows:
// 000000oo oooooooo oopppppp where 'o' is the 12-bit offset
// into the DMA buffer and 'p' is an undocumented prescale value
// HWInit doesn't care about. Let's hope it will be sufficient
// to return 0 for prescale.
phase_val = this->snd_out_dma->get_cur_buf_pos() << 6;
return (phase_val >> ((2 - (offset & 3)) * 8)) & 0xFF;
case AMICReg::Snd_Out_Ctrl:
return this->snd_out_ctrl;
case AMICReg::Snd_Out_DMA:
return this->snd_out_dma->read_stat();
}
}
switch(offset) {
case AMICReg::Diag_Reg:
return 0xFFU; // this value allows the machine to boot normally
case AMICReg::SCSI_DMA_Ctrl:
return this->scsi_dma_cs;
case AMICReg::Int_Ctrl:
if (this->int_ctrl_reg & 0x80) {
ack_cpu_interrupt();
}
return this->int_ctrl_reg;
default:
LOG_F(WARNING, "Unknown AMIC register read, offset=%x", offset);
}
return 0;
}
void AMIC::write(uint32_t reg_start, uint32_t offset, uint32_t value, int size)
{
uint32_t mask;
// subdevices registers
switch(offset >> 12) {
case 0: // VIA1 registers
case 1:
this->viacuda->write(offset >> 9, value);
return;
case 4:
this->escc->write_compat((offset >> 1) & 0xF, value);
return;
case 0xA: // MACE registers
this->mace->write((offset >> 4) & 0xF, value);
return;
case 0x10:
this->scsi->write((offset >> 4) & 0xF, value);
return;
case 0x14: // Sound registers
switch(offset) {
case AMICReg::Snd_Ctrl_0:
case AMICReg::Snd_Ctrl_1:
case AMICReg::Snd_Ctrl_2:
// remember values of sound control registers
this->imm_snd_regs[offset & 3] = value;
// transfer control information to the sound codec when ready
if ((this->imm_snd_regs[0] & 0xC0) == PDM_SND_CTRL_VALID) {
this->awacs->write_ctrl(
(this->imm_snd_regs[1] >> 4) | (this->imm_snd_regs[0] & 0x3F),
((this->imm_snd_regs[1] & 0xF) << 8) | this->imm_snd_regs[2]
);
}
this->process_interrupt(DEV_ID::DAVBUS);
return;
case AMICReg::Snd_Buf_Size_Hi:
case AMICReg::Snd_Buf_Size_Lo:
mask = 0xFF00U >> (8 * (offset & 1));
this->snd_buf_size = (this->snd_buf_size & ~mask) |
((value & 0xFF) << (8 * ((offset & 1) ^1)));
this->snd_buf_size &= ~3; // sound buffer size is always a multiple of 4
LOG_F(9, "AMIC: Sound buffer size set to 0x%X", this->snd_buf_size);
this->process_interrupt(DEV_ID::DAVBUS);
return;
case AMICReg::Snd_Out_Ctrl:
LOG_F(9, "AMIC Sound Out Ctrl updated, val=%x", value);
if ((value & 1) != (this->snd_out_ctrl & 1)) {
if (value & 1) {
LOG_F(9, "AMIC Sound Out DMA enabled!");
this->snd_out_dma->init(this->dma_base & ~0x3FFFF,
this->snd_buf_size);
this->snd_out_dma->enable();
this->awacs->set_sample_rate((this->snd_out_ctrl >> 1) & 3);
this->awacs->start_output_dma();
} else {
LOG_F(9, "AMIC Sound Out DMA disabled!");
this->snd_out_dma->disable();
}
}
this->snd_out_ctrl = value;
return;
case AMICReg::Snd_In_Ctrl:
LOG_F(INFO, "AMIC Sound In Ctrl updated, val=%x", value);
return;
case AMICReg::Snd_Out_DMA:
this->snd_out_dma->write_dma_out_ctrl(value);
this->dma_int_reg1 |= 0x2;
this->process_interrupt(DEV_ID::SOUND_DMA_OUT);
return;
}
}
switch(offset) {
case AMICReg::VIA2_Slot_IER:
LOG_F(INFO, "AMIC VIA2 Slot Interrupt Enable Register updated, val=%x", value);
via2_slot_int_enable = value;
break;
case AMICReg::VIA2_IER:
LOG_F(INFO, "AMIC VIA2 Interrupt Enable Register updated, val=%x", value);
via2_int_enable = value;
break;
case AMICReg::Video_Mode_Reg:
LOG_F(INFO, "AMIC Video Mode Register set to %x", value);
break;
case AMICReg::Int_Ctrl:
LOG_F(INFO, "AMIC Interrupt Control Register set to %X", value);
if (value & 0x80) {
value &= 0xC0;
ack_cpu_interrupt();
}
this->int_ctrl_reg = value;
break;
case AMICReg::DMA_Base_Addr_0:
case AMICReg::DMA_Base_Addr_1:
case AMICReg::DMA_Base_Addr_2:
case AMICReg::DMA_Base_Addr_3:
mask = 0xFF000000UL >> (8 * (offset & 3));
this->dma_base = (this->dma_base & ~mask) |
((value & 0xFF) << (8 * (3 - (offset & 3))));
LOG_F(9, "AMIC: DMA base address set to 0x%X", this->dma_base);
this->process_interrupt(DEV_ID::PERCH_DMA);
break;
case AMICReg::Enet_DMA_Xmt_Ctrl:
LOG_F(INFO, "AMIC Ethernet Transmit DMA Ctrl updated, val=%x", value);
break;
case AMICReg::SCSI_DMA_Ctrl:
LOG_F(INFO, "AMIC SCSI DMA Ctrl updated, val=%x", value);
this->scsi_dma_cs = value;
break;
case AMICReg::Enet_DMA_Rcv_Ctrl:
LOG_F(INFO, "AMIC Ethernet Receive DMA Ctrl updated, val=%x", value);
break;
case AMICReg::SWIM3_DMA_Ctrl:
LOG_F(INFO, "AMIC SWIM3 DMA Ctrl updated, val=%x", value);
break;
case AMICReg::SCC_DMA_Xmt_A_Ctrl:
LOG_F(INFO, "AMIC SCC Transmit Ch A DMA Ctrl updated, val=%x", value);
break;
case AMICReg::SCC_DMA_Rcv_A_Ctrl:
LOG_F(INFO, "AMIC SCC Receive Ch A DMA Ctrl updated, val=%x", value);
break;
case AMICReg::SCC_DMA_Xmt_B_Ctrl:
LOG_F(INFO, "AMIC SCC Transmit Ch B DMA Ctrl updated, val=%x", value);
break;
case AMICReg::SCC_DMA_Rcv_B_Ctrl:
LOG_F(INFO, "AMIC SCC Receive Ch B DMA Ctrl updated, val=%x", value);
break;
default:
LOG_F(WARNING, "Unknown AMIC register write, offset=%x, val=%x",
offset, value);
}
}
// =========================== DMA related stuff =============================
AmicSndOutDma::AmicSndOutDma()
{
this->dma_out_ctrl = 0;
this->enabled = false;
}
bool AmicSndOutDma::is_active()
{
return true;
}
void AmicSndOutDma::init(uint32_t buf_base, uint32_t buf_samples)
{
this->out_buf0 = buf_base + AMIC_SND_BUF0_OFFS;
this->out_buf1 = buf_base + AMIC_SND_BUF1_OFFS;
this->out_buf_len = buf_samples * 2 * 2;
this->snd_buf_num = 0;
this->cur_buf_pos = 0;
}
uint8_t AmicSndOutDma::read_stat()
{
return this->dma_out_ctrl;
}
void AmicSndOutDma::write_dma_out_ctrl(uint8_t value)
{
// clear interrupt flags
value &= ~PDM_DMA_INTS_MASK;
this->dma_out_ctrl = value;
LOG_F(9, "AMIC: Sound out DMA control set to 0x%X", value);
}
DmaPullResult AmicSndOutDma::pull_data(uint32_t req_len, uint32_t *avail_len,
uint8_t **p_data)
{
*avail_len = 0;
int rem_len = this->out_buf_len - this->cur_buf_pos;
if (rem_len <= 0) {
if (!this->snd_buf_num) {
// signal buffer 0 drained
this->dma_out_ctrl |= PDM_DMA_IF0;
// TODO: generate IE0 interrupt if enabled
} else {
// signal buffer 1 drained
this->dma_out_ctrl |= PDM_DMA_IF1;
// TODO: generate IE1 interrupt if enabled
}
// check DMA enable flag after buffer 1 was processed
// if it's false stop delivering sound data
// this will effectively stop audio playback
if (this->snd_buf_num && !this->enabled) {
this->cur_buf_pos = 0;
return DmaPullResult::NoMoreData;
}
this->cur_buf_pos = 0; // reset buffer position
this->snd_buf_num ^= 1; // toggle sound buffers
rem_len = this->out_buf_len; // buffer size = full buffer
}
uint32_t len = std::min((uint32_t)rem_len, req_len);
*p_data = mmu_get_dma_mem(
(this->snd_buf_num ? this->out_buf1 : this->out_buf0) + this->cur_buf_pos,
len);
this->cur_buf_pos += len;
*avail_len = len;
return DmaPullResult::MoreData;
}